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The Percus-Y evick equation is numerically solved by using the compressibility equation of state, and its 
behavior near the critical point is analyzed. We have used a Lennard-Jones potential without truncation, 
assuming an asymptotic form for the direct correlation function. The results show that the equation of state in 
the critical region has the same structure as the one obtained from the van der Waals equation. Then, the 
classical values of the critical exponents are obtained. Furthermore, the critical isotherm, the coexistence 
curve, and the spinodal curve are symmetrical around the critical point. Thus, the nonclassical behavior of the 
Percus-Y evick equ~tion seems to be restricted to a certain class of interaction potentials. 

I. INTRODUCTION 

The study of the critical behavior predicted by the 
approximate integral equations for classical fluids has 
received a great attention during the last few years. 
This is due to recent results seeming to indicate a non'­
classical behavior in some cases and also to the desire 
of clarifying the relation between the approximate inte­
gral equations and the modern theories of critical phe­
nomena. In fact, the work presented here was prompted 
and stimulated by some comments by Fisher and Fish­
man, 1 who showed that the available numerical results 
were not accurate enough to clearly decide whether the 
Percus-Yevick approximation provides a fully classical 
description of critical phenomena. 

The behavior of a fluid near its critical point can be 
described by the critical exponents and the critical am­
plitudes. 2•3 The behavior of the pressure p along the 
critical isoterm Tc near the critical point (pc,pJ, is 
characterized by the critical exponent o and the critical 
amplitudes W., defined by 

Jp/pc-1J~w~JvJ 6 ; p-pc-0~, T=Tc, (1.1) 

where 

v=p/pc-1, 

and W. and w_ refer to v > 0 and v < 0, respectively. 

The critical exponent y describes the behavior of the 
isothermal compressibility KT along the critical iso­
chore for temperatures above Tc, 

x~c·e-r; T-Tc-0•, P=Pc, 

where 

and 

li=T/Tc-1 

(1.2) 

For temperatures T below T c• the compressibility is 
measured at the points characterized by the densities 
p_(T) and p.(T) on the coexistence line 

x~c:JeJ-r'; T-Tc-0-, p=p~(T), (1.3) 

where the amplitudes c: and c: correspond, respec­
tively, to the considered limits. 

The shape of the coexistence line near the critical 
point is given by 

(1. 4) 

The critical exponents a and a ' describe the behavior 
of the specific heat at constant volume 

(1.5) 

(1. 6) 

The van der Waals-Maxwell theory leads, for a tri­
dimensional fluid, to the following values of these criti­
cal exponents2

: 

0=3, Y=Y'=1, {3=~, 0!=0!'=0. (1.7) 

These values are usually termed in the literature as 
the classical values of the critical exponents. The re­
sults a =a' = 0 indicate in this case a finite discontinuity 
of cv. With respect to the critical amplitudes, the van 
der Waals-Maxwell theory yields 

W_/W.=C:/C>B_/B.=1, c•;c~=2. (1.8) 

These classical values greatly differ from the experi­
mental ones3 and from the values predicted by the 
modern theories of critical phenomena. 4 

On the other hand, the approximate integral equations 
for classical fluids give a satisfactory picture of the be­
havior of fluids, especially for low densities and/or 
high temperatures. 5 Nevertheless, the predictions of 
these integral equations in the critical region are not 
sufficiently known. The need of carrying out more ac­
curate calculations than the presently existing ones has 
been recently pointed out by Fishman and Fisher. 1 

•6 

Near the critical point, orie of the best theoretically 
studied integral equations is the Yvon-Born-Green 
(YBG) equation. This equation leads to a nonphysical, 
anomalous behavior for d::= 4, where d represents the 
dimensionality of the system. 6 •

7 More concretely, if 
there existed a critical point the correlation function 
would take negative values near criticality at long range. 
Recent numerical calculations show that, for d = 3 and 
for square-well potential, this equation has no critical 
point. 8 For d> 4 the YBG equation presents a purely 
classical behavior. 7• 9 
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In this paper, we are concerned with the Percus­
Yevick (PY) equation. Baxter10 solved analytically the 
compressibility equation of state with the PY approxi­
mation for a "sticky hard spheres" system, i.e., for 
a system of particles interacting via a potential of the 
form 

u(r)/kB1'=liml:[12Ta/a]: :::Sa+a, 
a~ 0 

0 ; r~a+a, 

(1. 9) 

where Tis a dimensionless measure of the temperature. 
Baxter obtained a critical point with classical values 
(1. 7) for the critical exponents. However, this analyti­
cal solution predicts nonclassical relations1•10 for the 
critical amplitudes: W_/W.<><34, c:Jc•<><2, and c:/c: 
""6. 7. Furthermore, spinodal points (points with tem­
peratures T< Tc such that x-1 = 0) exist only for p> p;; 
Finally, the specific heat cv logarithmically diverges 
on the critical isochore and when the critical isotherm 
is crossed at densities above critical. Fishman and 
Fisher1 have shown that these results are related with 
the fact that the scaling functions are nonclassical. 
Obviously, the question posed now is whether this non­
classical behavior is due only to the sticky hard sphere 
limit or whether the PY equation has a nonuniversal 
critical behavior for general potentials, even if expo­
nents are classical. 

For more realistic potentials, the solution of the PY 
equation requires numerical methods. For a Lennard­
Janes (LJ) truncated potential11 and for the same poten­
tial without truncation, 12 the PY equation has been nu­
merically solved and the classical values for the critical 
exponents have been obtained. However, a detailed 
study of the critical amplitudes using the solution of the 
PY equation has not been carried out as yet. This study 
is needed in order to reach a definitive conclusion about 
the possible nonuniversal critical behavior of the· PY 
equation for general potentials. 

The purpose of this paper is to carry out a rather de­
tailed and complete numerical study of the behavior of 
a LJ fluid in the critical region described by the PY 
equation. The results obtained by us show a purely 
classical behavior for both the critical exponents and 
the critical amplitudes. This fact indicates that the 
deviation of the PY equation from the classical behavior 
is reduced to systems with a peculiar type of interaction 
potentials. 

II. NUMERICAL METHOD 

The thermodynamical properties of a simple fluid in 
equilibrium can be obtained from the radial distribution 
function g{r). In particular, 

z=p/pkBT=1-h(p/kBT) j"" dr?u'(r)g(r), 
0 

(2.1) 

(2. 2) 

(2. 3) 

where E represents the internal energy per particle .and 
u(r) is the molecular interaction potential. In Eq. (2. 2), 
c(r) is the so-called direct correlation function, which 
is defined from g(r) by means of the Ornstein-Zernike 
relation 

h(r)= g(r) -1 = c(r) + p Jdr' h(r;)c( I r- r' I) . (2. 4) 

Equations (2 .1), (2. 2), and (2. 3) are usually referred 
to as pressure, compressibility, and energy equation 
of stat~, respectively. These equations are equivalent 
if one uses the exact g(r), but this is not the case if an 
approximate g{r) is introduced. 

In the PY approximation, the Ornstein-Zernike rela­
tion is closed by using the equation 

c(r) =g(r){l- exp[u(r)/kB T]} . (2. 5) 

In order to numerically solve the system of Eqs. 
(2. 4) and (2. 5), it is useful to introduce an auxiliary 
function smoother than g(r). We have used H(r) =h(r) 
- c(r). In this way, Eq. (2. 5) becomes 

c(r) = [H(r)+l]{exp[- u(r)/kBT]-1} . (2. 6) 

The Ornstein-Zernike relation (2. 4) can be Fourier 
transformed and the result is 

ii(k) = p[c(k) ]21[1- pc(k)] , (2. 7) 

where the Fourier transform of a function f(r) is defined 
by . 

](k) = (4rr/k) J"" drrsin(k;)f(r) . 
0 

(2. 8) 

In our numerical calculations the direct and inverse 
Fourier transforms have been performed by using 
Lado' s algorithm13 

N-1 

j(k1) = (4rr/kiL, l!.rr; sin(k1r;)f(r;) , (2. 9) 
i =1 

N-1 

t<r;> = (27T2r;r1 :L l!.k k1 sin(kir;>l<k1) , (2 .10) 
J=1 

where 

l!..r=R/N, t!.k=rr/R, r;=il!.r, k1 =jl!.k, 

R is a distance such that for r> R, f(r)"" 0, and N is the 
number of points considered in the interval (O,R). We 
have taken R = 5a and N = 200, a being one of the param­
eters of the LJ potential 

u(r) = 4E:[(a/r)12
- (a/r) 6

] • (2. 11) 

The thermodynamical properties (2.1) and (2. 2) can 
be numerically calculated in the form 

Z = 1-h(p/kBT) 

x[tl!.r~u'(r)g(r1 ) + ~ .. dr?u'(r)] (2; 12) 

x-1 = 1- 41Tp [tt!.r'0c(r1)- (kBT)-1 f"" drYu(r)l, (2.13) 
J=1 R J 

where we have assumed the asymptotic behaviors 
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We have solved the PY equation by an iterative 
method. The input function of the nth iteration H~"(r) is 
introduced in Eq. (2. 6) in order to obtain c(r). Its 
Fourier transform c(k), allows us to·obtain H(k) by 
means of Eq. (2. 7) and, from its knowledge, the output 
function H~"t(r). Iterations are then continued in this 
way until the following four conditions are simulta­
neously satisfied: 

{N-1 t~[Hout(r;) -Hin(r;}]2}1!2 < 10-3 ' 
J=1 

m~ {ri IHout(rJ) -Hin(ri) I}< 10-3 ' 
J 

11 - z.lzn.1 l < 10-3 , 

1
1 - -1; -1 I < 10-3 Xn Xn+1 • 

(2.14) 

(2. 15} 

(2. 16) 

(2. 1 7) 

In the last two expressions, each subindex indicates the 
order of the iteration considered. These four conditions 
are usually redundant. Nevertheless, near the critical 
point, where x-1 ""' 0, condition (2. 1 7) is more restric­
tive than the other ones. In fact, condition (2.17} forces 
the left-hand sides of Eqs. (2.14)-{2.16) to take values 
of the order of 1 o-9• 

Henderson and Murphy11 solved numerically the PY 
equation near the critical point for a LJ potential trun­
cated at r = 6a. The truncation of the potential allowed 
them to use, instead of an iterative procedure, Watts' 
method, 14 which is based on a form of the PY equation, 
obtained by Baxter, 15 valid for potentials with a finite 
range. In this way, Henderson and Murphy avoided as­
suming any asymptotic behavior for g(r). However, this 
assumption has been necessary in our work because the 
potential we have used is not truncated. The use of 
Eqs. (2.1) or (2.3} would lead to significant errors be­
cause, near the critical point, the function g(r) has an 
infinite range. For this reason, we shall describe the 

.... .... 
..... ·· .... 

D.28850 

FIG. 1. Reciprocal susceptibility x-1 

= (k8Tr1 (op/'Op)T vs density for several 
temperatures. The critical temperature 
T c has been obtained by successive in­
terpolations and the critical density Pc 
is given by the minimum of the critical 
isotherm. 

system by means of the compressibility equation of state 
(2. 2), where only the direct correlation function, which 
has a finite range even near the critical point, is 
needed. 12 

Ill. RESULTS 

By using the numerical method described in the pre­
vious section, we have determined the direct correla­
tion function c(r). Inserting it into Eq. (2. 2), we have 
obtained the results shown in Fig. 1. From these re­
sults, the following values for the critical constants are 
derived: 

k8 T 0 /E = 1. 319 679 ± 0. 000 001 , 

p 0 a
3 = 0. 288 00 ± 0. 000 01 . 

(3 .1) 

(3. 2} 

For the sake of consistency, it is not adequate to use 
the equation of state (2. 1) to determine the critical 
pressure. We haJ to ~erform a numerical integration 
along the criticall £:i ~~n Eq. (2. 2). So, we have 
divided into 100 steps the interval of densities between 
p = 0 and p = Pc and, by means of the trapezoidal rule, 
we have obtained 

(3. 3) 

In Fig. 2 we have plotted :X-1 vs 9 for p = Pc near the 
critical point. We observe a linear behavior. More 
concretely, 

X-1 ::::: aB ; p = Pc ' T- T c , (3. 4) 

where a"'" 2. 474. Comparison of this result with Eq. 
(1. 2) allows us to write that c+ = 1/ a and that the critical 
exponent y takes the classical value, i.e., y = 1. The 
negative values of x-1 forT< Tc correspond to unphysical 
solutions. This situation is similar to the one appearing 
in the van der Waals equation. 

The linear behavior [Eq. (3. 4)] is more clearly ob­
served in Fig. 3, where we have plotted 9x vs 9 for 
p = Pc· In this figure the range of temperatures consid­
ered is much greater than the one considered in Fig. 2. 
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A representation, similar to the one of Fig. 3, but for 
the temperature range of Fig. 2, would show a large 
deviation from the linear behavior in the neighborhood 
of IJ = 0. This is due to the influence of the· uncertainty 
in the determination of the critical temperature. A de­
tailed discussion of a similar situation can be found in 
Ref. 16. 

In Fig. 4 we have again plotted IJx vs 1J for p = Pc, but 
now the range of IJ has been greatly enlarged. We see 
that the linear behavior given by Eq. (3. 4) is maintained 
even for temperatures far from the critical one. This 
is also a· property of the van der Waals equation, for 
which a=9/4. 

In order to show simultaneously the dependence of x 

0.5 

·························-----....P..----..:..P = Pc 

0.3 

01 

OJ 

-0.08 -0.06 -0.04 -0.D2 0 0.02 0.04 
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p = p~ .... 

. 
. 

FIG. 2. Dependence of )("1 = (kBTc)"1 

(ap/ap)T on 6=T/Tc-l along the 
critical isochore for temperatures 
very close to the critical one. 

on the density and the temperature in the neighborhood 
of the critical point, we have plotted x"1 vs v2 for sev­
eral temperatures near the critical one in Fig. 5. On 
the right-hand side of the figure, we have plotted points 
corresponding to p> Pc and on the left-hand side points 
corresponding to p<pc. We observe that the isotherms 
are symmetrical with respect to the critical isochore 
(v = 0) and that the points corresponding to each temper­
ature fit accurately to straight lines of constant slope, 
for T> Tc as well as for T< Tc. Taking into account 
these results and Eq. (3. 4), we can describe the asymp­
totic behavior of x_-t by the equation 

x- 1 ~bv2 +a1J; p-pc, T-Tc, (3. 5) 

where b""" 1. 019. Setting IJ = 0 in this equation and com-

0.06 0.08 

e 

FIG. 3. Plot of 6x vs 6 along the 
critical isochore for temperatures 
close to Tc. 
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paring with the one obtained by taking the derivative of 
Eq. (2.1) with respect top, we deduce that o =3 and 
that W+=W-=W=(b/3)(p0 kBTciP.). For the van der 
Waals equation, a similar result can be obtained with 
b =27/16. 

The linear dependence of x-1 with respect to e can 
also be obtained, without turning to Eq. (3. 4), by simply 
studying the temperature dependence of the ordinates at 
the origin of the straight lines in Fig. 5. In addition, 
we can obtain by interpolation a value for T c more ac­
curate than the one given by Eq. (3.1). More con­
cretely, we have obtained kBTJ€""1.3196788. Never­
theless, the value (3. 1) is accurate enough to be used in 
our calculations. 

We want to emph<~.size that the PY equation predicts 
the asymptotic behavior (3. 5) for T< T. as well as for 

12 ..... 
. . .. 8 

• ..... . 
.••• 4 ....... 

................ 

3 4 

FIG. 4. Ox vs 6 along the crit­
ical isochore for a wide range 
of temperatures above T c· 

T> T.. However, for each temperature T< T. there 
exists an interval of densities corresponding to nega­
tive, unphysical values of the isothermal compressi­
bility. This interval of densities is bounded by the val­
ues p~(T) and p;(T), defining the spinodal line, at which 
the isothermal compressibility diverges. Taking into 
account the asymptotic behavior (3. 5), the spinodal line 
near the critical point is defined by the equation 

v!=IJ!/p.-1~±(a/b)112 (-e)112 ; e-o-. (3.6) 

From the expression (3. 5), one can only obtain a par­
tial information about the behavior of the pressure near 
the critical point. In order to complete this informa­
tion, we have studied the temperature dependence of the 
pressure for p = Pc· The values of the pressure have 
been obtained, for each temperature, by numerically 
integrating (apjap)T by means of the trapezoidal rule 

• "12 

FIG. 5. Dependence of x-1 on v2 

=p/p0-1)2 for several temperatures 
close to the critical one. The lowest 
isotherm corresponds to T = 1. 319 670 
E/kB. The difference between the 
temperatures of two successive iso­
therms is C;.T = 2 x 10-6 E /kB, so the 
highest represented isotherm corre­
sponds toT= 1.319684 E/kB • 

. · T =1.319670 t:/k8 
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and dividing the interval of de~sities between 0 and p 
into 100 steps. In Fig. 6, we have plotted pipe -1 v~ 
9 near the critical point for p = Pc· The points fit accu­
rately to a straight line, which allows us to write the 
asymptotic law 

where m"" 5. 38. This behavior is maintained even for 
temperatures far above the critical one, as can be ob­
served in Fig. 7. This linear behavior, with m = 4, is 
also obtained from the van der Waals equation, being 
valid for all temperatures. Of course, it would be in­
teresting to establish whether the linear behavior de­
scribed by Eqs. (3. 4) and (3. 7) can be analytically de­
rived from the PY approximation, even when the tem­
perature of the system is far from the critical one. 
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D.. 
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... ·· 
1_. ... • 

0 0.5 1.0 e 1.5 

P = Pc • 

(} 
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FIG. 6. Plot of PIPc-1 vs e along 
the critical isochore for temperatures 
close to Tc. 

Integration of Eq. (3. 5), taking into account Eq. (3. 7), 
yields 

p/pc-1<'><Wv3 +a'vB+m9; p-pc, T-Tc, (3.8) 

where a'= a(pckaTciPc). This expression is the equation 
of state for a Lennard-Jones fluid in the critical region 
obtained from the compressibility equation in the py ' 
approximation. The van der Waals equation of state 
possesses the same asymptotic law, although with dif­
ferent numerical values for the critical amplitudes. 
For subcritical temperatures there exists an unphysical 
region for which the equation of state (3. 8) gives rise 
to negative values for the compressibility. Making use 
of the Maxwell construction we can obtain the limit den­
sities of the coexistence curve p.(T) 

v.=p./pc-1""±(3a/b)112(-e)112
; e-o-. (3.9) 

to 

FIG. 7. Plot of PIPc-1 vs e along the 
critical isochore for a wide range of 
temperatures above T c· 
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Also, the vapor pressure takes the asymptotic form 

(3. 10) 

Expression (3. 9) shows that the critical exponent {3 takes 
the value ~ and that B + = B_ = (3a/b )112 • By inserting 
Eq. (3.9) into Eq. (3.5), we obtain 

x"1 ::::J2a(-O); e-o-; p=p,(T). (3,11) 

Comparing with Eq. (1. 3), we obtain the value y 1 = 1 
and the relations c: = c: = c+ /2. 

Finally, we are going to study the behavior of Cv near 
the critical point. This quantity is related to the free 
energy per particle F through the well-known relation 

cv =- T(o 2F jaT2
). • (3.12) 

The free energy can be obtained from the equation of 
state by means of the relation 

r· 
(3•. 13) 

where our equation of state is Eq. (3. 8) corrected with 
the Maxwell construction. To obtain F, we integrate 
Eq. (3 .13) starting from a reference density p0$ p.(T) 
for values of T close enough to Tc. If we admit that 
F(p 0, T) is a continuous function of T we obtain 

fo · T-Tc-o• 

cv(Pc, T)- c)po, T)::::! (fkBa2/b; T- Tc- o·. (3. 14) 

This result shows that the compressibility equation of 
state in the PY approximation predicts a finite discon­
tinuity of the specific heat cv. Then, the critical expo­
nents a and a 1 take the classical value 0. 

IV. SUMMARY 

We have shown that the PY approximation with a LJ 
potential gives a purely classical behavior. The main 
result of this paper is Eq. (3. 8), which is formally 
equivalent to the one that could be obtained from the van 
der Waals equation. 

We want to emphasize the internal consistency of our 
method in the sense that we have only used the com­
pressibility equation of state (2. 2). Henderson and 
Murphy11 obtained the values of the critical exponents 

a and {3 by means of the energy equation of state (2. 3). 
Their reason for using Eq. (2. 3) was the great difficulty 
involved in the numerical solution of Eqs. (3.12) and 
(3.13), that would lead to significant errors. Our nu­
merical results allows us to write the equation of state 
near the critical point and, from it, the critical expo­
nents a and {3 can then be obtained by simple analytical 
calculations. 
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