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The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is
revisited. A comparison is presented between the results derived previously using truncated virial
expansions for three finite size ratios with those that one obtains with the same approach in the
extreme case in which one of the components consists of point particles. Since this latter system is
known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical
constants arising in the truncated series in all instances, while not being conclusive, may cast serious
doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive
hard-sphere mixtures. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803097]

An analysis of the solution of the Percus–Yevick inte-
gral equation for binary additive hard-sphere (HS) mixtures1

leads to the conclusion that no phase separation into two
fluid phases exists in these systems. The same conclusion is
reached if one considers the most popular equation of state
proposed for additive HS mixtures, namely, the Boublík–
Mansoori–Carnahan–Starling–Leland (BMCSL) equation of
state.2, 3 For a long time the belief was that this was a true
physical feature. Nevertheless, this belief started to be se-
riously questioned after Biben and Hansen4 obtained fluid-
fluid segregation in such mixtures out of the solution of the
Ornstein–Zernike equation with the Rogers–Young closure,
provided the size disparity was large enough. More recently,
an accurate equation of state derived by invoking some con-
sistency conditions5 does predict phase separation. The im-
portance of this issue resides in the fact that if fluid-fluid phase
separation occurs in additive HS binary mixtures, it must cer-
tainly be entropy driven. In contrast, in other mixtures such as
molecular mixtures, temperature plays a non-neutral role and
demixing is a free-energy driven phase transition.

The demixing problem has received a lot of attention
in the literature in different contexts and using different ap-
proaches. For instance, Coussaert and Baus6–8 have proposed
an equation of state with improved virial behavior for a binary
HS mixture that predicts a fluid-fluid transition at very high
pressures (metastable with respect to a fluid-solid one). On the
other hand, Regnaut et al.9 have examined the connection be-
tween empirical expressions for the contact values of the pair
distribution functions and the existence of fluid-fluid separa-
tion in HS mixtures. Finally, in the case of highly asymmetric
binary additive HS mixtures, the depletion effect has been in-
voked as the physical mechanism behind demixing (see, for
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instance, Refs. 10–14 and the bibliography therein) and an ef-
fective one-component fluid description has been employed.
It is worth remarking that the entropic forces driving a possi-
ble demixing transition become much more important as the
dimensionality increases, so that demixing in four- and five-
dimensional HS systems is much less elusive.15 In the limit
of infinite dimensionality, demixing becomes possible even
in the presence of negative nonadditivity.16

This paper addresses the (in our view) still unsolved and
controversial problem of demixing in three-dimensional bi-
nary mixtures of additive HS. Our system consists of a bi-
nary fluid mixture of N = N1 + N2 additive HS of species
1 and 2 whose diameters are σ 1 and σ 2, respectively, with
σ 1 > σ 2, so that the range of the repulsion between particles
of species 1 and 2 is σ12 = 1

2 (σ1 + σ2). The thermodynamic
properties of the mixture can be described in terms of the
number density (which for this system is given by ρ ≡ N/V ,
with V the volume), the mole fraction of the big spheres
x ≡ N1/N, and the parameter γ ≡ σ 2/σ 1, which measures the
size asymmetry. Also convenient for later use is the packing
fraction η ≡ (π/6)ρσ 3

1 [x + (1 − x)γ 3]. We will consider as
starting point for our analysis the available information on the
(in principle exact) virial expansion of the equation of state.
In general, one may express the virial coefficients of a binary
HS mixture as

Bn(x, γ ) =
n∑

m=0

Bm,n−m(γ )
n!

m!(n − m)!
xm(1 − x)n−m, (1)

where the partial (composition-independent) virial coeffi-
cients Bm, n–m(γ ) (m = 0, 1, . . . , n) have been introduced. An-
alytical expressions are known for B2(x, γ )17 and B3(x, γ ),18

while B4(x, γ ) and up to B7(x, γ ) have been evaluated nu-
merically for various size ratios.19–23 Recently, Labík and Ko-
lafa have developed an accurate algorithm to compute virial
coefficients up to B8(x, γ ) at a number of size ratios.24 The
specific values of the partial virial coefficients Bm, n–m(γ ) with
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n = 4–8 for γ = 0.05, 0.1, and 0.2 were reported in Table 1
of Ref. 25. These most recent results, apart from providing
the new eighth virial coefficients, also improve on the nu-
merical values of the lower ones. A recent review on virial
expansions, including an extensive list of references and a de-
scription of the difficulties associated with the computation of
higher virial coefficients, has been written by Masters.26

A convenient way to study demixing in binary addi-
tive HS mixtures is to look at the loss of convexity of the
Helmholtz free energy per particle f ≡ f (ρ, x, γ ). For our bi-
nary HS mixture it reads

f = fid + fex, (2)

with the ideal contribution fid given by

βfid = −1 + x ln
(
ρx�3

1

) + (1 − x) ln
[
ρ(1 − x)�3

2

]
, (3)

and, in terms of Bn + 1(x, γ ), the excess contribution fex given
by

βfex =
∞∑

n=1

1

n
Bn+1(x, γ )ρn. (4)

In the above formulas, β ≡ 1/kBT (where kB is the Boltzmann
constant and T is the absolute temperature) plays only the role
of a scale factor, and �i (i = 1, 2) is the thermal de Broglie
wavelength of the particles of species i. In the present ther-
modynamic representation, where ρ and x are the indepen-
dent variables, the condition for the occurrence of a spinodal
instability reads

(
∂2f

∂ρ2
+ 2

ρ

∂f

∂ρ

)
∂2f

∂x2
−

(
∂2f

∂ρ∂x

)2

= 0. (5)

In two instances, namely, the limiting cases of a pure
HS system (γ = 1) and that of a binary mixture in which
species 2 consists of point particles (γ = 0), it is known that
there is no fluid-fluid separation.27 For size ratios other than
γ = 1 and γ = 0, once γ is fixed, the constants correspond-
ing to the lower critical consolute point, ρc and xc, should
be found by determining the minimum of the curve obtained
from the use of Eq. (5). However, due to the fact that the
virial coefficients beyond the eighth are unknown, the exact
expression for f (ρ, x, γ ) is also unknown. Hence, either one
truncates the series in Eq. (4) after the term with n = 7 or
uses an approximate compressibility factor Zapp(ρ) (in which
case βfex � ∫ ρ

0 dρ ′[Zapp(ρ ′) − 1]/ρ ′) to approximate the true
Helmholtz free energy.

As already observed by Vlasov and Masters23 and López
de Haro and Tejero,28 truncation of a virial series [which is
equivalent to truncating the series in Eq. (4)] can produce
dramatic effects on the resulting critical behavior of the mix-
ture. More recently, by working with the truncated virial se-
ries and systematically adding one more known coefficient
from the second to the eighth, López de Haro et al.25 obtained
the (apparent) critical consolute point for three mixtures of
size ratios 0.05, 0.1, and 0.2. In the three cases it was found
that the values of the critical pressures and packing fractions
monotonically increase with the truncation order. Extrapola-
tion of these results to infinite order suggests that the critical
pressure diverges to infinity and the critical packing fraction

tends towards its close-packing value, thus supporting a non-
demixing scenario, at least for the three systems investigated.
In Ref. 25 it was also found that the same trends were obtained
when the unknown exact virial coefficients beyond the eighth
one are estimated from Wheatley’s extrapolation formula29, 30

or when the BMCSL equation of state2, 3 (which does not pre-
dict demixing) is “amended” by replacing a number of ap-
proximate virial coefficients by the exact ones. This shows
the extreme sensitivity of the demixing phenomenon to slight
changes in the approximate equation of state that is chosen to
describe the mixture.

A more detailed analysis of the results for the critical
pressures pc(k) obtained by López de Haro et al.25 allows one
to get an insight of the behavior of pc with the truncation or-
der k. In fact, a log-log plot of pc(k) vs. k shows a quasi-linear
behavior, consistent with a power law pc(k) ≈ Akμ, with an
exponent μ ≈ 1.7–2 that slightly depends on the size ratio.

The argument that the truncated virial series are prone to
exhibit demixing, albeit with larger and larger critical pres-
sures, can be reinforced, as will be discussed in this paper,
by analyzing a binary mixture in which species 2 consists
of point particles, so that γ = 0. In that limit the exact free
energy is βf (ρ, x, γ = 0) = xβfpure(η) − (1 − x) ln(1 − η),
where fpure is the free energy of a pure HS fluid evaluated
at the same packing fraction η as that of the mixture. Note
that in this limiting case the virial coefficients of the mixture
are directly related to the ones of the pure fluid, which are
known up to the tenth.31–34 Further, and as mentioned previ-
ously, this system is known to lack a demixing transition27

but, as shown below, the truncated virial series exhibits ar-
tificial critical points with the same qualitative features as
observed for the mixtures with size ratios γ = 0.05, 0.1,
and 0.2.

In Fig. 1, we illustrate the trends observed with different
values of the size ratio both for the reduced critical pressure
p∗

c ≡ βpcσ
3
1 and packing fraction ηc as one adds one more

“exact” virial coefficient (up to the tenth) each step to the
truncated virial series. In the case of non-zero γ , the ninth and
tenth virial coefficients have been computed with Wheatley’s
extrapolation formula.29, 35 As already pointed out in Ref. 25,
for non-zero γ one does not know the convergence properties
of the virial series and hence whether the demixing transition
in such binary mixtures is either stable, metastable with re-
spect to freezing, or nonexistent cannot be ascertained on the
basis of the previous results alone. On the other hand, the ab-
sence of the demixing transition is certain27 for γ = 0 and the
trends observed with the truncated series in this case for the
ηc vs. p∗

c curve are strikingly similar to those that arise for
the same curve when γ = 0.05, 0.1, and 0.2. Although not
shown, if one considers the limit γ = 0 in the BMCSL equa-
tion of state, the results obtained from truncating this latter
are virtually indistinguishable from the ones shown in Fig. 1.

In conclusion, while not settling definitely the matter and
contrary to approaches based on either approximate integral
equations or on an effective one-component description, the
above results provide further evidence that it is plausible that a
stable demixing fluid-fluid transition does not occur in (three-
dimensional) additive binary HS mixtures with non-zero size
ratio.
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FIG. 1. Critical packing fraction ηc vs. reduced critical pressure p∗
c in bi-

nary HS mixtures of different size ratios γ as computed from truncated virial
expansions keeping successively two, three, four, five, six, seven, eight, nine,
and ten “exact” virial coefficients. In the case of non-zero γ , the “exact” ninth
and tenth virial coefficients have been estimated using Wheatley’s extrapola-
tion formula. Diamonds: γ = 0; squares: γ = 0.05; triangles: γ = 0.1; open
circles: γ = 0.2. The inset shows the representation with the critical pressure
in logarithmic scale.
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