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The Labı́k and Smith Monte Carlo simulation technique to implement the Widom particle insertion
method is applied using Molecular Dynamics (MD) instead to calculate numerically the insertion
probability, P0(η,σ0), of tracer hard-sphere (HS) particles of different diameters, σ0, in a host HS
fluid of diameter σ and packing fraction, η, up to 0.5. It is shown analytically that the only polynomial
representation of− ln P0(η,σ0) consistent with the limitsσ0 → 0 andσ0 → ∞ has necessarily a cubic
form, c0(η)+ c1(η)σ0/σ+ c2(η)(σ0/σ)2+ c3(η)(σ0/σ)3. Our MD data for − ln P0(η,σ0) are fitted to
such a cubic polynomial and the functions c0(η) and c1(η) are found to be statistically indistinguishable
from their exact solution forms. Similarly, c2(η) and c3(η) agree very well with the Boublı́k–Mansoori–
Carnahan–Starling–Leland and Boublı́k–Carnahan–Starling–Kolafa formulas. The cubic polynomial
is extrapolated (high density) or interpolated (low density) to obtain the chemical potential of the host
fluid, or σ0 → σ, as βµex = c0 + c1 + c2 + c3. Excellent agreement between the Carnahan–Starling
and Carnahan–Starling–Kolafa theories with our MD data is evident. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4968039]

I. INTRODUCTION

The statistical mechanical theory of hard-sphere (HS) flu-
ids and solids is important as it underpins the phase behavior
and physical properties of a wide range of condensed phase
systems such as simple liquids, glasses, colloidal particles,
emulsion droplets, and granular materials.1 This work reports
Molecular Dynamics (MD) simulations to test accurate analyt-
ical expressions for the chemical potential of a HS impurity of
variable diameter at infinite dilution in a HS fluid. This infor-
mation is a useful precursor for understanding tracer solubility
and HS mixtures in general.

We consider a test (or impurity) HS of diameter σ0

immersed in a sea of HSs of diameter σ at a packing frac-
tion η.2 The quantity of interest here is the excess chemical
potential of the test particle, µex

0 (η,σ0), which becomes iden-
tical to the excess chemical potential µex(η) of the host fluid
in the limit σ0 → σ, i.e., limσ0→σ µ

ex
0 (η,σ0) = µex(η). As

proved by Widom,3–5 the probability P0(η,σ0) of successful
insertion of the test particle is related to the chemical potential
through

P0(η,σ0) = e−βµ
ex
0 (η,σ0), (1.1)

where β = 1/kBT and kB is the Boltzmann constant.
The particle insertion technique has been applied to HS

fluids for many decades.2,3,6–11 However, if η is rather large
and σ0 = σ, the insertion probability is so small that the
method becomes inefficient to measure directly µex(η) in
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computer simulations. In those situations, a circumventing
path is needed.

Labı́k and Smith (LS)9 proposed a NVT Monte Carlo
(MC) simulation technique which can achieve this σ0 → σ
limit accurately even at high densities. The method measures
the probability of the successful insertion of a solute particle
with a range of diameter values,σ0, smaller than that of the sol-
vent HS diameter. These measurements are extrapolated with
a suitable polynomial in powers of σ0 to σ0 → σ, giving the
chemical potential of the HS solvent. Inter alia they give the
tracer chemical potential of the test HS particle of diameter
σ0 < σ. The technique was subsequently extended to fused
HS diatomics10 and HS mixtures.11

We note that recently Baranau and Tallarek (BT)2 applied
a solution consisting of measuring the so-called pore-size
distribution, fitting it to a Gaussian, and then performing ana-
lytically the integral in their Eq. (11) to finally determine the
chemical potential. This is an alternative route to the chemical
potential of the test particle in the σ0 → σ limit.

In this work, we follow instead the LS method to calculate
numerically the insertion probability, P0(η,σ0), for different
tracer HS sizes σ0, in a host HS fluid simulated by MD. The
simulation obtained − ln P0(η,σ0) values are fitted to a cubic
polynomial c0(η)+c1(η)σ0/σ+c2(η)(σ0/σ)2+c3(η)(σ0/σ)3

(a test function supported by several approximations), and then
this polynomial is used to extrapolate (high density) or inter-
polate (low density) to the value of this quantity at the desired
diameterσ. As mentioned above, a bonus from this way is that
we obtain the chemical potential µ0(η,σ0) for a tracer parti-
cle with a diameter both smaller and (for some densities) also
larger than σ (not only for a fluid particle of the same size as
the host fluid HSs). The density-dependent coefficients cn are
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also determined, which enables a more detailed comparison
with theoretical predictions to be made. Instead of comparing
only the chemical potential of the host fluid particle (i.e., c0

+ c1 + c2 + c3) as a function of density (as was done, for
instance, in Fig. 1(a) of BT’s paper), we validate the accuracy
of the simulations by (i) confirming agreement with the exact
c0 and c1 and (ii) comparing two extra coefficients (c2 and
c3) with literature theoretical predictions, which builds on the
pioneering LS work.9

The remainder of this paper is organized as follows. The
standard theoretical approximations are reviewed in Sec. II,
and the use of a cubic polynomial as a trial function for βµex

0
is justified. Section III summarizes the Widom particle inser-
tion method and describes the way it is implemented in our
MD simulations. The results are presented and compared with
theoretical predictions in Sec. IV. Finally, the paper is closed
with some conclusions in Sec. V.

II. THEORETICAL APPROXIMATIONS
A. Multi-component hard-sphere fluids

Let us start by considering a (three-dimensional) fluid
mixture of additive HSs with an arbitrary number of com-
ponents. There are N j spheres of species j having a diameter
σj, so that the total number of particles is N =

∑
j Nj and the

nth moment of the size distribution is

Mn =

∑
j Njσ

n
j

N
. (2.1)

The total packing fraction is

η =
π

6
N
V

M3, (2.2)

where V is the volume of the system.
We will denote the compressibility factor of the mixture

by Z(η, {Nj}) ≡ pV/NkBT , where p is the pressure. Since
its exact form is not known, several approximations have
been proposed.12,13 In particular, the exact solution14–16 of the
Percus–Yevick (PY) integral equation17 allows one to obtain
explicit expressions for Z(η, {Nj}) through different thermo-
dynamic routes. The virial (PY-v), compressibility (PY-c),
and chemical-potential (PY-µ) routes in the PY approximation
share the following common structure:14–16,18–20

Z(η, {Nj}) = Z0(η) + Z1(η)
M1M2

M3
+ Z2(η)

M3
2

M2
3

, (2.3)

where
Z0(η) =

1
1 − η

, Z1(η) =
3η

(1 − η)2
. (2.4)

The coefficient Z2(η) depends on the route and several liter-
ature predictions are displayed in Table I. On the other hand,
the coefficients (2.4) are the same in all the PY approxima-
tions. As will be discussed later (see also the Appendix), those
coefficients are exact.

Since none of the three prescriptions (PY-v, PY-c, and
PY-µ) is particularly accurate, Boublı́k21 and, independently,
Mansoori et al.22 proposed an interpolation between PY-v
and PY-c with respective weights 1/3 and 2/3. The result-
ing Boublı́k–Mansoori–Carnahan–Starling–Leland (BMCSL)
compressibility factor has of course the structure (2.3) with

Z0 and Z1 given by Eq. (2.4) and the corresponding expres-
sion for Z2 is also included in Table I. In the monodisperse
case (i.e., σj → σ ⇒ Mn → σn), one has Z = Z0 + Z1

+ Z2, and the BMCSL equation of state reduces to the
Carnahan–Starling (CS) one,18,23,24

ZCS(η) =
1 + η + η2 − η3

(1 − η)3
. (2.5)

In 1986, Kolafa proposed a slight correction to the CS equation,
namely

ZCSK(η) =
1 + η + η2 − 2

3η
3(1 + η)

(1 − η)3
. (2.6)

It first appeared as Eq. (4.46) in a review paper by Boublı́k
and Nezbeda.25 Following Kolafa’s recommendation,26 we
will refer to Eq. (2.6) as the Carnahan–Starling–Kolafa (CSK)
equation of state. The extension of ZCSK to mixtures was
carried out by Boublı́k27 by keeping the structure (2.3) and
choosing Z2 as Z2 = ZCSK − Z0 − Z1. The resulting Boublı́k–
Carnahan–Starling–Kolafa (BCSK) expression is given in the
bottom row of Table I.

The excess free energy per particle of the mixture,
aex(η, {Nj}), is related to the compressibility factor Z(η, {Nj})
through18

βaex(η, {Nj}) =
∫ 1

0
dt

Z(ηt, {Nj}) − 1

t
. (2.7)

Therefore, the class of approximations of the form (2.3) yield

βaex(η, {Nj}) = c0(η) + c1(η)
M1M2

M3
+ a2(η)

M3
2

M2
3

, (2.8)

where

Z0(η) = 1 + ηc′0(η)⇒ c0(η) = − ln(1 − η), (2.9a)

Z1(η) = ηc′1(η)⇒ c1(η) =
3η

1 − η
, (2.9b)

Z2(η) = ηa′2(η)⇒ a2(η) =
∫ 1

0
dt

Z2(ηt)
t

, (2.9c)

the primes denoting derivatives with respect to η. The expres-
sions for the coefficient a2(η) corresponding to the approxima-
tions PY-v, PY-c, PY-µ, BMCSL, and BCSK are also included
in Table I.

TABLE I. Expressions of Z2(η) [see Eq. (2.3)] and a2(η) [see Eq. (2.8)]
according to several approximations.

Approx. Z2(η) a2(η)

PY-v 3η2

(1−η)2
3 ln(1 − η) + 3η

1−η

PY-c 3η2

(1−η)3
3η2

2(1−η)2

PY-µ −
9 ln(1−η)

η − 9
1− 3

2 η

(1−η)2
9 ln(1−η)

η + 9
1− 1

2 η

1−η

BMCSL η2(3−η)
(1−η)3

ln(1 − η) + η

(1−η)2

BCSK
η2[3− 2

3 η(1+η)]

(1−η)3
8
3 ln(1 − η)

+η
16−15η+4η2

6(1−η)2
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We now consider the excess chemical potential of a
generic species i, which is thermodynamically defined as18

µex
i =

(
∂Naex

∂Ni

)
V ,Nj,i

. (2.10)

In order to take the derivative in Eq. (2.8), we need to make
use of the mathematical properties

N

(
∂η

∂Ni

)
V ,Nj,i

= η
σ3

i

M3
, (2.11a)

N

(
∂NM1M2/M3

∂Ni

)
V ,Nj,i

=
M1M2

M3

*
,

σi

M1
+
σ2

i

M2
−
σ3

i

M3

+
-

,

(2.11b)

N*
,

∂NM3
2/M

2
3

∂Ni

+
-V ,Nj,i

=
M3

2

M2
3

*
,
3
σ2

i

M2
− 2

σ3
i

M3

+
-

. (2.11c)

Therefore, the final result stemming from Eq. (2.8) is

βµex
i (η, {Nj}) =c0(η) + c1(η)

M1M2

M3

σi

M1

+


c1(η)

M1M2

M3
+ 3a2(η)

M3
2

M2
3



σ2
i

M2

+

{
ηc′0(η) +

[
ηc′1(η) − c1(η)

] M1M2

M3

+
[
ηa′2(η) − 2a2(η)

] M3
2

M2
3




σ3
i

M3
. (2.12)

Note that Eqs. (2.3), (2.8), and (2.12) are consistent with the
exact thermodynamic relation

1
N

∑
i

Ni βµ
ex
i = βaex + Z − 1, (2.13)

thanks to the properties in (2.9), regardless of the expression
for a2(η).

As proved in the Appendix (where a general dimension-
ality d is considered), Eq. (2.12) is exact to first order in σi,
i.e.,

βµex
i (η, {Nj}) = c0(η) + c1(η)

M1M2

M3

σi

M1
+O(σ2

i ). (2.14)

This in turn proves the exact character of the coefficients c0

and c1 in Eqs. (2.9a) and (2.9b), respectively, and, hence,
of the coefficients Z0 and Z1 in Eq. (2.4), as anticipated
before.

B. Test particle in a one-component hard-sphere fluid

In this special case, we can set Mn → σn and particularize
Eq. (2.12) to a species i = 0 made of a single particle of diameter
σ0. The result is

βµex
0 (η,σ0)= c0(η)+ c1(η)

σ0

σ
+ c2(η)

σ2
0

σ2
+ c3(η)

σ3
0

σ3
, (2.15)

where
c2(η) = c1(η) + 3a2(η), (2.16a)

c3(η) = ηc′0(η) + ηc′1(η) − c1(η) + ηa′2(η) − 2a2(η). (2.16b)

Notice that from Eqs. (2.9) and (2.16) one can obtain the simple
relation9

c3(η) = Z(η) − 1 −
1
3

c1(η) −
2
3

c2(η). (2.17)

Inserting Eqs. (2.9a) and (2.9b) together with the approx-
imate expressions of a2 listed in Table I into Eq. (2.16), one
can obtain the approximate expressions for the coefficients
c2 and c3 given in Table II. The last column of Table II
presents formulas for the excess chemical potential of the fluid,
i.e., βµex(η) = limσ0→1 βµ

ex
0 (η,σ0) = c0(η) + c1(η) + c2(η)

+ c3(η), for the various approximations.
Given that a number of approximations (PY-v, PY-c, PY-

µ, BMCSL, and BCSK) share the common cubic polynomial
form (2.15) (with the exact coefficients c0 and c1) for the excess
chemical potential of a test particle immersed in a monodis-
perse HS fluid, one might reasonably query whether one could
construct either a simpler approximation (with adjustable c2)
from a quadratic polynomial or a more accurate approximation
(with adjustable c2, c3, c4, . . . ) from a polynomial of degree
higher than three. However, as we will see, if βµex

0 (η,σ0) is
represented by a polynomial in the diameter σ0, the polyno-
mial must necessarily be of third degree. This is a consequence
of the physical requirement that, in the limit of an infinitely
large impurity, one must have28–30

ηZ(η) = lim
σ0→∞

βµex
0 (η,σ0)

(σ0/σ)3
. (2.18)

Therefore, since limσ0→∞ βµ
ex
0 (η,σ0)/σ3

0 can be neither zero
nor infinity, the only polynomial approximations consistent
with that property are third-degree ones.

In the case of the approximations of the form (2.3),
Eq. (2.18) implies

c3(η) = ηZ(η) = η
[
Z0(η) + Z1(η) + Z2(η)

]
. (2.19)

TABLE II. Expressions of c2(η), c3(η) [see Eq. (2.15)], and βµex(η) according to several approximations.

Approx. c2(η) c3(η) βµex(η)

PY-v 9 ln(1 − η) + 12 η
1−η −6 ln(1 − η) − η 5−11η

(1−η)2
2 ln(1 − η) + 2η 5−2η

(1−η)2

PY-c 3η 2+η
2(1−η)2

η
1+η+η2

(1−η)3
− ln(1 − η) + η 14−13η+5η2

2(1−η)3

PY-µ 27 ln(1−η)
η + 3 18−7η

2(1−η) −27 ln(1−η)
η −

54−83η+14η2

2(1−η)2
− ln(1 − η) + η 14+η

2(1−η)2

BMCSL 3 ln(1 − η) + 3η 2−η
(1−η)2

−2 ln(1 − η) − η 1−6η+3η2

(1−η)3
η

8−9η+3η2

(1−η)3

BCSK 8 ln(1 − η) + η 22−21η+4η2

2(1−η)2
− 16

3 ln(1 − η) − η 13−43η+27η2−2η3

3(1−η)3
5
3 ln(1 − η) + η 58−79η+39η2−8η3

6(1−η)3
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It can be noticed that Eq. (2.19) is independent of Eq. (2.17).
In fact, it can be easily checked that the PY-v, PY-µ, BMCSL,
and BCSK expressions for Z2(η) (see Table I) and c3(η)
(see Table II) are inconsistent with Eq. (2.19). This means
that those approximations qualitatively agree with the physical
requirement (2.18) in that limσ0→∞ βµ

ex
0 (η,σ0)/σ3

0 = finite
but yield different results for the left- and right-hand sides.
On the other hand, the PY-c approximation, which actually
is equivalent to the Scaled Particle Theory (SPT) approxi-
mation,31–35 is fully consistent with Eqs. (2.18) and (2.19).
As a matter of fact, the PY-c/SPT cubic prescription for
βµex

0 (η,σ0) is the only one that is simultaneously consis-
tent with both Eqs. (2.17) and (2.19) without violating the
value b3 = 10 for the third virial coefficient of the one-
component fluid. The combination of Eqs. (2.17) and (2.19)
[together with Eqs. (2.9) and (2.16a)] yields the differential
equation a′2(η) = 2a2(η)/η(1 − η), whose general solution is
a2(η) = Kη2/(1 − η)2, K being a constant. The associated
third virial coefficient is b3 = 7 + 2K, so that b3 = 10 implies
K = 3

2 and thus one recovers the PY-c/SPT approximation.
Section III describes the process and results of a MD sim-

ulation study of this HS system which were carried out to
help determine which of the approximations for c2 and c3 (see
Table II) is best.

III. WIDOM’S PARTICLE INSERTION METHOD
AND MOLECULAR DYNAMICS SIMULATION

Consider an N-particle system whereΦN (rN ) is the poten-
tial energy. The Widom particle insertion method for the excess
chemical potential µex is3,6,36,37

e−βµ
ex
=

∫
drN+1 e−βΦN (rN )e−β∆ΦN+1(rN+1)

V
∫

drN e−βΦN (rN )

=
〈
e−β∆ΦN+1(rN+1)

〉
, (3.1)

where ∆ΦN+1(rN+1) = ΦN+1(rN+1) − ΦN (rN ) and the ensem-
ble average is denoted by 〈· · · 〉. The (N + 1)th particle (here
denoted by the subscript 0) can be considered to be a test par-
ticle, as it does not influence the physical distribution of the
other N particles. Hence,

βµex
0 = − ln

〈
e−β∆ΦN+1(rN+1)

〉
. (3.2)

The test particle is inserted randomly into the N-particle
host fluid. The important point is that it does so in a non-
intrusive way. For HSs, Eq. (3.2) reduces to a simple book-
keeping procedure as exp(−β∆ΦN+1) either is 1 when the test
sphere does not overlap with any of the N particles or is equal
to 0 if it overlaps with any of them. As discussed in Sec. II,
the test particle does not need to be the same type of particle
as the other N particles. We consider the particle α = 0 to be
an impurity HS of diameter σ0, taking the HS diameter of the
host fluid to be σ.

Our numerical implementation of the Widom insertion
method run as follows. At a given packing fraction η, a
monodisperse HS fluid was simulated by a standard MD
method. The procedure was to randomly insert a test “point”
in the system and calculate the distance rn from that point

to the center of the nearest sphere. Then, all the values from
σ0 = 0 toσ0 = 2rn−σ represented accepted insertions, which
were accumulated efficiently in a histogram at the same time in
the MD simulation. In addition, as the test particles are intro-
duced in a non-intrusive way, many of them can be inserted at
the same time, and we used the same number of test particles
as the number of host fluid particles. One difference with the
LS method9 is that we use MD rather than MC to evolve the
host fluid assembly of HSs.

For each trial insertion rn, 1 was added to all entrants of a
histogram (rather like that for the radial distribution function)
for P0(η,σ0), for σ0 = 2rn − σ and all σ0 values less than
2rn − σ at the same time. This is a statistically efficient pro-
cedure for computing the chemical potential of the impurity
at infinite dilution, βµex

0 (η,σ0). The chemical potential of the
HS fluid is just µex(η) = µex

0 (η,σ) when σ0 = σ. At not too
high densities, data on the chemical potential for σ0 > σ can
also be obtained, and so the HS chemical potential becomes a
matter of interpolation and data fitting in that case. For states
near a packing fraction η ≈ 0.50, the HS chemical potential
needs to be estimated by the extrapolation of the σ0 < σ his-
togram entrants, as the probability of inserting a HS in a HS
fluid during a typical simulation can be impracticably small
(less than 10−7).

At each density, the MD values of βµ0(η,σ0) as a func-
tion of σ0 were fitted to the cubic polynomial (2.15) to obtain
the four coefficients c0–c3, without imposing the exact val-
ues (2.9a) and (2.9b) of c0 and c1. This contrasts with the LS
procedure,9 where the coefficients c0 and c1 were fixed to be
given by Eqs. (2.9a) and (2.9b), the coefficient c3 was forced
to satisfy the relationship (2.17) (with Z obtained by indepen-
dent MC simulations of the host fluid), and therefore only the
coefficient c2 was fitted to the simulation data of− ln P0(η,σ0).
In addition, the maximum value of σ0 used in the least-square
fitting corresponded to9 P0 ≈ 10−3.

Our simulations were carried out with N = 2048 HSs.
There were ca. 1.4 × 105 collisions per particle at η = 0.05 and
5.6× 105 collisions per particle at η = 0.5. The maximum
value of σ0 chosen for the fitting process was 1.10σ, for
η < 0.4, decreasing to 0.90σ for η = 0.46 to 0.80σ for
η ≥ 0.48. This corresponded to P0 ≈ 2 × 10−5. The insertion
probability histogram had a resolution of 0.005σ.

IV. RESULTS

Figure 1 shows the values of βµex
0 (η,σ0) obtained in our

simulations for nine representative packing fractions from η
= 0.05 to η = 0.50. The least-square fits to a cubic polyno-
mial are also included in Fig. 1 and an excellent agreement is
found.

The extracted values of the coefficients c0(η) and c1(η) are
plotted in Fig. 2 for 31 values of η ranging from 0.05 to 0.50.
Comparison with the exact expressions (2.9a) and (2.9b) shows
an extremely good agreement. This confirms and reinforces the
reliability and accuracy of our MD results.

Figure 3 displays the values of the fitted coefficients
c2(η) and c3(η) for the same densities as in Fig. 2. Since the
exact expressions of c2 and c3 are (to the best of our knowl-
edge) unknown, we compare the simulation values with the
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FIG. 1. Plot of the excess chemical potential of a test particle, βµex
0 (η,σ0),

as a function of the diameter σ0. The symbols are the values obtained in our
MD simulations by the Widom insertion method, while the lines are least-
square fits to cubic polynomials of the form (2.15) with free coefficients cn.
The noisiest data for large η andσ0 were excluded from the fits. The different
values of η are indicated in the legend.

approximate theoretical predictions considered in Table II. Up
to η ' 0.2, all the theories practically overlap and reproduce
the MD values. At higher densities, however, the three PY
predictions clearly deviate from the simulation data: while
the PY-c approximation overestimates the data, the PY-µ and,
especially, the PY-v approximations underestimate them. On

FIG. 2. Plot of the coefficients (a) c0(η) and (b) c1(η). The lines represent
the exact expressions [see Eqs. (2.9a) and (2.9b)], while the symbols represent
the values obtained from a least-square fit of MD data.

FIG. 3. Plot of the coefficients (a) c2(η) and (b) c3(η). The lines represent the
theoretical expressions (see Table II), while the symbols represent the values
obtained from a least-square fit of MD data.

the other hand, the BMCSL and BCSK curves, which are
practically indistinguishable, reproduce excellently the MD
results.

Now that we have validated our numerical values of the
four coefficients cn characterizing the diameter dependence
of the impurity chemical potential βµex

0 , an accurate esti-
mate of the chemical potential of the pure HS fluid, written
as βµex = c0 + c1 + c2 + c3, can be made. The results are
shown in Fig. 4(a), where they are compared with the PY, CS,
and CSK approximations (see again Table II). The observed
trends are similar to those presented in Fig. 3. In particular,
there is excellent agreement between the present MD results
and the CS and CSK theories. Figure 4(a) also includes the
MC data reported in Ref. 9, which are fully consistent with
our MD results.

An interesting additional feature of our approach is that
we can predict the compressibility factor Z(η) of the HS
fluid via Eq. (2.17) from the knowledge of the coefficients cn

characterizing the size dependence of the solute chemical
potential βµex

0 , i.e., Z = 1 + 1
3 c1 +

2
3 c2 + c3. This quantity is

plotted in Fig. 4(b), where it shows again an excellent agree-
ment with the CS and CSK approximations, as well as with
the results obtained in Ref. 9 directly from MC simulations of
the radial distribution function at contact.

In principle, one could also estimate Z only from c3 as
Z = c3/η [see Eq. (2.19)]. As shown in Fig. 4(b), the values
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FIG. 4. Plot of (a) the excess chemical potential βµex(η) and (b) the com-
pressibility factor Z(η). The lines represent the theoretical expressions (see
Tables I and II), the open circles represent βµex = c0 + c1 + c2 + c3 and
Z = 1 + 1

3 c1 +
2
3 c2 + c3 (with coefficients cn obtained from a least-square fit

of our MD data), and the filled squares represent the MC data of Ref. 9. In
panel (b), the crosses represent c3/η.

of c3/η agree very well with those of 1 + 1
3 c1 +

2
3 c2 + c3

up to η ' 0.35, but tend to lie slightly below the latter
ones at higher densities. This small discrepancy is just a con-
sequence of the fact that the exact function βµex

0 (η,σ0) is
not a cubic polynomial. In fact, as discussed at the end of
Sec. II, the only cubic polynomial that is consistent with both
Eqs. (2.17) and (2.19) is the PY-c/SPT approximation, which
is not particularly accurate. Our MD results show that the
excess chemical potential βµex

0 (η,σ0) can be fitted extremely
well by a cubic polynomial for diameters σ0 from σ0 = 0
to σ0 ∼ σ (see Fig. 1). On the other hand, while the choice
of the degree of the polynomial is consistent with the exact
property limσ0→∞ βµ

ex
0 (η,σ0)/(σ0/σ)3 = finite, it would be

too far-fetched to expect that such an extreme limit coincides
with the coefficient c3 fitted in the range 0 ≤ σ0 . σ. The fact,
however, that the coefficient c3 is so close to ηZ means that the
cubic polynomial fitted in the range 0 ≤ σ0 . σ keeps being
a very good approximation even if σ0 � σ. Anyway, the rec-
ommended route to measure the compressibility factor from a
fit of the form (2.15) for σ0 . σ is Z = 1 + 1

3 c1 +
2
3 c2 + c3

rather than Z = c3/η.
For future reference of researchers interested in the chem-

ical potential of HS fluids, we present in Table III the numerical
values of the MD data plotted in Figs. 2–4.

TABLE III. Numerical values of c0, c1, c2, c3, βµex = c0 + c1 + c2 + c3, and
Z = 1+ 1

3 c1+
2
3 c2+c3, as obtained from our MD simulations. The errors in the

constants c0–c3 range from 0.002% to 0.01% at η = 0.075 to 0.06%–0.15%
at η = 0.50.

η c0 c1 c2 c3 βµex Z

0.050 0.051 38 0.157 91 0.170 53 0.061 32 0.4411 1.2276
0.075 0.078 07 0.243 63 0.272 51 0.102 32 0.6965 1.3652
0.100 0.105 51 0.334 13 0.387 26 0.152 54 0.9794 1.5221
0.125 0.133 71 0.429 76 0.517 31 0.213 00 1.2938 1.7011
0.150 0.162 77 0.530 66 0.665 23 0.285 45 1.6441 1.9058
0.175 0.192 64 0.638 53 0.830 44 0.374 40 2.0360 2.1409
0.200 0.223 40 0.753 38 1.016 29 0.482 54 2.4756 2.4112
0.225 0.255 19 0.875 20 1.229 27 0.611 28 2.9709 2.7225
0.250 0.288 02 1.005 69 1.468 54 0.768 83 3.5311 3.0831
0.275 0.321 90 0.145 94 1.738 17 0.960 82 4.1668 3.5016
0.300 0.356 94 1.296 67 2.045 55 1.193 20 4.8924 3.9891
0.310 0.371 34 0.359 32 2.182 12 1.297 33 5.2101 4.2052
0.320 0.385 94 1.423 89 2.325 56 1.412 04 5.5474 4.4370
0.330 0.400 65 1.492 84 2.471 22 1.538 68 5.9034 4.6838
0.340 0.415 82 1.560 42 2.632 06 1.672 37 6.2807 4.9472
0.350 0.430 65 1.637 51 2.783 36 1.829 38 6.6809 5.2308
0.360 0.446 64 1.703 77 2.981 53 1.970 59 7.1025 5.5262
0.370 0.462 10 1.783 29 3.157 55 2.147 89 7.5508 5.8473
0.380 0.478 63 1.855 19 3.371 50 2.323 90 8.0292 6.1900
0.390 0.494 64 1.939 13 3.574 37 2.528 17 8.5363 6.5575
0.400 0.511 57 2.016 26 3.816 78 2.728 71 9.0733 6.9453
0.410 0.529 23 2.091 01 4.083 54 2.943 10 9.6469 7.3625
0.420 0.544 83 2.202 51 4.269 02 3.248 96 10.265 7.8291
0.430 0.561 75 2.301 81 4.511 57 3.548 99 10.924 8.3240
0.440 0.578 97 2.407 85 4.757 77 3.884 09 11.629 8.8586
0.450 0.598 08 2.487 43 5.127 05 4.155 86 12.368 9.4030
0.460 0.616 55 2.589 68 5.443 13 4.522 32 13.172 10.014
0.470 0.634 62 2.710 22 5.730 96 4.972 55 14.048 10.697
0.480 0.654 43 2.807 28 6.141 40 5.365 83 14.969 11.396
0.490 0.674 73 2.907 78 6.582 17 5.790 39 15.955 12.148
0.500 0.692 85 3.057 78 6.878 40 6.433 86 17.063 13.039

V. CONCLUSIONS

To conclude, this work provides new insights into the
properties of the chemical potential of HS fluids and its rela-
tion with the equation of state. A third-degree expression in
the test particle diameter for the chemical potential is shown to
reproduce well that for HSs with the same diameter as those of
the host fluid, and also for those tracer particles with smaller
and, to some extent, larger diameters (not too close to η = 0.49
in the latter case). It is found that the chemical potential pre-
dicted by the CS and the CSK equations is in close agreement
with simulation data. However, it is concluded that although a
third-degree polynomial in the tracer particle diameter is a very
good approximation of the chemical potential, this functional
form cannot be exact. It is also shown that the equation of state
of the HS fluid can be accurately obtained from the polynomial
fit of the simulation data for the chemical potential.

Originally implemented on NVT MC simulations, we
have applied in this paper the LS technique9 to MD
simulations. In addition, our implementation differs from that
of Ref. 9 in a few aspects. First, all four coefficients c0–c3 have
been fitted, whereas LS forced c0 and c1 to be equal to their
exact values and enslaved c3 to c2 by means of Eq. (2.17), so
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that in the end only the coefficient c2 was fitted. Also, they
needed to measure the compressibility factor Z (from the con-
tact value of the radial distribution function) independently of
the insertion probability measurements, whereas in our case Z
is just another output (in addition to βµex) rather than an input.
The excellent agreement between the fitted c0 and c1 with the
exact expressions is an a posteriori confirmation of the accu-
racy of the results reported in this paper. We have been able to
reach reliable statistical results up to P0 ≈ 2 × 10−5, which is
about 50 times smaller than the threshold value considered in
Ref. 9. Furthermore, our study covers a much larger number
of densities.

The LS simulation technique is shown to be an extremely
powerful and adaptable tool to obtain the chemical potential
of tracer particles and the equation of state of HS fluids. It has
also been shown that the BMCSL and BCSK formulas for c2

and c3 are extremely accurate and not distinguishable from the
numerical data. Therefore, it may be concluded that the equa-
tion of state of the monodisperse HS fluid can be considered for
most practical applications to be a solved analytical problem.

In the extension to HS binary mixtures of the LS method
carried out by Barošová et al.,11 the authors fitted their MC
simulated values of P0(η,σ0) to a quartic polynomial. On
the other hand, we plan to extend our MD implementation
to HS mixtures (binary, ternary, or, more generally, polydis-
perse) by keeping instead a cubic form since the exact condi-
tion limσ0→∞ βµ

ex
0 (η,σ0)/σ3

0 = finite still holds for mixtures.
According to Eq. (2.12), the coefficient c0 is the same as in the
monodisperse system, while the linear coefficient, once multi-
plied by M3/M1M2, is again the exact c1. As carried out in the
present paper, these two conditions will be used as confidence
tests of the simulation results.
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APPENDIX: CHEMICAL POTENTIAL
IN THE SMALL-SIZE LIMIT

We consider an N-particle HS mixture in d dimensions.
The packing fraction of the mixture is η = (N/V )vdMd ,
where vd = (π/4)d/2/Γ(1 + d/2) is the volume occu-
pied by a sphere of unit diameter. The Boltzmann fac-
tor associated with the potential energy ΦN (rN ) of the
mixture is

e−βΦN (rN ) =

N−1∏
α=1

N∏
γ=α+1

Θ
(
rαγ − σ`α`γ

)
, (A1)

where Θ(x) is the Heaviside step function, rαγ = |rα − rγ | is
the relative distance between particles α and γ, `α denotes the
species particle α belongs to, and σij =

1
2 (σi + σj).

Now we assume that an extra test particle of
diameter σ0 is inserted into the fluid. The canoni-
cal ensemble expression for the insertion probability is
[see Eq. (3.1)]

P0(η,σ0) =

〈 N∏
γ=1

Θ(r0γ − σ0`γ )

〉

=

∫
drN e−βΦN (rN )

∫
dr0

∏N
γ=1Θ(r0γ − σ0`γ )

V
∫

drN e−βΦN (rN )

.

(A2)

In the limit σ0 → 0, we can write

P0(η,σ0) = P0(η, 0) + Ṗ0(η, 0)σ0 +O(σ2
0), (A3)

where the dot denotes a derivative with respect to σ0.
The first term on the right-hand side of Eq. (A3) is trivial
since ∫

dr0

N∏
γ=1

Θ

(
r0γ −

σ`γ

2

)
= V (1 − η). (A4)

This expresses the fact that, for any nonoverlapping config-
uration of N spheres, the available volume for the test point
particle is V (1 − η). Consequently,

P0(η, 0) = 1 − η. (A5)

As for the derivative Ṗ0(η,σ0), it is given from Eq. (A2) by

Ṗ0(η,σ0) = −
1
2

N∑
α=1

∫
drN e−ΦN (rN )

∫
dr0 δ(r0α − σ0`α )

∏
γ,αΘ(r0γ − σ0`γ )

V
∫

drN e−βΦN (rN )

. (A6)

Making σ0 → 0 and assuming again a nonoverlapping configuration of the fluid particles, we can write

∫
dr0 δ

(
r0α −

σ`α
2

) ∏
γ,α

Θ

(
r0γ −

σ`γ

2

)
= Ωd lim

ε→0

∫ σ`α
2 +ε

0
dr0α rd−1

0α δ
(
r0α −

σ`α
2

)
= Ωd21−dσd−1

`α
, (A7)

where Ωd = dvd2d is the total solid angle. Therefore,

Ṗ0(η, 0) = −dη
Md−1

Md
. (A8)
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After insertion of Eqs. (A5) and (A8), Eq. (A3) becomes

P0(η,σ0)= (1−η)

(
1 − d

η

1 − η
M1Md−1

Md

σ0

M1

)
+O(σ2

0). (A9)

Finally, from Eq. (1.1) we find

βµex
0 (η,σ0) = c0(η) + c1(η)

M1Md−1

Md

σ0

M1
+O(σ2

0), (A10)

with

c0(η) = − ln(1 − η), c1(η) = d
η

1 − η
. (A11)

Identifying the test particle as a particle of species i (i.e., σ0

= σi) and focusing on d = 3, it can be readily shown that Eqs.
(A10) and (A11) reduce to Eqs. (2.14) and (2.9a) and (2.9b),
respectively.

Equation (A8) can be obtained by a different route. Imag-
ine a test particle that can (partially) “penetrate” inside the
fluid particles, i.e., it has a nominal diameter σ0 < 0 so that
the closest distance σ0j between the centers of the test particle
and a particle of species j is smaller than 1

2σj. In that case,
Eq. (A2) still holds and, in analogy to Eq. (A4),∫

dr0

N∏
γ=1

Θ(r0γ − σ0`γ ) = V −
∑

j

Njvd(2σ0j)
d . (A12)

Therefore,

P0(η,σ0 < 0) = 1 −
1
V

∑
j

Njvd(σ0 + σj)
d , (A13a)

Ṗ0(η,σ0 < 0) = −
d
V

∑
j

Njvd(σ0 + σj)
d−1. (A13b)

Taking the limit σ0 → 0, Eqs. (A13) reduce to Eqs. (A5) and
(A8). This in turn shows that both P0(η,σ0) and Ṗ0(η,σ0) are
continuous at σ0 = 0.
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