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Despite the simplicity of the hard-sphere (HS) inter-
molecular potential and the vast amount of studies devoted
to this model, up to date no one has been able to derive
analytically neither the free energy nor the phase diagram
of the HS system. Therefore, many of the important results
concerning the equilibrium properties of the HS model have
been obtained from computer simulations. It is well known
that in the HS system the absolute temperature T only en-
ters as a scaling parameter and so its equation of state (EOS)
is usually presented as a graph in the compressibility factor
(Z ≡ p/ρkBT, with p, ρ, and kB being the pressure, num-
ber density, and Boltzmann constant, respectively) vs pack-
ing fraction (η ≡ π

6 ρσ 3, σ being the diameter of the spheres)
plane.1 The characteristics of this diagram are relatively well
understood, at least qualitatively. It comprises a stable fluid
branch going from η = 0 to the freezing packing fraction
ηf � 0.492, where a fluid-solid phase transition takes place,2, 3

a region of fluid-solid coexistence from ηf to the crystal melt-
ing point ηm � 0.543,3, 4 and finally a stable solid (crystalline)
branch from ηm to the close-packing fraction ηcp = π

6

√
2

� 0.7405.5 Beyond the freezing point there is also a region of
metastable fluid states that is supposed to end at the packing
fraction ηg � 0.58,5, 6 where a widely accepted glass transi-
tion occurs. The glass branch ends at ηrcp � 0.64 correspond-
ing to the random close-packing of an amorphous solid.7

There is further a region of metastable crystalline states for
packing fractions below ηm.

Recently, accurate tethered Monte Carlo (MC) simula-
tions have been reported3 in which the fluid-solid coexistence
pressure (pcoex) of the HS system was computed, namely,
p∗

coex ≡ (σ 3/kBT )pcoex = 11.5727(10), the number enclosed
by parentheses denoting the statistical error. The specific vol-
umes associated with the freezing and melting points were
also reported with the values vf = 1/ρf = 1.06448(10)σ 3 and
vm = 1/ρm = 0.96405(3)σ 3, respectively.

Given these results, the aim of this Note is to ex-
plore whether starting with the above high-accuracy estimate
of pcoex and determining the freezing-point packing frac-
tion (with its associated statistical error) from available an-
alytical EOS one may conclude which one yields the best
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performance near the freezing point. To achieve our goal,
we will examine the following four analytical EOS. First, we
recall the celebrated Carnahan–Starling (CS)8 EOS:

ZCS = 1 + η + η2 − η3

(1 − η)3
. (1)

Next, we consider Kolafa’s correction, i.e., the Carnahan–
Starling–Kolafa (CSK)9 EOS:

ZCSK = 1 + η + η2 − 2
3 (1 + η)η3

(1 − η)3
. (2)

As a third EOS, a proposal based on the so-called rescaled
virial (RV) expansion10 will also be included, namely,

ZRV = 1 + ∑6
n=1 Cnη

n

(1 − η)3
, (3)

with C1 = C2 = 1, and Cn = ∑3
j=0

(3
j

)
(−1)j+1bn−2+j for n

= 3–6, bj being the (reduced) virial coefficients. Finally, a
recently proposed branch-point (BP) approximant11 will be
considered. It reads

ZBP = 1 + 1 + ∑3
n=1 cnη

n − (1 + 2a1η + a2η
2)3/2

A(1 − η)3
, (4)

with a1 = −C5/C4, a2 = 7a2
1 − 6C6/C4, A = − 3

8 (a2 − a2
1)2/

C4, c1 = 3a1 + 4A, c2 = 3
2 (a2 + a2

1) − 2A, and c3

= 1
2a1(3a2 − a2

1) + (b4 − 18)A. One should add in connec-
tion with Eqs. (3) and (4) that they require the first
seven virial coefficients. Only b2 = 4, b3 = 10, and
b4 = 219

√
2−712π+4131 tan−1

√
2

35π
are exactly known, while b5

= 28.22445(10), b6 = 39.81550(36), and b7 = 53.3413(16)
have been determined numerically.12

The procedure involves inverting Eqs. (1)–(4) to compute
ηf (and its statistical error �ηf) from the MC value of p∗

coex
(and its associated statistical error �p∗

coex = 10−3). The four
EOS give ∂p∗/∂η|η = 0.492 ≈ 100–101, so that one can easily
estimate �ηf ≈ 10−5. However, although the numerical inver-
sion of Eqs. (1) and (2) is straightforward, there are complica-
tions associated with Eqs. (3) and (4) due to the statistical un-
certainties on the higher order virial coefficients. To take these
into account we used the following procedure. (i) A random
number p∗ is generated having a normal distribution with av-
erage value p∗

coex and standard deviation �p∗
coex = 10−3; (ii)

a value of the packing fraction η is derived through the equa-
tion 6

π
ηZ(η) = p∗, where Z(η) is the compressibility factor

corresponding to each one of the above EOS; (iii) step (i) is

0021-9606/2014/140(13)/136101/2/$30.00 © 2014 AIP Publishing LLC140, 136101-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

95.121.140.110 On: Thu, 03 Apr 2014 21:22:21

http://dx.doi.org/10.1063/1.4870524
http://dx.doi.org/10.1063/1.4870524
mailto: mrp@ier.unam.mx
http://xml.ier.unam.mx/xml/tc/ft/mrp/
http://xml.ier.unam.mx/xml/tc/ft/mrp/
mailto: malopez@unam.mx
http://xml.ier.unam.mx/xml/tc/ft/mlh/
http://xml.ier.unam.mx/xml/tc/ft/mlh/
mailto: andres@unex.es
http://www.unex.es/eweb/fisteor/andres/
http://www.unex.es/eweb/fisteor/andres/
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4870524&domain=pdf&date_stamp=2014-04-03


136101-2 Robles, López de Haro, and Santos J. Chem. Phys. 140, 136101 (2014)

TABLE I. Freezing-point packing fraction ηf as measured in tethered MC
simulations3 and as derived from Eqs. (1)–(4) and from a fit to MD sim-
ulation data.13 The third column provides the excess chemical potential at
the freezing point, βμex

f , as derived from Eqs. (1)–(4) and from a fit to MC
simulation data.14

Method ηf βμex
f

Tethered MCa 0.491882(46) . . .
CS 0.491972(10) 16.1119(11)
CSK 0.491927(10) 16.1395(10)
RV 0.491820(10) 16.1404(11)
BP 0.491917(10) 16.1289(11)
MDb and MCc 0.491835(11) 16.167(54)

aReference 3.
bReference 13.
cReference 14.

repeated so as to gather a statistically representative set of N
values of η; and (iv) finally, ηf is taken as the average of the
above solutions and the standard deviation �ηf is equated to
the associated statistical error. In the cases of Eqs. (3) and (4)
we also accounted for the statistical errors associated with b5–
b7 in the MC procedure, but we observed that their influence
was practically negligible. The number of elements were cho-
sen as N = 5 × 104 for Eqs. (1) and (2) and N = 1.5 × 105

for Eqs. (3) and (4).
After applying the previous procedure to each one of

the EOS (1)–(4), the results shown in the second column of
Table I were obtained. The simulation value of ηf that fol-
lows from the value of the freezing-point specific volume vf

stated earlier is also included in Table I. Additionally, Table I
contains an estimate of ηf obtained by application of the pro-
cedure outlined above to a quadratic fit to recent rather accu-
rate molecular dynamics (MD) simulation data, together with
their error bars,13 for the three closest densities (ρσ 3 = 0.930,
0.940, and 0.950) to the freezing density.

The results of Table I for ηf are graphically displayed in
Fig. 1. It is clear that the best performance with respect to
the simulation results is provided by both ZCSK and ZBP, with
possibly a slight superiority of the latter. Whereas ZCSK is
simpler than ZBP, the latter has the advantage of predicting
a physical value (smaller than ηcp) for the radius of conver-
gence of the virial series.11, 15 It is also interesting to note that
the MD estimate and the MC value of ηf are statistically con-
sistent since the difference between them is slightly smaller
than the combined standard deviation.

It might be argued that using a single density–pressure
point at freezing is not sufficient for a fair assessment of
the whole stable fluid branch. To account for this, we have
also analyzed the excess chemical potential at freezing, βμex

f
= Z(ηf) − 1 + ∫ ηf

0 dη′[Z(η′) − 1]/η′, which requires integra-
tion over the whole fluid range. We have evaluated βμex

f from
Eqs. (1)–(4) by following a procedure similar to the one de-
scribed above (with N = 1.5 × 105), except that the values of
ηf along with their uncertainties are now used. The results are

FIG. 1. Values of the HS freezing-point packing fraction ηf, together with
their error bars, as obtained from Eqs. (1)–(4) and from the quadratic fit to
MD data.13 The shaded area represents the error bar corresponding to the
simulation result of Ref. 3.

displayed in the third column of Table I. Since βμex
f was not

directly reported in Ref. 3, we have resorted to MC results of
Ref. 14 for ρσ 3 = 0.925, 0.94, and 1.0 and applied our proce-
dure (again with N = 1.5 × 105) to a quadratic fit. Except in
the CS case, the theoretical values deviate from the MC esti-
mate less than the combined standard deviation. In any case,
a more accurate simulation value for βμex

f would be needed
to discriminate among the CSK, RV, and BP predictions.
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