
THE JOURNAL OF CHEMICAL PHYSICS 148, 214503 (2018)

Chemical potential of a test hard sphere of variable size
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A detailed comparison between the Boublı́k–Mansoori–Carnahan–Starling–Leland (BMCSL) equa-
tion of state of hard-sphere mixtures is made with Molecular Dynamics (MD) simulations of the
same compositions. The Labı́k and Smith simulation technique [S. Labı́k and W. R. Smith, Mol.
Simul. 12, 23–31 (1994)] was used to implement the Widom particle insertion method to calculate the
excess chemical potential, βµex

0 , of a test particle of variable diameter, σ0, immersed in a hard-sphere
fluid mixture with different compositions and values of the packing fraction, η. Use is made of the
fact that the only polynomial representation of βµex

0 which is consistent with the limits σ0 → 0 and
σ0 → ∞ has to be of the cubic form, i.e., c0(η) + c1(η)σ0/M1 + c2(η)(σ0/M1)2 + c3(η)(σ0/M1)3,
where M1 is the first moment of the distribution. The first two coefficients, c0(η) and c1(η), are known
analytically, while c2(η) and c3(η) were obtained by fitting the MD data to this expression. This in
turn provides a method to determine the excess free energy per particle, βaex, in terms of c2, c3, and
the compressibility factor, Z. Very good agreement between the BMCSL formulas and the MD data
is found for βµex

0 , Z, and βaex for binary mixtures and continuous particle size distributions with
the top-hat analytic form. However, the BMCSL theory typically slightly underestimates the simu-
lation values, especially for Z, differences which the Boublı́k–Carnahan–Starling–Kolafa formulas
and an interpolation between two Percus–Yevick routes capture well in different ranges of the system
parameter space. Published by AIP Publishing. https://doi.org/10.1063/1.5037856

I. INTRODUCTION

Particulate mixtures are widely encountered in the real
world, in the form of powders and liquid mixtures. For many
years, there has been an active interest in studying such “gran-
ular” mixtures in numerous fields, such as in chemistry, geol-
ogy, pharmaceutical science, food technology, and in various
aspects of chemical engineering processing and civil engineer-
ing. They are intrinsically difficult to understand and control.
The hard sphere (HS) particle has proven a useful reference
fluid for single component liquids, and it makes logical sense
to use the same type of model particle to act as a starting
point to represent and understand the physical behavior of such
multicomponent systems. Mixtures of HSs of different size
distributions (discrete or continuous) can similarly be used to
model, for instance, nanocolloidal liquids and granular mate-
rials. Mixtures are more problematic than single component
liquids to deal with theoretically as there are more parameters
to be accounted for in any theoretical treatment. In the binary
mixture HS case, these are the total packing fraction, η, the
diameters of the two spheres, σ1 and σ2, their mole fractions,
x1 and x2 = 1 − x1, and for dynamical properties, their masses.
Therefore, the statistical mechanical theory of the equation
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of state (EoS) and derived properties poses a much greater
challenge than for the single component. One of the most
widely used approximate analytic EoSs for mixtures is that of
Boublı́k–Mansoori–Carnahan–Starling–Leland (BMCSL).1,2

This has been found to be an accurate representation of the
available simulation data.3–9 However, a comprehensive explo-
ration of its performance over the possible ranges of this
parameter space is yet to be carried out. This is particularly
for the chemical potential of a test particle in the regions of
this parameter space which would better assess the overall
accuracy of the BMCSL EoS.

Here, a systematic exploration of the accuracy of the
BMCSL EoS over a wide parameter range is carried out using
new computer simulation data of a binary mixture of HSs and
a closely related so-called top-hat (TH) continuous diame-
ter distribution between lower and higher values, σ2 and σ1,
respectively. The chemical potential of a test particle of vary-
ing diameter, σ0, inserted into the mixture is calculated using
the Widom particle insertion method.10

The method employed here was first used for HS sys-
tems by Monte Carlo (MC) simulations for the single compo-
nent case by Labı́k and Smith11 and later applied to a binary
mixture of HSs by Barošová et al.4 The technique measures
the probability of the successful insertion of a test particle
of arbitrary diameter σ0. These measurements are extrapo-
lated with a suitable polynomial in powers of σ0 to give
the chemical potential of tracer particles larger than can be
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practically inserted in the simulations. We first applied this
method in Molecular Dynamics (MD) simulations to the sin-
gle component fluid using a third-degree polynomial.12 In the
Appendix of Ref. 12, we proved that a polynomial consis-
tent with the limits σ0 → 0 and σ0 → ∞ must necessarily
have a cubic form, regardless of the number of components.
To be consistent with this fact, we assume here a third-degree
polynomial, even in the multicomponent case, rather than a
fourth- or fifth-degree polynomial which was used in Ref. 4.
The highest two coefficients so obtained by fitting the sim-
ulation test particle chemical potential data to the polyno-
mial are used here to compute the free energy per particle
of the mixture, which is a novel outcome of this numerical
study. Recently, Baranau and Tallarek13 employed an alter-
native solution which consisted of measuring the so-called
pore-size distribution, fitting it to a Gaussian, and then per-
forming analytically an integral to determine the chemical
potential. Other methods use a particle swap scheme14 or
well-tempered metadynamics.15,16 We note in passing that
alternative analytic forms for the EoS to the BMCSL equa-
tion have been proposed and compared against simulation
data.8,17–22

The remainder of this work is organized as follows.
Expressions are reviewed in Sec. II and the use of a cubic
polynomial as a trial function for βµex

0 is justified. The com-
puter simulation method is briefly described in Sec. III. The
results are presented and compared with theoretical predictions
in Sec. IV, and some conclusions are given in Sec. V.

II. THEORY
A. Equation of state of multicomponent
hard-sphere fluids

Consider a three-dimensional fluid mixture of additive
HSs with an arbitrary number of components, in which for
each species j, there are N j spheres of diameter σj. The total
number of particles is N =

∑
j Nj and the nth moment of the

size distribution is

Mn =
∑

j

xjσ
n
j , (2.1)

where xj = N j/N is the mole fraction of species j (with∑
j xj = 1). The total packing or volume fraction of the HS

mixture is exactly defined as

η =
π

6
N
V

M3, (2.2)

where V is the volume of the system.
The compressibility factor of the mixture is denoted by

Z(η, {xj}) ≡ βpV /N, where p is the pressure, β = 1/kBT, kB is
Boltzmann’s constant, and T is the absolute temperature. The
exact form of Z as a function of these parameters is not known,
and several approximations have been proposed.8,23

The exact solution24–26 of the Percus–Yevick (PY) inte-
gral equation27 leads to explicit expressions for Z by different
thermodynamic routes. Specifically, the virial (PY-v), com-
pressibility (PY-c), and chemical-potential (PY-µ) routes in
the PY approximation have a common structure,24–26,28–30

Z(η, {xj}) =Z0(η) + Z1(η)
M1M2

M3
+ Z2(η)

M3
2

M2
3

= Z0(η) + Z1(η)λ + Z2(η)
λ3

γ
, (2.3)

where

Z0(η) =
1

1 − η
, Z1(η) =

3η

(1 − η)2
, (2.4)

λ({xj}) ≡
M1M2

M3
, γ({xj}) ≡

M3
1

M3
. (2.5)

Of course, λ = γ = 1 is the single component case. In general,
as proved in Ref. 31, one has λ2 ≤ γ ≤ λ ≤ 1, regardless of
the number of components. The functions (2.4) are the same
in all the PY EoSs, while the function Z2(η) depends on the
route and is displayed in the second column of Table I. It must
be noted that the PY-c EoS is equivalent to the Scaled Particle
Theory (SPT) approximation,32–36 and this is why it is labeled
as “PY-c (SPT)” in Table I.

Equation (2.3) provides a method to extend any single
component HS compressibility factor, Zs(η), to multicompo-
nent fluids simply by choosing

Z2(η) = Zs(η) −
1 + 2η

(1 − η)2
, (2.6)

although other alternative methods are possible.8,37–40 In par-
ticular, if Zs(η) is chosen to be the Carnahan–Starling41

or the Carnahan–Starling–Kolafa42 EoSs, application of
Eqs. (2.3) and (2.6) yields the BMCSL or Boublı́k–Carnahan–
Starling–Kolafa (BCSK)43 extensions, respectively. The cor-
responding expressions for Z2(η) are also presented in
Table I.

As is well known, the BMCSL compressibility factor is
an interpolation between the PY-v and PY-c prescriptions,
namely,

ZBMCSL(η) =
1
3

ZPY-v(η) +
2
3

ZPY-c(η). (2.7)

Given that the PY-µ route is slightly more accurate than the
PY-v one,29,30 an alternative interpolation formula is

ZPY-µc(η) = αZPY-µ(η) + (1 − α)ZPY-c(η), (2.8)

with α ' 0.37.

B. Free energy of multicomponent hard-sphere fluids

The thermodynamic relation between the excess free
energy per particle, aex(η,{xj}), and the compressibility factor,
Z(η, {xj}), is

βaex(η, {xj}) =
∫ 1

0
dt

Z(ηt, {xj}) − 1

t
. (2.9)

Therefore, if Z has the form in Eq. (2.3), then

βaex(η, {xj}) = c0(η) + c1(η)λ + a2(η)
λ3

γ
, (2.10)

where

c0(η) = − ln(1 − η), c1(η) =
3η

1 − η
, (2.11a)
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TABLE I. Expressions for Z2(η), a2(η), c2(η), and c3(η), according to several approximations.

Approx. Z2(η) a2(η) c2(η) c3(η)

PY-v
3η2

(1 − η)2
3 ln(1 − η) +

3η
1 − η

9 ln(1 − η) + 12
η

1 − η
−6 ln(1 − η) − η

5 − 11η

(1 − η)2

PY-c (SPT)
3η2

(1 − η)3

3η2

2(1 − η)2
3η

2 + η

2(1 − η)2
η

1 + η + η2

(1 − η)3

PY-µ −
9 ln(1 − η)

η
− 9

1 − 3
2η

(1 − η)2

9 ln(1 − η)
η

+ 9
1 − 1

2η

1 − η
27

ln(1 − η)
η

+ 3
18 − 7η
2(1 − η)

−27
ln(1 − η)

η
−

54 − 83η + 14η2

2(1 − η)2

BMCSL
η2(3 − η)

(1 − η)3
ln(1 − η) +

η

(1 − η)2
3 ln(1 − η) + 3η

2 − η

(1 − η)2
−2 ln(1 − η) − η

1 − 6η + 3η2

(1 − η)3

BCSK
η2[3 − 2

3η(1 + η)]

(1 − η)3

8
3

ln(1 − η) 8 ln(1 − η) + η
22 − 21η + 4η2

2(1 − η)2
−

16
3

ln(1 − η)

+η
16 − 15η + 4η2

6(1 − η)2
−η

13 − 43η + 27η2 − 2η3

3(1 − η)3

a2(η) =
∫ 1

0
dt

Z2(ηt)
t

. (2.11b)

The expressions for a2(η) corresponding to several approxi-
mations are also presented in Table I.

C. Chemical potential of a test sphere

Now, we want to obtain from Eq. (2.10) the theoretical
excess chemical potential of a test particle (of diameter σ0)
immersed in a HS mixture. To that end, note first that the excess
chemical potential of a generic species i is thermodynamically
defined as

βµex
i =

(
∂N βaex

∂Ni

)
V ,Nj,i

. (2.12)

Next, βµex
0 is obtained from βµex

i by the replacement
σi → σ0 while keeping the composition of the mixture fixed.
From Eq. (2.10), one finally obtains12

βµex
0 (σ0) = c0 + c1

σ0

M1
+ c2

(
σ0

M1

)2

+ c3

(
σ0

M1

)3

, (2.13)

where

c1 = λ
3η

1 − η
, (2.14a)

c2 = λ
2c2 + (γ − λ2)

3η
1 − η

, (2.14b)

c3 = λ
3c3 + (γ − λ3)

η

1 − η
+ λ(γ − λ2)

3η2

(1 − η)2
. (2.14c)

In Eqs. (2.14b) and (2.14c),

c2(η) =
3η

1 − η
+ 3a2(η), (2.15a)

c3(η) =
3η

(1 − η)2
+ Z2(η) −

2
3

c2(η). (2.15b)

The expressions for c2(η) and c3(η) predicted by several
approximations are given in Table I. From Eqs. (2.3), (2.4),
(2.14), and (2.15), one can obtain the relationship

Z(η, {xj}) = 1 +
1
3

c1 +
2
3
λc2

γ
+

c3

γ
. (2.16)

As mentioned above, the structure of Eq. (2.3), and hence
of Eqs. (2.10) and (2.13), is common to several approximate
EoSs, such as PY-v, PY-c, PY-µ, BMCSL, BCSK, and, obvi-
ously, PY-µc. They all share the coefficients Z0, Z1, c0, and
c1 [see Eqs. (2.4) and (2.11a)] but differ in Z2, a2, c2, and c3.
Only Z2 is an independent quantity since a2, c2, and c3 are
given by Eqs. (2.11b), (2.15a), and (2.15b), respectively.

An analysis, in the case of binary mixtures, of the extremal
properties of the combinations of λ and γ appearing in
Eqs. (2.3) and (2.14) is presented in the Appendix.

D. Consistency conditions in the limits
σ0 → 0 and σ0 →∞

As proved in the Appendix of Ref. 12, the exact form of
βµex

0 in the limit σ0/M1 � 1 is

βµex
0 (σ0) = c0 + c1

σ0

M1
+ O

(
(σ0/M1)2

)
. (2.17)

Therefore, the cubic approximation (2.13) is consistent with
the asymptotic behavior (2.17). Moreover, it is noteworthy that
if βµex

0 is represented by a polynomial in the diameter σ0, the
polynomial must necessarily be of the third degree. This is a
consequence of the physical requirement that, in the limit of
an infinitely large impurity, the condition39,44,45

ηZ = M3 lim
σ0→∞

βµex
0 (σ0)

σ3
0

(2.18)

must be obeyed. Therefore, since limσ0→∞ βµex
0 (σ0)/σ3

0 can
be neither zero nor infinity, the only polynomial approxi-
mations consistent with that property are those of the third
degree.

In the case of the approximations of the form (2.3),
Eq. (2.18) implies

Z =
1
η

c3

γ
. (2.19)

However, the PY-v, PY-µ, BMCSL, and BCSK EoSs are
not fully consistent with Eq. (2.19). This means that those
approximations qualitatively agree with the physical require-
ment (2.18) since limσ0→∞ βµex

0 (σ0)/σ3
0 = finite but yield



214503-4 D. M. Heyes and A. Santos J. Chem. Phys. 148, 214503 (2018)

different results for the left- and right-hand sides. The differ-
ence between ηZ, as given by Eqs. (2.3) or (2.16), and c3/γ
can be seen to be

ηZ −
c3

γ
=
λ3

γ

[
2a2 − η(1 − η)a′2

]
, (2.20)

where a′2(η) = da2(η)/dη. Thus, a perfect agreement between
Eqs. (2.16) and (2.19) is only possible if a′2 = 2a2/η(1 − η),
whose general solution is a2 = Kη2/(1 − η)2, where K is a con-
stant. The associated one-component third virial coefficient is
b3 = 7 + 2K so that b3 = 10 implies K = 3

2 and thus one recovers
the PY-c (SPT) approximation.

E. Equivalence between different mixtures

According to Eqs. (2.3), (2.10), and (2.14), two mixtures
sharing the same values of η, λ, and γ would have common
values of Z, βaex, and cn. Having the same values of λ and
γ implies having the same values of the reduced moments
M2/M2

1 and M3/M3
1 . As a consequence, given any HS mixture

(with an arbitrary number of components and arbitrary diam-
eters), it will always be possible to find an “equivalent” binary
mixture with the same equilibrium properties. The mole frac-
tion, x1, of the bigger spheres and the size ratio, q ≡ σ2/σ1

≤ 1, for the binary mixture equivalent of a multicomponent
system characterized by given values of λ and γ are obtained
using the formulas

x1 =
1
2
−

1 + 2γ − 3λ

2
√

1 + 4γ − λ(6 + 3λ − 4λ2/γ)
, (2.21a)

q =
1 − λ −

√
1 + 4γ − λ(6 + 3λ − 4λ2/γ)

2
[
λ(1 + λ − λ2/γ) − γ

]
/(1 − λ)

− 1. (2.21b)

The mapping property discussed above applies as well
to a continuous size distribution characterized by a given
distribution function x(σ), in which case the moments are

Mn =

∫ ∞
0

dσ x(σ)σn. (2.22)

FIG. 1. Plot of the excess chemical potential of a test particle, βµex
0 (σ0), for

the B5 type of system (see Table II). From right to left, the curves are for
η = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, and 0.45,
respectively, using N = 2048 particles in the MD simulation.

TABLE II. The HS mixture systems analyzed and their tags.

Set η x1 σ2/σ1

B1 0.3 0.5 Variable
B2 0.3 Variable 0.5
B3 0.3 Variable 0.3
B4 Variable 0.5 0.5
B5 Variable 0.5 2 −

√
3

B6 (x1 + 0.1)/2 Variable x1

Set η σmin/σmax

TH1 0.3 Variable
TH2 Variable 0

In particular, let us consider a TH continuous size distribution
of HSs with diameters between σmin and σmax,

xTH(σ) =
1

σmax − σmin

{
1 if σmin < σ < σmax,

0 otherwise.
(2.23)

The associated values of λ and γ are

λTH =
2
3

1 + qTH + q2
TH

1 + q2
TH

, γTH =
1
2

(1 + qTH)2

1 + q2
TH

, (2.24)

where qTH = σmin/σmax ≤ 1 is the size ratio. Insertion of
Eq. (2.24) into Eqs. (2.21) yields x1 =

1
2 and

FIG. 2. Plot of (a) c2 and c3, (b) βµex
1 and βµex

2 , and (c) Z − 1 and βaex

versus σ2/σ1 for system B1. The symbols are our MD data (N = 2048) and
the lines are the BMCSL predictions.
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q =
qTH + 2 −

√
3

1 + (2 −
√

3)qTH

. (2.25)

For instance, if qTH = 0, the equivalent binary mixture must
have a size ratio q = 2 −

√
3 ' 0.268. Inversion of Eq. (2.25)

gives

qTH =
q − (2 −

√
3)

1 − (2 −
√

3)q
. (2.26)

III. COMPUTER SIMULATIONS

The application of MD and MC computer simulations to
HS mixtures goes back to the 1960s.46,47 The MD simula-
tions carried out in this study employed a generalization of the
methodology used in our previous study of single component
HSs,12 using the equations relevant to binary, and hence to
multicomponent HS mixtures in general, given by Bannerman
and Lue.48 A test point particle was randomly inserted in the
system. If it did not fall within an existing sphere, the distance,
rn, from the point to the center of the nearest sphere, of type
k and diameter σk , was computed. All the values of σ0 = 0
to σ0 = 2rn − σk would be allowed insertions which were
correspondingly logged. For HSs, the Widom method reduces
to a simple bookkeeping procedure as the Boltzmann factor
is either 1, if the test sphere (and hence other test particles
with diameter less than σ0) does not overlap with any of the

FIG. 3. Plots of (a) c2 and c3, (b) βµex
1 and βµex

2 , and (c) Z − 1 and βaex

versus x1 for system B2. The symbols are our MD data (N = 2048) and the
lines are the BMCSL predictions.

N particles, or is equal to 0, if there is an overlap with any of
the other spheres.

The simulations were carried out employing N = 2048
particles for typically 2 × 105 collisions per particle. Some
additional simulations with N = 4000 particles were performed
for several of the mixtures to assess the influence of finite-
size effects. The pressure and hence Z were obtained by the
virial theorem written in terms of the collision parameter.
The thermodynamics of the systems is independent of the
masses of the spheres, but to facilitate equilibration of the
smaller particles, the mass was set to mi ∝ σi for the binary
mixtures and m(σ) ∝

√
σ for the TH distributions. The simu-

lations were carried out in the fluid phase diagrams, as these
regions are already known for binary49,50 and polydisperse51

mixtures.
For each mixture, the excess chemical potential, βµex

0 ,
was computed by the Widom method as a function of
the dimensionless impurity diameter σ0/M1. N attempted
particle insertions were made randomly in the system at the
same time after every N collisions. These data were fitted to
a cubic polynomial of the form (2.13) using the known exact
values for c0 and c1 from the expressions in Eqs. (2.11a) and
(2.14a), respectively. In fact, c0 is universal in the sense that it
is independent of the details of the mixture, apart from the total
packing fraction. The parameters, c2 and c3, were obtained
by fitting the simulation values of βµex

0 to the cubic polyno-
mial in σ0/M1. The fitting procedure was applied to values

FIG. 4. Plots of (a) c2 and c3, (b) βµex
1 and βµex

2 , and (c) Z − 1 and βaex

versus x1 for system B3. The symbols are our MD data (filled symbols:
N = 2048, crosses: N = 4000) and the lines are the BMCSL predictions.
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βµex
0 ≤ 16.0, which corresponds to insertion probabilities

larger than∼10−7. An example of the quality of the fit is shown
in Fig. 1.

From the values of Z, c2, and c3 (and hence βµex
i ) obtained

from the simulations, the excess free energy per particle
was obtained from the Euler equation of thermodynamics,
i.e.,

βaex =
∑

i

xi βµ
ex
i − Z + 1

= − ln(1 − η) + λ
3η

1 − η
+
λc2

γ
+

c3

γ
− Z + 1, (3.1)

where in the last step Eq. (2.13) has been used.

IV. RESULTS AND DISCUSSION

A number of binary and polydisperse sets of mixtures were
investigated for this study. Cases were considered where a sig-
nificant degree of “separation” from the one-component case
(see the Appendix) would be expected. Binary mixture simu-
lations were carried out in which one of the three parameters
(diameter ratio,σ2/σ1, mole fraction of the big spheres, x1, and
total volume fraction, η) was varied, while the remaining two
were kept constant. An additional set was considered where
σ2/σ1 and η changed linearly with x1. Also the TH particle

FIG. 5. Plot of (a) c2 and c3, (b) βµex
1 and βµex

2 , and (c) Z − 1 and βaex

versus η for system B4. The symbols are our MD data (filled symbols:
N = 2048, crosses: N = 4000) and the lines are the BMCSL predictions.

distribution was modeled for a range of σmin/σmax. Details of
the sets of simulations carried out and the tags used for them
are given in Table II. Note that, according to theory and by
application of Eq. (2.25), the set of equimolar binary mixtures
B1 and the set of polydisperse mixtures TH1 can be made
equivalent. Similarly, the sets B5 and TH2 are theoretically
equivalent.

The MD numerical values of c2, c3, βµex
1 , βµex

2 , Z, and
βaex for the sets described in Table II are presented in Tables
I–VIII of the supplementary material.

As for the different theoretical approaches summarized
in Table I, we will discard the PY-v, PY-c, and PY-µ EoSs
since they are known to be clearly inferior to the BMCSL
or BCSK prescriptions.12,30 Moreover, the differences (both
absolute and relative) between the BMCSL and BCSK pre-
dictions for the coefficients c2 and c3 are smaller than the
(already very small) differences in the one-component case
(where c2 → c2 and c3 → c3). This can be explained by the
fact that cBMCSL

n − cBCSK
n = λn

(
cBMCSL

n − cBCSK
n

)
and λ < 1.

Therefore, in what follows, we will mainly restrict ourselves
to comparing the BMCSL EoS with our MD results.

The simulation and theoretical results for the binary sys-
tems B1–B4 and B6 are presented in Figs. 2–5 and 6, respec-
tively. Figure 7 does the same for the continuous distribution
TH1 and again for the binary mixture B1 [in the latter case by
applying the mapping (2.26)], while Fig. 8 presents the results
for systems B5 and TH2.

FIG. 6. Plot of (a) c2 and c3, (b) βµex
1 and βµex

2 , and (c) Z − 1 and βaex

versus x1 for system B6. The symbols are our MD data (filled symbols:
N = 2048, crosses: N = 4000) and the lines are the BMCSL predictions.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027821
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FIG. 7. Plots of (a) c2 and c3, (b) βµex(σmin) and βµex(σmax), and (c) Z − 1
and βaex versusσmin/σmax for system TH1 (squares and circles). The crosses
represent results obtained from system B1 by application of the mapping
(2.26). The symbols are our MD data (N = 2048) and the lines are the BMCSL
predictions.

Even though the combined scope of these mixtures spans
a wide spectrum of parameters, very good agreement of the
BMCSL theory with the MD results is observed in all the
cases. In particular, Figs. 7 and 8 confirm that systems as dif-
ferent as a binary mixture and a continuous size distribution
can be practically indistinguishable from the thermodynamic
point of view, provided they share the same values of λ and
γ. Theory as well as simulation31 strongly support that this
mapping property extends to other continuous distributions
different from the TH one.

Figures 2–8 show that, as expected, the fitting coefficients
c2 and c3 present a certain degree of scatter. However, there is
some “synergy” or compensation between these two quantities
that takes place during the fitting process and reduces the level
of scatter in the evaluation of the excess chemical potentials
and the free energy via Eqs. (2.13) and (3.1), respectively.
In any case, since the compressibility factor Z is measured
directly in the simulations (rather than by a fitting algorithm),
it is a more robust quantity. The excellent agreement found in
Figs. 4–6, and 8 between the N = 2048 and N = 4000 sets of
MD data gives us confidence in the lack of any statistically
significant finite-size effects.

Despite the good behavior of the BMCSL theory observed
in Figs. 2–8, a careful comparison shows that the theory
generally underestimates the simulation values, especially

FIG. 8. Plots of (a) c2 and c3, (b) βµex
1 , βµex

2 , and βµex(σmax), and (c)
Z − 1 and βaex versus η for systems B5 (crosses: N = 2048, stars: N = 4000)
and TH2 (closed circles and squares: N = 2048, open circles and squares:
N = 4000). The symbols are our MD data and the lines are the BMCSL
predictions.

in the case of the compressibility factor Z. The deviations
∆Z = Z − ZBMCSL of the simulation data from the BMCSL
predictions are plotted in Fig. 9, where also the deviations pre-
dicted by the BCSK EoS and the PY-µc EoS with α = 0.37 [see
Eq. (2.8)] are also included. We observe from Figs. 9(a), 9(b),
9(d), and 9(e) that at a packing fraction η = 0.3 one has ∆Z
≈ 0.01, practically with independence of the mixture compo-
sition. This property is very well accounted for by the PY-µc
and, especially, BCSK theories. The same approximate value
∆Z ≈ 0.01 can be observed from Figs. 9(c) and 9(f) at η = 0.3
and from Fig. 9(f) at x1 = 0.5 (which implies η = 0.3 in
the set B6). As density increases in Figs. 9(c) and 9(f), ∆Z
increases monotonically, reaching values close to ∆Z ≈ 0.05
at η = 0.5. This trend is well captured by the PY-µc EoS
but not by the BCSK EoS. The latter presents a maximum
deviation ∆Z = (λ3/γ)

(
223 − 70

√
10

)
/81 ' 0.02λ3/γ at

η = 2 −
√

5/2 ' 0.42 and then ∆Z = 0 at η = 0.5. On
the other hand, a similar non-monotonic behavior of ∆Z vs
x1 predicted by the BCSK EoS in Fig. 9(g) is actually con-
firmed by our simulations of the set B6, while the PY-µc
EoS exhibits a monotonic behavior. Since increasing the mole
fraction x1 in the set B6 implies approaching a monodisperse
system at higher densities, we can conclude that, at packing
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FIG. 9. Plots of the difference ∆Z
= Z − ZBMCSL for systems (a) B1, (b)
B2, (c) B4 (squares: N = 2048, crosses:
N = 4000), (d) TH1 (squares), (e) B3
(squares: N = 2048, crosses: N = 4000),
(f) B5 (crosses: N = 2048, stars: N
= 4000) and TH2 (closed squares: N
= 2048, open squares: N = 4000),
and (g) B6 (squares: N = 2048,
crosses: N = 4000). The symbols
are our MD data and the solid
and dashed lines represent ZBCSK

− ZBMCSL and ZPY–µ c − ZBMCSL (with
α = 0.37), respectively. The crosses
in panel (d) represent results obtained
from system B1 by application of the
mapping (2.26).

fractions larger than about η = 0.35, the BCSK EoS is more
accurate than the PY-µc EoS for nearly monodisperse sys-
tems (λ3/γ . 1), but the opposite happens for mixtures where
1 − λ3/γ is not small. For instance, 1 − λ3/γ ' 0.23 and 0.41
in Figs. 9(c) and 9(f), respectively, while 1 − λ3/γ < 0.06
for x1 > 0.7 in Fig. 9(g). Finally, it is interesting to notice
from Fig. 9(f) a very slight breaking down of the equivalence
between the mixtures B5 and TH2 as density increases.

V. CONCLUSIONS

An extensive series of sets of MD simulations were carried
out of the thermodynamic properties of binary and continu-
ous size distribution HS mixtures. Relative particle diameters,
mole fractions of the different components, and the total pack-
ing (volume) fraction were systematically varied. The Widom
particle insertion method, employing the Labı́k and Smith
technique,11 was used to calculate the excess chemical poten-
tial of a test particle of variable diameter, σ0. The simulation
data were fitted to a third-order polynomial in σ0, the first
two coefficients of which are known exactly by theory. The
compressibility factor, Z, was also independently obtained by
a standard MD method. As a novel outcome, the excess free
energy per particle was determined using a thermodynamic
relation involving the compressibility factor and the two fitted
coefficients.

The theories considered in this work share the same struc-
ture for the excess free energy and, hence, for the chemi-
cal potentials and the compressibility factor [see Eqs. (2.3),
(2.10), and (2.13)]. These theories differ only in the den-
sity dependence of the coefficient a2(η) since the coefficients
Z2(η), c2(η), and c3(η) are derived from a2(η) by thermo-
dynamic relations [see Eqs. (2.11b) and (2.15)]. The most

widely used theory in the literature is the BMCSL, which
is an interpolation between the virial and compressibility
routes in the PY approximation. Here we have also taken
the BCSK (an ad hoc correction to the BMCSL EoS) and
the PYµ-c theories. The latter is an interpolation between
the chemical-potential and compressibility routes in the PY
approximation and thus it has the same footing as the BMCSL
theory.

Very good agreement between the simulation results with
the predictions of the BMCSL analytic EoS is observed in all
the cases. These simulations also confirm that systems as dif-
ferent as a binary mixture and a continuous size distribution
can be hardly distinguishable in their thermodynamic quan-
tities, provided they share the same values of the parameters
λ and γ, which mark the extent of difference from the single
component case.

A fine resolution examination of the MD generated quan-
tities shows that the BMCSL theory typically underestimates
the simulation values by a small amount, especially for the
compressibility factor. These differences are generally cap-
tured well by the BCSK and PY-µc formulas (the latter
with a mixing parameter α = 0.37) in different regions of
the system parameter space. When the packing fraction is
larger than about η = 0.35, the PY-µc EoS is more accu-
rate than the BCSK EoS, except for nearly monodisperse
systems.

To conclude, we believe that the results reported here pro-
vide further evidence on the reliability of the BMCSL EoS over
a wide spectrum of parameters characterizing a polydisperse
HS fluid. On the other hand, the BCSK and PY-µc EoSs, while
formally similar to the BMCSL EoS, succeed in improving
the theoretical predictions. We expect that the MD simulation
data obtained in this work can be useful to test other alternative
theories proposed in the literature.
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SUPPLEMENTARY MATERIAL

See supplementary material for tables containing the MD
simulation results for the mixtures described in Table II.
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APPENDIX: EXTREMAL PROPERTIES
OF COMBINATIONS OF λ AND γ
IN BINARY MIXTURES

In the framework of Eq. (2.3), the deviations of the com-
pressibility factor of a mixture from that of the single compo-
nent fluid (at a common value of the packing fraction η) are
monitored by the (positive) differences 1 − λ and 1 − λ3/γ. In
the case of a binary mixture characterized by the two parame-
ters x1 and q = σ2/σ1 ≤ 1, it can be checked that the maxima
of 1 − λ and 1 − λ3/γ, at a fixed value of q, are

(1 − λ)max =
(1 −
√

q)2(1 + q)

(1 −
√

q + q)2
, (A1a)

(
1 −

λ3

γ

)
max
=

(1 − q)2(2 + q)2(1 + 2q)2

4
(
1 + q + q2)3

. (A1b)

Those maxima occur at

x1 =
(
q−3/2 + 1

)−1
, (A2a)

x1 =
q2(2 + q)

(1 + q)
(
1 + q + q2) , (A2b)

respectively.
In the case of the chemical potential, we see from

Eqs. (2.13) and (2.14) that the deviations are now measured
by the differences 1 − λk (with k = 1, 2, 3), γ − λ2, γ − λ3,
and λ(γ − λ2). In the case of 1 − λk , the maxima are located

FIG. 10. Dependence on σ2/σ1 of the mole fraction corresponding to the
maximum values of 1 − λk , 1 − λ3/γ, γ − λ2, γ − λ3, and λ(γ − λ2).

at (A2a), but the analytical expressions of the locations for the
other quantities are too cumbersome to be reproduced here.

Figure 10 shows the q-dependence of the mole frac-
tion x1 corresponding to the maxima of 1 − λk , 1 − λ3/γ,
γ − λ2, γ − λ3, and λ(γ − λ2). In all the cases, x1(q) decreases
monotonically with decreasing q. In the limit q → 0, while
x1 ∼ q3/2 and x1 ∼ q2 in the cases of 1 − λk and 1 − λ3/γ,
respectively, the asymptotic behavior is x1 ∼ q3 in the cases of
γ − λ2, γ − λ3, and λ(γ − λ2).
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