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The effective colloid interaction in the Asakura–Oosawa model.
Assessment of non-pairwise terms from the virial expansion
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The relevance of neglecting three- and four-body interactions in the coarse-grained version of the
Asakura–Oosawa model is examined. A mapping between the first few virial coefficients of the binary
nonadditive hard-sphere mixture representative of this model and those arising from the coarse-
grained (pairwise) depletion potential approximation allows for a quantitative evaluation of the effect
of such interactions. This turns out to be especially important for large size ratios and large reservoir
polymer packing fractions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922031]

I. INTRODUCTION

The description of the thermodynamic properties of com-
plex fluids is in general not an easy task. In it, one faces
the presence of many degrees of freedom and maybe also
of different length and time scales. An approach that is usu-
ally followed is to recur to coarse-graining. In this approach,
what one attempts is to integrate out the irrelevant degrees
of freedom and hence to end up with a simpler (equivalent)
system with an effective interaction that hopefully captures
exactly the essential features of the real interaction. Achieving
an exact coarse-graining is, however, also difficult. This is
due to the fact that, even if the underlying original molec-
ular interactions are pairwise, the resulting effective potential
turns out to be in general a many-body one. For this reason,
in the coarse-graining process, it is usual to replace the full
many-body potential by a simpler effective one in which only
pair interactions are involved. The question then arises as to
whether the thermodynamic properties derived with the effec-
tive potential provide a reliable account of the same properties
for the original fluid.

In the early 20th century, Kamerlingh Onnes1 introduced
the (then empirical) virial series to provide a mathematical rep-
resentation of experimental pressure-density-temperature data
of gases and liquids. In a broader context, one refers to a virial
expansion of a given property when such a property is ex-
pressed as a power series in density. Thus, the virial expan-
sion represents in principle a systematic way for calculat-
ing the properties of bulk matter, provided of course that the
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coefficients in the expansion (the so-called virial coefficients)
are known accurately either through direct measurement or
from theoretical developments. At least formally, one of the
great achievements of statistical mechanics, and a major break-
through in the theoretical approach to calculating virial coef-
ficients involved in the equation of state of fluids, occurred
when Mayer2,3 was able to obtain general expressions for the
corresponding virial coefficients in terms of sums of cluster
integrals over the interaction among groups of fluid particles.
In particular, the second virial coefficient depends only on pair
interactions, while the third virial coefficient depends on two-
and three-body interactions, and so on. If the intermolecular
potential is simple enough, some of such virial coefficients
may be calculated analytically. For instance, in the case of
the hard-sphere (HS) fluid, the first four virial coefficients
are known analytically. The same applies to the celebrated
Asakura–Oosawa (AO) model,4–6 which describes colloidal
HSs in a solvent of ideal polymers that interpenetrate each
other but interact with the colloids via a HS repulsion. In this
case, considering that the system may be taken as a nonadditive
hard-sphere (NAHS) binary mixture with high size asymme-
try, analytical results for the first four virial coefficients have
been very recently reported.7 In general, however, numerical
evaluation is required and even for simple potentials, such as
the ones just mentioned, there are various technical difficulties
involved in computing the higher order virial coefficients. A
noteworthy aspect of the usefulness of virial coefficients is that
the comparison of these coefficients for the original system and
the ones stemming out of the coarse-grained interaction poten-
tial will indicate to what extent and under which conditions
the neglect of the many-body terms in the latter has an impact
on whether the thermodynamic properties of both systems
agree.

Although largely ignored for about 20 yr, interest in the
AO model grew in the 1970s and 1980s and it started to get
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significant attention in the 1990s, which continues up to this
day.7–28 It is well known that its coarse-grained description
involves an effective (depletion) pairwise interaction between
the colloids that, among other things, leads to fluid-fluid
demixing. Attempts to examine whether the thermodynamics
obtained with the depletion potential agrees with the one of
the full mixtures have also been reported. In particular, it
was found that, for a polymer/colloid size ratio q smaller
than the threshold value q0 = 2/

√
3 − 1 ≈ 0.1547, the AO pair

depletion potential turns out to be the only one contribut-
ing to the exact effective interaction among the solutes.13

Recently, Ashton and Wilding26,27 focused, via simulation, on
the dominant many-body effect neglected in the pair potential
description if q > q0, namely, the one associated with the
interaction between three colloidal particles. To this end, they
examined the difference between the third virial coefficient of
the full system and that of the effective system.

Here, we will follow a similar route but also profit from
the availability of the first five virial coefficients of the full
NAHS mixture corresponding to the AO model7 to derive,
by the exact mapping that may be performed between both
sets of coefficients, partial contributions to the second, third,
and fourth virial coefficients of the effective one-component
colloidal fluid. The aim is to quantify the deviations from the
exact results that one gets for both the third and fourth virial
coefficients when computing them with the coarse-grained
depletion potential. As we will see, the influence of non-
pairwise interactions on the third and fourth virial coefficients
is rather small for q . 0.4 but becomes increasingly important
for larger values of the size ratio.

The paper is organized as follows. In Sec. II, and in or-
der to make the paper self-contained, we recall the results
for the first five virial coefficients of the original AO binary
mixture. This is followed in Sec. III by the introduction of
the osmotic pressure of the colloidal system, which allows
us to make the mapping between the virial coefficients of the
mixture and those coming out of the effective one-component
colloidal system. The analytical results that follow from the
(coarse-grained) pair depletion potential approximation are
presented in Sec. IV. Section V provides a comparison be-
tween the exact and the approximate results. The paper is
closed in Sec. VI with further discussion and some concluding
remarks.

II. VIRIAL COEFFICIENTS OF THE AO MODEL

Consider a binary fluid mixture of N = Nc + Np spheres
(colloids + polymers) in a volume V . The colloid and poly-
mer mole fractions are xc = Nc/N and xp = Np/N = 1 − xc,
respectively. Analogously, the partial and total number densi-
ties are ρc = Nc/V , ρp = Np/V , and ρ = ρc + ρp = N/V . The
interactions are assumed to be of HS type. The distance of
closest approach between spheres of species α and γ, de-
noted by σαγ, is such that σcc = σc,σpp = 0, and σcp =

1
2σc

(1 + q), with the size ratio q acting as the (positive) nonaddi-
tivity parameter. The colloid packing fraction is ηc = π

6 ρcσ
3
c.

For simplicity, from now on, we choose σc = 1 as the unit
of length. This NAHS mixture defines the well known AO
model.24

The usual virial expansion of the mixture reads

βa(ρc, ρp) = ρc ln
�
ρcΛ

3
c

�
+ ρp ln

(
ρpΛ

3
p

)
− ρ

+

∞
n=2

Bn(xc,q)
n − 1

ρn, (2.1)

βp(ρc, ρp) = ρ +

∞
n=2

Bn(xc,q)ρn, (2.2)

where a is the free energy per unit volume, p is the pressure,
β = 1/kBT (kB being the Boltzmann constant and T being the
absolute temperature),Λα is the thermal de Broglie wavelength
of species α, and the notation Bn(xc,q) makes it explicit that
the virial coefficients depend only on the mole fraction xc of
the colloids and on the size ratio q.

The second, third, fourth, and fifth virial coefficients of the
AO model are given by7

B2(xc,q) = x2
cB11 + 2xcxpB12(q), (2.3)

B3(xc,q) = x3
cC111 + 3x2

cxpC112(q), (2.4)
B4(xc,q) = x4

cD1111 + 4x3
cxpD1112(q) + 6x2

cx2
pD1122(q),

(2.5)
B5(xc,q) = x5

cE11111 + 5x4
cxpE11112(q)

+ 10x3
cx2

pE11122(q) + 10x2
cx3

pE11222(q),
(2.6)

where all the composition-independent coefficients, except
E11112 and E11122, are exactly known as functions of q,

B11 =
π

6
4, B12 =

π

6
(1 + q)3

2
, (2.7)

C111 =

(
π

6

)2
10, C112 =

(
π

6

)2 1 + 6q + 15q2 + 8q3

3
, (2.8)

D1111 =

(
π

6

)3 *
,

2707
70
+

219
√

2
35π

−
4131cos−1 1

3

70π
+
-
, (2.9)

D1122 = −
(
π

6

)3
q5

(
27
20
+

12q
5
+

51q2

35
+

51q3

140
+

17q4

420

)
,

(2.10)

D1112 =




D(a)
1112, q ≤ q0,

D(a)
1112 + D(b)

1112, q > q0,
(2.11)

D(a)
1112 =

(
π

6

)3
(

1
4
+

9q
4
+ 9q2 +

21q3

4
+

27q4

8
+

27q5

40

− 27q6

5
− 162q7

35
− 81q8

56
− 9q9

56

)
, (2.12)

D(b)
1112 =

(
π

6

)3 1
280π

 Q
12

�
10Q6 − 51Q4 + 210Q2 + 6976

�

− 486P1(Q2 + 9) + q + 1
3

P2
�
5Q8 − 28Q6

+ 129Q4 − 124Q2 + 11 378
� 
, (2.13)

E11111 =

(
π

6

)4
b5, b5 ≃ 28.224512, (2.14)
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TABLE I. Numerical values of the partial coefficients E11112 and E11122 for
some values of the size ratio q. The error on the last significant figure is
enclosed in parentheses.

q E11112 E11122

0.05 0.0267(6) ≈−5×10−8

0.10 0.0437(4) −4.3(9)×10−6

0.15 0.0666(8) −3.4(8)×10−5

0.20 0.0955(9) −1.6(2)×104

0.30 0.177(1) −0.001 47(4)
0.40 0.296(4) −0.007 5(2)
0.50 0.457(2) −0.027 6(5)
0.56 0.575(5) −0.054 6(5)
0.60 0.666(3) −0.083 1(9)
0.70 0.931(4) −0.216(2)
0.80 1.257(7) −0.505(4)
0.90 1.652(6) −1.085(4)
1.00 E11111 −2.18(3)

E11222 = −
(
π

6

)4 q7

8400
�
3240 + 7695q + 6780q2 + 2706q3

+ 492q4 + 41q5� . (2.15)

In Eq. (2.13), Q ≡


3q2 + 6q − 1, P1 ≡ tan−1Q, and P2
≡ tan−1 [Q/(q + 1)].

To our knowledge, there are no analytical results for the
composition-independent coefficients E11112 and E11122 for
general values of q. Therefore, we have computed them by a
standard Monte Carlo (MC) numerical integration procedure
for a number of values of q in the range 0.05 ≤ q ≤ 1. The
results are displayed in Table I, which is more extensive than
the equivalent table of Ref. 7.

There exist approximate analytical theories, like the free
volume (FV) theory,10 that account in closed form for the equa-
tion of state of the full AO mixture. For further use, Appendix A
provides the approximate expressions of the first few virial
coefficients arising from the FV theory.

III. OSMOTIC PRESSURE AND VIRIAL COEFFICIENTS
OF THE EFFECTIVE COLLOIDAL SYSTEM

Equations (2.1) and (2.2) are expressed in the canonical
ensemble (Np,Nc,V,T). On the other hand, in order to analyze
the effective one-component colloidal fluid, it turns out to
be convenient to consider the semi-grand-canonical ensemble
(µp,Nc,V,T), where µp is the chemical potential of the poly-
mer component. In that ensemble, the pressure of the mixture
can be written as13

βp(ρc, zp) = zp + βΠ(ρc, zp), (3.1)

where

zp =
eβµp

Λ3
p

(3.2)

is the polymer fugacity and Π(ρc, zp) is the osmotic pres-
sure that takes into account the (formally) exact effective
colloid-colloid interactions mediated by the polymers. Its virial
expansion is

βΠ(ρc, zp) = ρc +

∞
n=2

Beff
n (zp,q)ρnc, (3.3)

where Beff
n (zp,q) are the virial coefficients of the effective one-

component colloidal fluid. The fugacity zp of the polymer
component can be equivalently represented by the reservoir
polymer packing fraction ηp,r = zp π6 q3. Thus, henceforth we
make the change Beff

n (zp,q) → Beff
n (ηp,r,q). The effective virial

coefficients Beff
n (ηp,r,q) can be further expressed as a series in

powers of ηp,r,

Beff
n (ηp,r,q) =

∞
j=0

B( j)
n (q)η j

p,r. (3.4)

Our aim in this section is to provide the exact relations
between the effective one-component virial coefficients B( j)

n

(with n + j ≤ 5) and the binary-mixture virial coefficients of
Eqs. (2.3)–(2.6). The details are given in Appendix B with the
results

B(0)
2 = B11, B(0)

3 = C111, (3.5a)

B(0)
4 = D1111, B(0)

5 = E11111, (3.5b)

B(1)
2 =

6
πq3

(
3
2

C112 − 2B2
12

)
, (3.6)

B(2)
2 = 2

(
6
πq3

)2

D1122, B(3)
2 =

5
2

(
6
πq3

)3

E11222, (3.7)

B(1)
3 =

6
πq3

(
8
3

D1112 − 6B12C112 +
8
3

B3
12

)
, (3.8)

B(2)
3 =

(
6
πq3

)2

(5E11122 − 16B12D1122) , (3.9)

B(1)
4 =

6
πq3

(15
4

E11112 − 8B12D1112 −
27
8

C2
112

+ 9B2
12C112 − 2B4

12

)
. (3.10)

Equations (3.5)–(3.10) provide the sought relationships be-
tween the effective and binary-mixture virial coefficients that
account for all the three- and four-body interactions up to the
fourth virial coefficients of the effective system. Making use
of Eqs. (2.7)–(2.15) and the numerical values of Table I, one
can then know the exact q-dependence of the coefficients B( j)

n .
Furthermore, in the case of the approximate FV theory, the
results are explicitly given by Eqs. (A6)–(A8).

IV. VIRIAL COEFFICIENTS ARISING FROM THE USE
OF THE EFFECTIVE PAIR AO POTENTIAL

By integrating out the polymer degrees of freedom, it
is possible to derive the formally exact effective many-body
interaction potential of the colloids,Φeff(rNc) ≡ Φeff(r1,r2, . . . ,
rNc), in the AO model. The result is13

Φeff(rNc) = −zp


dr

Nc
i=1


1 − Θ

(
1 + q

2
− |r − ri |

)

+

Nc−1
i=1

Nc
j=i+1

φHS(ri j), (4.1)
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where Θ(x) is the Heaviside step function and φHS(r) is the
original colloid-colloid HS pair potential of diameter σc = 1.
If q < q0, a polymer particle cannot overlap with more than two
nonoverlapping colloids, so that Φeff is exactly given by13

βΦeff(rNc) = −zpV
�
1 − ηc(1 + q)3� +

Nc−1
i=1

Nc
j=i+1

βφdep(ri j),

(4.2)

where φdep(r) is the effective AO pair depletion potential. It is
given by

βφdep(r) =



∞, r < 1,
−ηp,rω(r), 1 < r < 1 + q,
0, r > 1 + q,

(4.3)

where

ω(r) = 1
2q3 (1 + q − r)2(2 + 2q + r). (4.4)

The corresponding Mayer function is

fdep(r) = fHS(r) +

eηp,rω(r ) − 1


Θ(r − 1)Θ(1 + q − r)

= fHS(r) +
∞
j=1

f ( j)dep(r)η j
p,r, (4.5)

with fHS(r) = −Θ(1 − r) and f ( j)dep(r) = Θ(r − 1)Θ(1 + q − r)
[ω(r)] j/ j!.

On the other hand, if q0 < q ≤ 1, m-body terms with
3 ≤ m ≤ 11 gradually contribute to Φeff, the upper limit (m
= 11) being due to the fact that a polymer can overlap simul-
taneously with 12 nonoverlapping colloids only if q > 1.28

Therefore, Eq. (4.2) becomes an approximation (henceforth
referred to as the coarse-grained depletion approximation) if
q > q0. In the remainder of this section, we explicitly evaluate
the effective virial coefficients B( j)

n with n + j ≤ 5 for any
0 ≤ q ≤ 1 in this coarse-grained approximation.

A. Second virial coefficient

As a consequence of (4.5), the second virial coefficient is

Beff
2 = −2π

 ∞

0
dr r2 fdep(r)

=
2π
3
− 2π

∞
j=1

η
j
p,r

j!

 1+q

1
dr r2[ω(r)] j . (4.6)

From here, one can easily obtain

B(1)
2

BHS
2

= −3
2

(
1 +

5q
4
+

q2

2
+

q3

12

)
, (4.7)

B(2)
2

BHS
2

= − 27
40q

(
1 +

16q
9
+

68q2

63
+

17q3

63
+

17q4

567

)
, (4.8)

B(3)
2

BHS
2

= − 27π
112q2

(
1 +

19q
8
+

113q2

54
+

451q3

540

+
41q4

270
+

41q5

3240

)
, (4.9)

where BHS
2 =

2π
3 . Equations (4.7)–(4.9) agree with Eqs. (3.6)

and (3.7). Of course, this is an expected result since the
pair approximation is exact at the level of the second virial
coefficient.

B. Third virial coefficient

We now turn to the third virial coefficient

Beff
3 = −

(2π)−3

3


dk

 fdep(k)
3
, (4.10)

where

fdep(k) =


dr e−ik·r fdep(r)

=
4π
k

 ∞

0
dr r sin(kr) fdep(r) (4.11)

is the Fourier transform of fdep(r). From Eq. (4.5), we have

fdep(k) = fHS(k) +
∞
j=1

f ( j)dep(k)η j
p,r, (4.12)

where

fHS(k) = 4π
k3 (k cos k − sin k) , (4.13)

f ( j)dep(k) =
1
j!

4π
k

 1+q

1
dr r sin(kr)[ω(r)] j . (4.14)

According to Eqs. (4.10) and (4.12), the coefficients B(1)
3

and B(2)
3 are given by

B(1)
3 = −(2π)−3


dk

 fHS(k)
2 f (1)dep(k), (4.15)

B(2)
3 = −(2π)−3


dk fHS(k)

 fHS(k)f (2)dep(k) +
 f (1)dep(k)

2
.

(4.16)

The explicit expressions of f (1)dep(k) and f (1)dep(k) can be obtained
from application of Eqs. (4.4) and (4.14) but, for conciseness,
they will be omitted here. Insertion of those expressions into
Eqs. (4.15) and (4.16) yields (for 0 ≤ q ≤ 1)

B(1)
3

BHS
3

= −3
(
1 +

4q
5
− 4q2

25
− 14q3

75
+

2q4

175
+

q5

35
+

q6

315

)
,

(4.17)

B(2)
3

BHS
3

= − 27
20q

(
1 − 107q

90
− 1529q2

315
− 9253q3

2520
− 3889q4

5670

+
4663q5

18 900
+

1049q6

9450
+

1049q7

113 400

)
. (4.18)

As a byproduct, since Eq. (4.18) must be exact for q < q0,
Eq. (3.9) allows one to obtain the exact expression of E11122 for
q < q0,

E11122 = −
π4q5

800

(
3 +

79q
18
+

281q2

63
+

3529q3

504
+

2519q4

378

+
34 583q5

11 340
+

3769q6

5670
+

3769q7

68 040

)
. (4.19)

The exact values of E11122 corresponding to q = 0.05, 0.10,
and 0.15 are −1.229 60 × 10−7, −4.250 92 × 10−6, and
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−3.500 57 × 10−5, respectively. By comparison with the third
column of Table I, we observe that the MC results agree with
the exact values within the associated uncertainties.

C. Fourth virial coefficient

Finally, we consider the effective fourth virial coefficient in
the coarse-grained pair depletion approximation. It is given by

(4.20)

where each thick bond represents a Mayer function (4.5).
Expanding in powers of ηp,r, one gets

(4.21)

Now, a thin solid line between two circles represents the HS
Mayer function fHS(r), while a dotted line represents a term
f (1)dep(r). Interestingly, Eq. (4.21) can be written as

B(1)
4 = −6π

 1+q

1
dr r2ω(r)yHS

2 (r), (4.22)

where

(4.23)

is the HS cavity function to second order in density, which is
exactly known.29,30

After some lengthy algebra, it is possible to find a fully
analytical expression for B(1)

4 (see Appendix C). Again, since
that expression of B(1)

4 is exact for q ≤ q0, use of Eq. (3.10)
allows us to derive an exact analytical form of E11112 for
q ≤ q0 [see Eq. (C9)]. The values corresponding to q = 0.05,
0.10, and 0.15 are 0.026 588 4, 0.043 507 4, and 0.066 359 4,
respectively. Comparison with the second column of Table I
shows again an excellent agreement of the MC results with the
exact values.

V. COMPARISON BETWEEN THE EXACT
AND THE APPROXIMATE COEFFICIENTS B(1)

3 , B(2)
3 ,

AND B(1)
4

As said before, coarse-grained pair-potential approxima-
tion (4.2) is only correct if q < q0 ≃ 0.1547. Beyond that value,
the virial coefficients Beff

n (with n ≥ 3) obtained from the AO
pair potential (4.3) differ from the exact ones. In particular,
the exact coefficient Beff

3 is influenced by three-body interac-
tions,26,27 while the exact coefficient Beff

4 is influenced by both
three- and four-body interactions.

Here, we restrict ourselves to B(1)
3 , B(2)

3 , and B(1)
4 . In the

coarse-grained approximation, they are given by Eqs. (4.17),
(4.18), and (C4)–(C8), respectively (if q ≤ 1). The exact
expressions are given by Eqs. (3.8)–(3.10), respectively, in
terms of the composition-independent virial coefficients of
the binary mixture. While in Eq. (3.8) all the coefficients are
known analytically, in Eqs. (3.9) and (3.10), one needs to resort

FIG. 1. Comparison between the exact and the coarse-grained coefficients (a)
B
(1)
3 , (b) B(2)

3 , and (c) B(1)
4 .

(for q > q0) to numerical MC evaluations listed in Table I. In
the FV theory for the full AO binary mixture, B(1)

3 and B(1)
4 are

given by Eqs. (A6) and (A7), respectively, while B(2)
3 = 0.

The comparison between the exact and approximate coef-
ficients is carried out in Fig. 1. We see that the influence of
three-body interactions on B(1)

3 and B(2)
3 is practically negligible

in the range q0 ≤ q . 0.4 but becomes quite important, espe-
cially in the case of B(1)

3 , if q & 0.6. A similar conclusion can
be drawn from B(1)

4 : the role played by three- and four-body
interactions is irrelevant if q ≤ 0.4 but becomes essential as q
increases. We observe that the non-pairwise contributions to
the true effective many-body colloid potential tend to increase
the values of Beff

3 and Beff
4 with respect to the coarse-grained

estimates, thus partially compensating for the attractive char-
acter of the pair depletion potential. For instance, while the
coarse-grained approximation predicts a monotonic decrease
of B(1)

3 with increasing q, the exact coefficient presents a non-
monotonic behavior with a minimum at q ≃ 0.54. Also, B(1)

4 is
negative definite in the coarse-grained approximation, while it
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FIG. 2. Plot of (a) Beff
3 (ηp,r)≈ BHS

3 +B
(1)
3 ηp,r+B

(2)
3 η

2
p,r and (b) Beff

4 (ηp,r)
≈ BHS

4 +B
(1)
4 ηp,r for q = 0.154 and q = 0.8. To aid visibility, the curves for

q = 0.8 have been shifted vertically by 1.0.

actually changes from negative to positive at q ≃ 0.74. As for
the FV theory, it qualitatively agrees with the main trends of
the exact coefficients B(1)

3 and B(1)
4 , especially as q increases.

Assuming sufficiently small values of ηp,r, expansion (3.4)
can be truncated to obtain the approximate forms Beff

3 (ηp,r)
≈ BHS

3 + B(1)
3 ηp,r + B(2)

3 η2
p,r and Beff

4 (ηp,r) ≈ BHS
4 + B(1)

4 ηp,r. The
resulting curves for q = 0.154 . q0 and q = 0.8 in the range
0 ≤ ηp,r ≤ 0.1 are plotted in Fig. 2. Figure 2(a) is qualitatively
analogous to Fig. 3 of Ref. 27. We observe that the impact
of three- and four-body interactions on Beff

3 and Beff
4 becomes

relevant for ηp,r & 0.02 if q = 0.8.
Notwithstanding the results displayed in Figs. 1 and 2, and

since the coarse-grained description gives the exact effective
second virial coefficient Beff

2 , the osmotic pressure of the col-
loids in the presence of nonadsorbing polymers is expected to
be well described by the coarse graining method if the behavior
is dominated by the second virial coefficient. To clarify this
point, we consider expansions (3.3) and (3.4) truncated for n
+ j ≥ 6, which implies small values of both packing fractions
ηc and ηp,r. Figure 3 shows the corresponding compressibility
factor βΠ/ρc within the range 0 ≤ ηc ≤ 0.1 for ηp,r = 0.1 and
several values of the size ratio q. Under those conditions, no
difference between the exact and coarse-grained results are
visible for q = 0.4 and very small deviations can be observed
for q = 0.6 near ηc = 0.1. Only for high size ratios (q = 0.8
and 1.0), it is apparent that the coarse-grained approximation
underestimates the osmotic pressure; an effect that is expected
to become more and more important as the packing fractions
ηc and ηp,r increase beyond the range of applicability of the

FIG. 3. Plot of the osmotic compressibility factor βΠ/ρc versus the colloid
packing fraction ηc for ηp,r= 0.1 and q = 0.4, 0.6, 0.8, and 1.0. To aid
visibility, the curves for q = 0.4, 0.6, and 0.8 have been shifted vertically by
0.05, 0.10, and 0.15, respectively.

truncation for n + j ≥ 6. It is interesting to note that the FV
theory is rather close to the exact results for q = 0.8 and 1.0.

VI. CONCLUDING REMARKS

Using the available results7 for the virial coefficients of
the AO binary-mixture model, we have assessed, for size ratios
0 < q < 1, the effect of neglecting three- and four-body inter-
actions on the values of the effective one-component virial
coefficients Beff

3 and Beff
4 that follow from the depletion pair

potential derived in the coarse-grained version of such a model.
While it was already well known that the coarse-grained
version is exact for q ≤ q0 = 2/

√
3 − 1 ≃ 0.1547, the mapping

between the virial coefficients of the true mixture and the
effective ones that we have presented here, together with the
corresponding analytical results, has allowed us to explic-
itly quantify the differences for the partial contributions B(1)

3 ,
B(2)

3 , and B(1)
4 for q > q0. As an extra bonus of this mapping,

exact analytical expressions for the binary-mixture coefficients
E11122 and E11112 were derived for any size ratio q < q0. The
same was in turn useful to check the accuracy of our numerical
results for those coefficients, which were proven to be very
reliable.

The results indicate that the coarse-grained pair deple-
tion approximation is very accurate for q0 < q . 0.4 but one
must certainly take into account the influence of three-body
interactions on Beff

3 and Beff
4 if q > 0.6, their role becoming

essential as q increases. While it is not possible at this stage
to disentangle the roles of three- and four-body interactions
on Beff

4 , it is reasonable to expect that four-body terms could
be important at least for values of q close to unity. All these
facts should be especially noteworthy when dealing with dense
systems. Also, for small values of ηp,r, such an influence has
been shown here to be relevant. In fact, as already pointed
out in the case of three-body interactions by the numerical
studies of Ashton and Wilding,26,27 the deviation between the
exact and coarse-grained values of Beff

3 significantly increases
as ηp,r becomes larger. Therefore, care must be exercised when
drawing conclusions from the coarse-grained version of the
AO model if either q or ηp,r, or both, are large.
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APPENDIX A: THE FV THEORY

In the FV theory,10,24 the free energy of the system is
expressed as a sum of a term corresponding to a pure colloidal
suspension in the volume V and a term corresponding to a
pure polymer solution in the volume α(ηc)V , where the free
volume fraction α(ηc) is motivated by scaled particle theory.
The corresponding equation of state is10

βp
ρ
= xcZCS(ηc) + xp

1 − ηc
+

xpqηc
(1 − ηc)2


3 + 3q + q2

+ 3q(3 + 2q) ηc
1 − ηc

+ 9q2 η2
c

(1 − ηc)2

, (A1)

where ZCS(η) = (1 + η + η2 − η3)/(1 − η)3 is the Carnahan–
Starling compressibility factor of a one-component HS fluid.
Equation (A1) is consistent with the exact second and third
virial coefficients [see Eqs. (2.3), (2.4), (2.7), and (2.8)]. On
the other hand, the FV fourth and fifth virial coefficients are
approximate only. They are given by Eqs. (2.5) and (2.6) with

D1111 =

(
π

6

)3
18, E11111 =

(
π

6

)4
28, (A2)

D1112(q) =
(
π

6

)3 1 + 9q + 36q2 + 30q3

4
, (A3)

E11112(q) =
(
π

6

)4 1 + 12q + 66q2 + 76q3

5
, (A4)

D1122(q) = E11122(q) = E11222(q) = 0. (A5)

Insertion into Eqs. (3.7)–(3.10) yields

B(1)
3 (q) = −

(
π

6

)2(
24 + 33q − 3q2 − 20q3 − 12q4 − 3q5 − q6

3

)
,

(A6)

B(1)
4 (q) = −

(
π

6

)3(
54 +

333q
4
− 72q2 − 147q3 − 63q4

+
117q5

8
+

43q6

2
+

33q7

4
+

3q8

2
+

q9

8

)
, (A7)

B(2)
2 = B(3)

2 = B(2)
3 = 0. (A8)

Thus, only the coefficients B(0)
2 ,B(1)

2 , and B(0)
3 are exactly given

by the FV theory.

APPENDIX B: DERIVATION OF EQS. (3.5)–(3.10)

We start by rewriting Eq. (2.2) to fifth order as

βp(ρc, ρp) = ρc + ρp + B11ρ
2
c + 2B12ρcρp + C111ρ

3
c

+ 3C112ρ
2
cρp + D1111ρ

4
c + 4D1112ρ

3
cρp

+ 6D1122ρ
2
cρ

2
p + E11111ρ

5
c + 5E11112ρ

4
cρp

+ 10E11122ρ
3
cρ

2
p + 10E11222ρ

2
cρ

3
p + O(ρ6),

(B1)
where we have used Eqs. (2.3)–(2.6). Next, from Eq. (2.1)
and the thermodynamic relation µp = (∂a/∂ρp)ρc, we
obtain

βµp = ln
(
ρpΛ

3
p

)
+ 2B12ρc +

3
2

C112ρ
2
c +

4
3

D1112ρ
3
c

+ 4D1122ρ
2
cρp +

5
4

E11112ρ
4
c + 5E11122ρ

3
cρp

+
15
2

E11222ρ
2
cρ

2
p + O(ρ5). (B2)

Consequently, fugacity (3.2) can be written as

zp
ρp
= 1 + 2B12ρc +

(
2B2

12 +
3
2

C112

)
ρ2
c +

(
4
3

B3
12

+ 3B12C112 +
4
3

D1112

)
ρ3
c + 4D1122ρ

2
cρp

+

(
2
3

B4
12 + 3B2

12C112 +
8
3

B12D1112 +
9
8

C2
112

+
5
4

E11112

)
ρ4
c + (8B12D1122 + 5E11122) ρ3

cρp

+
15
2

E11222ρ
2
cρ

2
p + O(ρ5). (B3)

This can be inverted to express ρp as a series expansion in
powers of ρc and zp,

ρp

zp
= 1 − 2B12ρc +

(
2B2

12 −
3
2

C112

)
ρ2
c −

(
4
3

B3
12

− 3B12C112 +
4
3

D1112

)
ρ3
c − 4D1122ρ

2
czp

+

(
2
3

B4
12 − 3B2

12C112 +
8
3

B12D1112 +
9
8

C2
112

− 5
4

E11112

)
ρ4
c + (16B12D1122 − 5E11122) ρ3

czp

− 15
2

E11222ρ
2
cz2

p + · · ·, (B4)

where the ellipsis denotes terms of order ρncz j
p with n + j ≥ 6.

Inserting Eqs. (B1) and (B4) into Eq. (3.1), one can easily
identify the coefficients shown in Eqs. (3.5)–(3.10).

APPENDIX C: EXPRESSIONS FOR B(1)
4 IN THE COARSE-GRAINED APPROXIMATION

In the range of interest 1 < r < 1 + q < 2, the expressions for the contributions of yHS
2 (r) in Eq. (4.23) are29,30

(C1)

(C2)
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(C3)

Use of Eqs. (C1)–(C3) into Eq. (4.22) gives

B(1)
4 = B(1)

4,ϕψ + B(1)
4, χ, (C4)

where

B(1)
4,ϕψ = −

π3

3

(
1 +

q
8
− q2 − 7q3

24
+

29q4

140
+

41q5

560
− 79q6

5040
− 37q7

16 800
+

q8

2100
+

q9

25 200

)
, (C5)

B(1)
4, χ = B(1)

4, χA + Θ
(√

3 − 1 − q
)
∆B(1)

4, χ, (C6)

with

B(1)
4, χA = −

π2

22 400q3


2
√

2
105

�
375 323 + 1 710 828q + 548 814q2 − 204 400q3� − π (23 669 + 76 404q

+ 56 562q2 + 12 240q3� + 135
�
387 + 1164q + 990q2 + 272q3� cos−1 1

3


, (C7)

∆B(1)
4, χ =

π2

11 200q3


2 − 2q − q2

105
�
375 323 + 1 599 922q + 413 153q2 − 465 800q3 − 241 510q4 − 108 524q5

− 40 954q6 − 4760q7 + 2555q8 + 1050q9 + 105q10� + (1 − q)5
2

�
1603 + 2243q + 1479q2 + 855q3

+ 405q4 + 117q5 + 17q6 + q7� cos−1 2q − 1
√

3(1 − q) − 8(1 + q)3 �1373 − 336q − 72q2 + 96q3 + 24q4�

× cos−1 1 + q
√

3
+
(3 + q)5

2
�
111 + 171q − 117q2 + 135q3 + 25q4 − 3q5 − 3q6 + q7� cos−1 5 + 2q

√
3(3 + q)


. (C8)

Taking into account that (C6) is exact for q < q0, and using Eqs. (2.7), (2.8), (2.12), and (3.10), one can obtain the following
exact expression of E11112 for q < q0:

E11112 =

(
π

6

)4 1
5

(
1 + 12q + 66q2 + 40q3 + 81q4 +

108q5

5
− 144q6 − 6516q7

35
− 1521q8

10
− 3384q9

35
− 6858q10

175

− 1458q11

175
− 243q12

350

)
+

2πq3

45

(
B(1)

4, χA + ∆B(1)
4, χ

)
. (C9)
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