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Nonlinear mass and momentum transport in a binary 
mixture subject to steady uniform shear flow has been re- 
cently analyzed.’ Diffusion is generated by the action of a 
constant external force (color field)2 that accelerates par- 
ticles of different “color” along opposite directions. The 
results were derived for a dilute gas in the context of the 
Boltzmann equation for Maxwell molecules by using the 
moment method. The relevant transport properties, 
namely the color conductivity tensor and the shear viscos- 
ity coefficient, were obtained. These transport coefficients 
turn out to be nonlinear functions of both the color field 
and the shear rate. 

From a computer simulation point of view, the color 
field algorithm’ seems to be an efficient alternative to mo- 
lecular dynamics methods based on the Green-Kubo for- 
mula for measuring the self-diffusion coefficient. Thus, in 
absence of shear rate, the self-diffusion coefficient can be 
defined as the zero-field limit of the color conductivity co- 
efficient. However, this agreement between both methods 
cannot be extended when the system as a whole is in a 
uniform shear flow state with arbitrary shear rate.1’3 In 
order to avoid the above discrepancy, a modified external 
field was suggested in Ref. 1. With this choice, and by 
using the Boltzmann equation for a dilute gas of Maxwell 
molecules, it was proved that the color conductivity tensor 
coincides with the generalized self-diffusion tensor4 in the 
limit of small color field. 

The aim of this Note is to analyze the general coupling 
between color and momentum transport under uniform 
shear flow in presence of the modified color field. Since we 
are interested basically in the influence of this force on the 
particle fluxes, here we will focus on the derivation of the 
color conductivity tensor for finite shear rate and color 
field strength. 

Let us consider a binary mixture of mechanically 
equivalent particles in steady uniform shear flow. Particles 
of color r (r= 1,2) are accelerated by the action of the 
color field 

9,= - kBTP* . E, . (1) 

Henceforth, we will generally use the same notation as in 
Ref. 1. The field strengths E, play the role of chemical 
potential gradients. In Eq. ( 1 ), P* is the reduced pressure 
tensor in the pure uniform shear flow. For Maxwell mole- 
cules, its non-zero components are’ 4”, = (1 + 3/?)/( 1 
+ D), qY = p*, = l/( 1 + p), and P$ = P$ = -a*/( 1 
+ p)2. Here, p = $ sinh*g cash-’ ( 1 + 9a**)], a* being 

the reduced shear rate, As said above, the color field F, 

defined by Eq. ( 1) leads to equivalent results for the self- 
diffusion and the color conductivity tensors in the limit of 
vanishing color field. This is not true in the usual color field 
method,1’2 where P* is replaced by the unity tensor. For 
arbitrary values of the shear rate, Eq. ( 1) takes into ac- 
count the anisotropy induced by the shear flow, since rr 
and E, are no longer parallel. 

Under the above conditions, the hierarchy of moments 
corresponding to the set of Boltzmann equations can be 
solved recursively in the particular case of Maxwell mole- 
cules. Further, it is straightforward to show that this set of 
Boltzmann equations can be obtained from the set given by 
z;s(2;19) and (2.20) of Ref. 1 by formally making the 

r + P* * E,. Therefore, the reduced conductivity 
tensor 4j can be written in the form 

(2) 

where y = 0.777. The parameter a* is defined through the 
following implicit algebraic equation: 

a*(l+a*)*(l+ya*)* 

X P*jfii$Et + 
l+y(1+2a*) 

Y 

Xa*[a*Si~k,-(l+U*)s~,l~j~~~ET, (3) 

where E* is the reduced color field strength. In the limit of 
large shear rate, a*~ ($) 1’3a*2’3. For large field strength, 
a* Z Y-‘(i~j~$jEl 1 * * I’*. On the other hand, in linear 
order in E*, Eq. (3) implies that a* = /3, and then Eq. (2) 
gives the shear-rate dependent self-diffusion tensor.4 

The solution of Eq. (3) gives a* for arbitrary a* and 
E*. Here, in order to compare with the results of Ref. 1, we 
choose the case e,* = +$ = 0. In Fig. 1 , we have plotted 
some of the components of flj as functions of e** for 
u* = 1. We observe that the diagonal components decrease 
as the color field increases. On the other hand, we have 
verified that, for a given value of the field strength, an 
increasing in the shear rate gives rise to an increasing of 
a*, and to a decreasing of o$ and the trace CJ& The influ- 
ence of the shear rate on the off-diagonal component u!& is 
much less noticeable. 

The behavior of ej as a function of Ebb is similar to 
that of the color conductivity tensor q derived in Ref. 1 . 

J. Chem. Phys. 98 (a), 15 April 1993 0021-9606/93/086569-02$06.00 @ 1993 American Institute of Physics 6569 



6570 Letters to the Editor 

0.00 ~ 
0 2 4 6 8 10 

FIG. 1. Plot of some components of the reduced color conductivity tensor 
4j vetsus the reduced field strength square ic* for u* = 1: d*, (-); 
tin (---); - o$), (- - -). 

Nevertheless, both tensors have different qualitative fea- 
tures. In particular, a*, > Pm = qY = p*, > a*, = s*, and 
a*, < &$ < o$ < TX = 0. In order to perform a more de- 
tailed comparison between both quantities, we define the 
functions A, = ($j/qj) - 1. Figure 2 shows - A,, 
AY,, , and - A, as functtons of Ebb for a* = 1. In the range 
of field strengths considered, the relative deviation A,,,, is 
less sensitive to the value of e** than A, and AXu . In fact, 
in the limit of large e**, one has - A, z 0.40, A,,,, z 0.24, 
and- A,=: 1. 

In summary, the adequate choice of a shear-rate de- 
pendent color field yields a color conductivity tensor that 
reduces in the zero-field limit to the generalized self- 
diffusion tensor. In addition, for nonzero shear rate and 
any value of the field strength, the discrepancy between the 
conductivity tensor obtained here and the one derived from 
the original choice of the color field is quite remarkable. 
Finally, although the exact results reported in this Note 
have been obtained from the Boltzmann equation for Max- 
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FIG. 2. Plot of some components of the tensor A, versus the reduced field 
strength square E** for a* = 1: - A, (-); Ayy (- - -); - A, (- - -). 

well molecules, we think that the color field algorithm 
based on the use of the force defined by Eq. ( 1) could lead 
to the self-diffusion tensor even in the regime of dense 
fluids. In this context, it would be very interesting to carry 
out computer simulations in order to check the above con- 
jecture. 
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