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We study in this work steady laminar flows in a low-density granular gas modelled
as a system of identical smooth hard spheres that collide inelastically. The system
is excited by shear and temperature sources at the boundaries, which consist of
two infinite parallel walls. Thus, the geometry of the system is the same that
yields the planar Fourier and Couette flows in standard gases. We show that it
is possible to describe the steady granular flows in this system, even at large
inelasticities, by means of a (non-Newtonian) hydrodynamic approach. All five
types of Couette—Fourier granular flows are systematically described, identifying the
different types of hydrodynamic profiles. Excellent agreement is found between our
classification of flows and simulation results. Also, we obtain the corresponding
nonlinear transport coefficients by following three independent and complementary
methods: (i) an analytical solution obtained from Grad’s 13-moment method applied to
the inelastic Boltzmann equation; (ii) a numerical solution of the inelastic Boltzmann
equation obtained by means of the direct simulation Monte Carlo method; and (iii)
event-driven molecular dynamics simulations. We find that, while Grad’s theory does
not describe quantitatively well all transport coefficients, the three procedures yield the
same general classification of planar Couette—Fourier flows for the granular gas.
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1. Introduction

There have been in the recent years a large number of studies on the dynamics
of granular gases, where ‘granular gas’ is a term used to refer to a low-density
system of many mesoscopic particles that collide inelastically in pairs. Owing to
inelasticity in the collisions, the granular gas particles tend to collapse to a rest
state, unless there is some kind of energy input. In particular, Goldhirsch & Zanetti
(1993) showed that clustering instabilities spontaneously appear in a freely evolving
granular gas. Nevertheless, most situations of practical interest involve an energy input
to compensate for the energy loss and sustain, in some cases, the ‘gas’ condition of
the granular system. This type of problem has been studied extensively, giving rise
to a subfield of granular dynamics: ‘rapid granular flows’ (Jenkins & Savage 1983;
Wang, Jackson & Sundaresan 1996; Goldhirsch 2003; Aranson & Tsimring 2006).
Furthermore, it has been shown that rapid granular flows can attain steady states, some
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of which, under appropriate circumstances and for simple geometries, can give rise to
laminar flows, in the same way as a regular gas does (see, for instance, the work by
Tij et al. 2001, on Couette granular flows). The question arising (Goldhirsch 2003) is,
what is the appropriate theoretical approach to study these granular flows?

Let us start with classical non-equilibrium statistical mechanics for an ideal gas
described by the Boltzmann equation (Chapman & Cowling 1970). As is well known,
the equilibrium velocity distribution function f(r,v;t) for an ordinary (i.e. elastic)
gas is the Maxwell-Boltzmann distribution (Huang 1987). For non-equilibrium states,
however, the solution of the Boltzmann equation is generally not known. On the
other hand, in some cases, there exist special solutions where all of the space and
time dependence of f(r,v,f) occurs only through a functional dependence on the
average fields n (density), u (flow velocity) and T (temperature) associated with the
conserved quantities (mass, momentum and energy) (Chapman & Cowling 1970). This
type of solution is called a normal solution of the Boltzmann equation (Cercignani
1988). As a consequence, the momentum and heat fluxes are also functionals of the
hydrodynamic fields and thus the balance equations become a closed set of equations
for those fields. Therefore, the normal solutions of the Boltzmann equation yield a
hydrodynamic description (Haff 1983), since the closed set of equations is actually
formally similar to the traditional fluid mechanics equations (Chapman & Cowling
1970). In practice, what we have got is a transition from a microscopic description
(based on the distribution function) to a macroscopic description (based on the average
fields) (Hilbert 1912).

When the strength of the hydrodynamic gradients is small, the above functional
dependence of the non-uniform distribution function f on n,u,T can be constructed
by means of the Chapman-Enskog method (Chapman & Cowling 1970), whereby f is
expressed as a series in a formal parameter €:

F=fO 4 f0e 4 @24 (O3 4. (1.1)

The parameter € indicates the order in the spatial gradients of the average fields, scaled
with the inverse of a typical microscopic length unit (mean free path, for instance).
If terms up to only first order in the gradients are considered (f ~ f© + f(¢), the
mass, momentum and energy balance equations are the well-known Navier—Stokes
(NS) equations of fluid mechanics (Chapman & Cowling 1970; Cercignani 1988). This
approach is accurate for problems where the spatial gradients are sufficiently small.
For not so small gradients, terms up to second-order in the gradients need to be
considered, and we obtain the Burnett equations (Burnett 1935), used for instance in
rarefied gases (Montanero et al. 1998, 1999; Agarwal, Yun & Balakrishnan 2001).
For both NS and Burnett equations, the expressions for the fluxes include a set of
parameters called ‘hydrodynamic transport coefficients’.

Regarding the granular gas, and from a theoretical point of view, it makes sense in
principle, due to the system’s low density, to derive the dynamics from a closed kinetic
equation for the distribution function of a single particle, in an analogous way to the
standard gas (Goldhirsch 2003), i.e. it is assumed that pre-collisional velocities are
not statistically correlated (or, at least, that their correlations are not important). Thus,
the corresponding kinetic equation is analogous to the Boltzmann equation but with
the modification that inelasticity introduces in the collision integral part (Brey et al.
1998; Goldhirsch 2003). We may call this modified version of the Boltzmann equation
‘inelastic Boltzmann equation’ (Brey et al. 1998; Goldhirsch 2003). In addition, if
we assume the existence of a normal solution to the inelastic Boltzmann equation, a
hydrodynamic description analogous to that described above for an elastic gas results
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for a granular gas, i.e. transport coefficients and a set of hydrodynamic equations may
be derived. This is obviously a question of much interest in the description of transport
properties of large sets of grains at low density.

However, due to the coupling between spatial gradients and inelasticity in steady
states (Sela & Goldhirsch 1998; Santos, Garzé & Dufty 2004), the collisional cooling
sets the strength of the spatial gradients and thus scale separation might not occur
(i.e. gradients might not be small), except in the limit of quasi-elastic collisions (Vega
Reyes & Urbach 2009). Therefore, NS or Burnett hydrodynamics would only be
expected to work well for steady granular flows in the quasi-elastic limit. Nevertheless,
some recent works have found that a non-Newtonian hydrodynamic description of
planar laminar flows, beyond Burnett order, is still possible for moderately large
spatial gradients, even for large inelasticity (Tij et al. 2001; Santos, Garz6 & Vega
Reyes 2009; Vega Reyes, Santos & Garzé 2010; Vega Reyes, Garzé & Santos
2011a). Actually, it is not surprising that a generalized hydrodynamic description
of the Boltzmann inelastic equation works in rapid granular flows, even for moderately
large gradients, since this is also possible when strong gradients occur in elastic gases
(Agarwal et al. 2001; Garz6 & Santos 2003). We have pointed out previously that
this implies that hydrodynamics for granular gases is a generalization of classic
hydrodynamics for elastic gases. Furthermore, a special class of flows has been
recently found in a unified hydrodynamic description valid for elastic and inelastic
gases (Vega Reyes et al. 2010, 2011a). Thus, the only formal difference between
transport theory for granular and ordinary gases would emerge not from the limitations
due to scale separation but from the possible influence of statistical correlations arising
from memory effects due to inelasticity. In fact, there is a number of works showing
velocity correlations in systems of inelastic particles (for instance, see the work by
McNamara & Luding 1998; Soto & Mareschal 2001; Soto, Piasecki & Mareschal
2001; Pagonabarraga et al. 2002; Prevost, Egolf & Urbach 2002; Brilliantov et al.
2007) and elastic particles (Schlamp & Hathorn 2007). This statistical effect would
have its origin at the more fundamental level of the kinetic equation (the inelastic
Boltzmann equation). Put in other words, if the Boltzmann inelastic equation is to
be valid, hydrodynamic solutions for steady granular flows arising from it should
work, as has been previously shown by different authors (Alam & Nott 1998; Tij
et al. 2001; Vega Reyes et al. 2010). As a matter of fact, the inelastic Boltzmann
equation has been used, with good results, as the starting point in an overwhelming
number of studies on rapid granular flows (Goldhirsch 2003; Aranson & Tsimring
2006). In addition, good agreement has also been shown, for a variety of rapid
granular flows, between hydrodynamic theory (stemming from the inelastic Boltzmann
equation) and molecular dynamics results (in which the velocity statistical correlations
would be inherently present, see the works by Dahl et al. (2002), Lutsko, Brey &
Dufty (2002), Prevost et al. (2002), Alam & Luding (2003) and Montanero et al.
(2006). Furthermore, in the case of the special class mentioned before, the agreement
of molecular dynamics results with (Grad’s) hydrodynamic theory is excellent (Vega
Reyes et al. 2010, 2011a).

A considerable amount of work has been devoted to systematic calculations of
hydrodynamic transport coefficients for granular gas systems, with different degrees of
approach in the perturbative solution of the non-uniform distribution function (Brey
et al. 1998; Sela & Goldhirsch 1998; Nott er al. 1999; Goldhirsch 2003; Alam
et al. 2005). However, the derivation of non-Newtonian transport coefficients in simple
laminar flows has been probably not as systematic as for the case of NS transport
coefficients.
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FIGURE 1. Schematic view of the system subject of study. The granular gas is heated and
sheared from two infinite parallel walls. Walls are located at y = £/ /2 and have temperatures
T. and velocities UL, respectively.

The main goal of this paper is the systematic derivation, by means of a non-
Newtonian hydrodynamic approach, of the steady profiles for laminar granular flows in
the simple geometry of two infinite parallel walls containing the gas. More specifically,
shear and energy are input from the walls (see figure 1). In the theoretical approach
we assume that: (i) the hydrostatic pressure p is constant; (ii) the reduced shear rate
a (i.e. the ratio between the local shear rate and the local collision frequency) is also
constant; (iii) the shear stress is independent of the granular temperature gradient 9,7
whereas (iv) the heat flux g, is proportional to 9,7. As we will see, the resulting
classification of profiles is formally analogous to that found for NS hydrodynamics
in the quasi-elastic limit (Vega Reyes & Urbach 2009), except that the constitutive
relations are nonlinear. This classification is done based on the signs of 9,(7"/%3,T)
and BfT. As we will show, both signs remain constant throughout the system and are
related to the competition between viscous heating and inelastic cooling. Moreover, the
sign of 87T is also governed by the wall temperature difference. In the case of elastic
collisions, only the viscous heating effect is present and so 9,(T"/?9,T) < 0, which
implies 83T < 0 (Garzé & Santos 2003). Therefore, the general classification is only
relevant for granular gases and, consequently, the case of ordinary gases is embedded
as a particular case.

The hypotheses (i)—(iv) are sensible for a number of reasons. First, they have shown
a good agreement with computer simulations in previous works on Couette granular
gas flows in the particular case 9,(T"/?3,T) <O (Tij et al. 2001). In addition, there
exists a special class of flows, including both elastic and inelastic flows (Santos et al.
2009; Vega Reyes & Urbach 2009; Vega Reyes et al. 2010, 2011a), characterized
by 9,(T"?8,T) = 0. This special class defines a surface in the three-parameter space
conformed by inelasticity (represented by the coefficient of normal restitution «),
reduced shear rate and thermal gradient, as shown in figure 2. It is called the ‘LTw’
surface since this class of flows is characterized by having linear T'(u,) profiles (Vega
Reyes et al. 2010, 2011a). The LTu surface splits the parameter space into two regions:
the first region (above the LTu surface in figure 2 and labelled XTu) corresponds to
8),(T‘/28yT) < 0 (i.e. viscous heating overcomes inelastic cooling), while the second
region (below the LTu surface) has 9,(T"/?9,T) > 0 (i.e. inelastic cooling dominates).
As we will see, the region below the LTu surface can also be split into two subregions
(labelled CTu/XTy and CTy), depending on the sign of BfT, separated by a surface
where BfT = 0. The latter surface is called ‘LTy’ here because it corresponds to states
where 7'(y) is a linear function. To the best of our knowledge, the regions below the
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FIGURE 2. (Colour online) Each point of this diagram represents a steady-state
Couette—Fourier flow defined univocally by the set of parameters §7* (difference between
the temperatures at the top and bottom fluid layers, divided by the wall separation), a (reduced
shear rate) and « (coefficient of restitution), the first two being determined from the boundary
conditions. The surface with the label LTu defines the class of states where the temperature
T is a linear function of the flow velocity u,, while the surface labelled as LTy (below the
LTu surface) defines the class with a linear profile 7(y). Both surfaces intersect in the line
representing the uniform shear flow (USF), located in the §7* = 0O plane. In addition, the
LTu surface contains the line corresponding to Fourier flows for ordinary gases (represented
by the §T* axis, i.e. a =0 and o = 1). The point §7* =0, a =0 and @ = | (not visible in
the diagram) represents the equilibrium state of an ordinary gas. Note that, whereas the LTu
surface has points for all values of §7*, the LTy surface has an upper bound of §7* which
occurs at a = 0 for each «. The LTu and LTy surfaces split the space into three regions: XTu,
CTu/XTy and CTy (see § 5.3).

LTu surface have not been explored before for a # 0, except in the NS description
(Vega Reyes & Urbach 2009). All other studies below the LTu surface have been
restricted to the plane a =0 in figure 2 (see, for instance, the works by Grossman,
Zhou & Ben-Naim (1997), Brey & Cubero (1998) and Brey, Ruiz-Montero & Moreno
(2000)). The most prominent result in studies for the a = 0 plane is perhaps the finding
of LTy states (Brey et al. 2001; Brey, Khalil & Ruiz-Montero 2009; Brey, Khalil &
Dufty 2011, 2012), which are represented in figure 2 by the intersection curve between
the LTy surface and the plane a = 0.

Our purpose is now to extend results obtained in previous works by providing a
comprehensive description of granular/elastic Couette—Fourier gas flows, as depicted in
figure 2. For instance, by determination of the LTy surface we get to connect the LTy
states for a = 0 found by Brey et al. (2001) with the well-known uniform shear flow
(USF, also referred to as ‘simple shear flow’; see for instance the works by Campbell
(1989)), within the same theoretical frame. We will follow three complementary routes.
First, we will undertake a theoretical description based on Grad’s 13-moment method
(Grad 1949). Second, we will obtain results from two independent simulation methods,
the direct simulation Monte Carlo (DSMC) method, from which a numerical solution
of the inelastic Boltzmann equation is obtained, and event-driven molecular dynamics
(MD) simulations, which solve Newton’s equations of inelastic hard spheres. As we
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will show, both simulation techniques support the classification of states mentioned
before (and sketched in figure 2). Moreover, the non-Newtonian transport coefficients
obtained from the approximate Grad solution agree reasonably well with simulations.

The structure of this work is as follows. In §2 we describe in more detail the
system under study and write the corresponding kinetic and average balance equations.
For the sake of completeness, the solution at the NS level is briefly recalled in
§ 3. Next, the theoretical Grad’s solution is derived in §4. In §5 the assumptions
(1)—(iv) referred to above are introduced and the associated classification of states is
worked out. In §6 we briefly describe the computational methods and compare the
simulation results with Grad’s theory. Finally, we conclude the paper with a summary
and discussion in § 7.

2. Boltzmann kinetic theory and general balance equations

The system we study is depicted in figure 1. It is bounded by two infinite parallel
walls from where we input energy to a granular gas enclosed in between. The energy
is input by heating (both walls are in general at different temperatures) and, optionally,
shearing (walls may be moving at different velocities). The granular gas is composed
by a large number of inelastic smooth hard discs/spheres (inelastic because kinetic
energy is not conserved during collisions). We consider a set of discs/spheres that is
sufficiently sparse at all times, i.e. the rate at which energy is input is always intense
enough so that kinetic energy loss in collisions will not cause the system to ‘freeze’
or ‘collapse’ (so ‘inelastic collapse’ does not occur; see, for instance, Goldhirsch &
Zanetti (1993) and Kolvin, Livne & Meerson (2010)). By sufficiently sparse we mean
that we deal with a gas in the kinetic theory sense: collisions are only binary and
instantaneous (time during collisions is very short compared with the typical time
between consecutive collisions). We consider also that their pre-collision velocities are
statistically uncorrelated (‘molecular chaos’ assumption). Therefore, in the absence
of external forces, we will assume that the velocity distribution function of the
system obeys the inelastic Boltzmann kinetic equation (Brey et al. 1998; Brilliantov &
Poschel 2004)

0
<8t+v-V>f(r,v; 1 =J|f,fl. (2.1)

with J being the collisional integral, whose expression is

Tl 1= o /dvz/d(/f@ (&-0) (g-0) [0 (r vy f (r, V3 0)
—f@r,v; Df(r, vy 0], (2.2)

where d is the dimensionality, o is the diameter of a sphere, ® (x) is Heaviside’s step
function, & is a unit vector directed along the line joining the centres of the colliding
pair, g =v; — v, is the relative velocity and {v;, v,} and {v], v,} are post-collisional
and pre-collisional velocities, respectively. As we see in (2.2), J[v,|f,f] depends
on the parameter «, which characterizes inelasticity in the collisions and is called
coefficient of normal restitution (Brey et al. 1998; Goldhirsch 2003). The (restituting)
collisional rules for a pair of colliding inelastic smooth hard discs/spheres is

vi=v—3(1+a') (@90, (2.3a)
vy=v+3(1+a')(@-g)0. (2.3b)
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The first d + 2 velocity moments of f(r, v; ¢) define the number density n(r, t), the
flow velocity u(r, f) and the granular temperature 7'(r, t) as

n= / dvf(), 2.4)
nu = /dv vf (v), 2.5
nT = % / dv V2 (v), (2.6)

where V = v — u is the peculiar velocity and m is the mass of a particle.
Mass, momentum and energy balance equations are obtained by multiplying both
sides of (2.1) by 1, v, v? and integrating over velocity. The results are

Dn=—nV -u, 2.7)
1
Du=—-——V.P, (2.8)
mn
2
D,T+§T=—d—(P:Vu+V-q). 2.9)
n
In the above equations, D, = 9, + u - V is the material derivative,
P=m / dv VVf(v) (2.10)
is the pressure tensor,
m 2
=7 dv V7Vf(v) (2.11)
is the heat flux vector and
{=— / dv vl £, f] (2.12)
- dnT ’ '

is the cooling rate characterizing the rate of energy dissipated due to collisions.

Next, we consider the steady base states that may be generated from energy input in
our geometry. Independently of the nature of the boundary conditions, and if there is
no pressure drop source or gravitational field in the horizontal directions (which may
generate Poiseuille flows; see for example the recent works by Tij & Santos (2004),
Santos & Tij (2006) and Alam & Chikkadi (2010)), the spatial dependence of these
steady base states will occur only in the coordinate y, perpendicular to both walls (we
call it the vertical direction). Moreover, the flow velocity is expected to be parallel
to the walls, i.e. u(y) = u,(y)e,. Consequently, the Boltzmann equation (2.1) for these
reference steady states can be rewritten as

af
vy L = JIf, f] (2.13)
dy
and the balance equations have the simple forms
Py 0 Py,

8y_’ dy

2/ ou 9
— (P, ) — T (2.15)
dn ay ay

=0, (2.14)
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Owing to the symmetry of the problem, all of the off-diagonal elements of the
pressure tensor different from P,, vanish and, in principle, the two shear-flow plane
diagonal elements (P, and P,,) are different whereas the remaining d — 2 diagonal
elements orthogonal to the shear-flow plane are equal. The latter property implies that
P, + P,, + (d — 2)P., = dp, where p = nT = d~'TrP is the hydrostatic pressure.

3. Navier-Stokes description

The balance equations (2.14) and (2.15) are exact and do not assume any particular
form for the constitutive equations. However, they do not constitute a closed set of
equations for the hydrodynamic fields.

The simplest approach to close the problem is provided by the NS constitutive
equations, which, in the geometry of the planar Couette—Fourier flow read (Brey et al.
1998; Brey & Cubero 2001)

Py=P,=P, =p, 3.1

. ou,
Py = —nonNs(a)afy, (3.2)
q, =0, 3.3)

. oT T ., on
qy = —)\OKNS(Ol)a*y - ko;MNs(a)af)f (3.4
In (3.2) and (3.4),

d+2

no=~mTc,Aga™ "V, Ay= %r (d/2)m =172, (3.5)

is the NS shear viscosity for elastic gases (Grad 1949; Chapman & Cowling 1970) and

_dd+2)cino

T 2d—-1e,m (3-:6)

0
is the NS thermal conductivity for elastic gases (Grad 1949; Chapman & Cowling
1970). In (3.5) and (3.6), the factors ¢, and c; take the values ¢, = 1.022, ¢, =1.029
for hard discs (d =2) and ¢, = 1.016, ¢, = 1.025 for hard spheres (d = 3) (Burnett
1935; Chapman & Cowling 1970). Finally, nys, «ys and uyg are the reduced
NS transport coefficients of a dilute granular gas, whose expressions are given in
appendix A. In (A 1)-(A3),

* _d+2 _ 2
¢ (Ot)—Td (1 —a%) (3.7)

represents the ratio between the cooling rate ¢ and an effective collision frequency
defined as

P
o

Vv

(3.8)

Note that v oc nT'/? and thus it depends on y.

Now we combine the NS constitutive equations with the three balance equations
(2.14) and (2.15). First, the exact property P,, = const, together with (3.1), implies
that the hydrostatic pressure is uniform. Next, the exact property P,, = const, together
with (3.2), implies that the product ny0du,/dy = const. These two implications can be
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combined into a = const, where

1 0u,
a=—
v dy

3.9)

is the reduced shear rate. Finally, we consider the energy balance equation (2.15). First,
since p = const, (3.4) can be rewritten as

oT
qy = _)\kals(a)afyv Avs = Kns — Mus- (3.10)

Next, using the properties P,, = const, p = const and a = const in (2.15), one has
v~'9g,/dy = const. This, together with (3.10), yields

10 /10T
- () = —2myps(a, a), (3.11)
vy \v dy
where
d
d—1 Ms@a® — §§*(Ol)
yas(a, a) = 3.12)

dd+2) Ans(a)

Therefore, the NS description, as applied to the Couette—Fourier flow, predicts that
the hydrostatic pressure p = n7T, the reduced shear rate (3.9) and the second-order

derivative (v‘lay)zT are uniform. A detailed account of this NS description was
presented by Vega Reyes & Urbach (2009).

4. Non-Newtonian description: Grad’s 13-moment method

The results derived in § 3 are restricted to small spatial gradients. Thus, they do not
capture non-Newtonian effects, such as normal stress differences (i.e. Py # Py, # P..)
and a non-zero component of the heat flux orthogonal to the thermal gradient (i.e.
qx # 0). Those effects are expected to be present in the solution of the Boltzmann
equation beyond the quasi-elastic limit (Sela & Goldhirsch 1998).

The aim of this section is to unveil those non-Newtonian properties by solving
the set of moment equations derived from the Boltzmann equation by Grad’s 13-
moment method (Grad 1949). In this method, the velocity distribution function f is
approximated by the form

m 4 mV?  d+2
14+ —— [(P; — pd;) ViV; - v ’ 41
f—>fo{ +2nT2 [(/ 1?/) f+d+2<2T 2 > q]} @b

where

a2
fo=n(g) e “2)
T

is the local equilibrium distribution. The number of moments involved in (4.1) is
d(d + 5)/2 + 1, which becomes 13 in the three-dimensional case. The coefficients in
Grad’s distribution function have been obtained by requiring the pressure tensor and
heat flux of the trial function (4.1) to be the same as those of the exact distribution f.
The Grad distribution (4.1) can be interpreted as the linearization of the maximum-
entropy distribution constrained by the first d(d + 5)/2 + 1 moments (Kremer 2010).
From that point of view, it is not guaranteed a priori that it is quantitatively
accurate for large deviations from the local equilibrium distribution. Moreover, an
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extra isotropic term associated with the fourth velocity moment can also be included
(Sela & Goldhirsch 1998). However, here we consider the minimal version of Grad’s
method, restricting the number of non-Maxwellian parameters to the stress tensor and
the heat flux vector, since extra terms do not significantly increase accuracy.

According to the approximation (4.1), one has

1

— /dv ViViVif - ——= ) ((]i5jk + q;éu + qkaij) , (4.3)
d+4

/dv VAV, V,f — ﬂ <;P p(s,-,) . (4.4)

In addition (Brey et al. 1998; Brey & Cubero 2001; Garz6 & Montanero 2002; Vega
Reyes et al. 2011a),

m / QW VVITf1— —v [Br (Py—pdy) + Py @.5)

m ) d—1

3 /dv VVIIf, f1—> —v B9, (4.6)
where, as usual, terms nonlinear in P; — p§; and g have been neglected. On the other
hand, the quadratic terms have been retained in some other works (Herdegen & Hess
1982; Tsao & Koch 1995). In (4.5) and (4.6), the collision frequency v is given by
(3.8) (and taking into account (3.5)) with ¢, = 1. Also, ¢* =¢ /v, B; and B, are given
by (3.7), (A4) and (AS), respectively.

The relevant moments in our system are p, T, u,, Py, Py, Py, g, and gq,. The
exact balance equations (2.14) and (2.15) are recovered by multiplying both sides of
(2.13) by V,, V, and V? and integrating over velocity. In order to have a closed set
of differential equations, we need five additional equations, which are obtained by
multiplying both sides of (2.13) by V.V,, Vi, V;, V?V, and V?V, and applying the
approximations (4.3)—(4.6). The results are

2
masqx + Pyyasux = - (ﬂl + C*) ny» (47)
2
mas%z + 2Px}'asux = _:31 (Pxx _p) - g*PAxv (48)
masqy = —pi (Pyy _P) — §"Pyy, (4.9)
a'+4a TP +d+4 5 d_l,B 4.10)
2 “\m d4 o bote= T P '
T (d+4 2 d—1
0, P TPW_p d 2qxasux— 7 — B, “4.11)

where we have introduced the spatial scaled variable s(y) by
ds=v(y)dy. 4.12)

Note that ds/+/2T(y)/m measures the elementary vertical distance dy in units of the
(nominal) mean free path /27(y)/m/v(y) . Therefore, the scaled variable s(y) has
dimensions of speed. Its limit values are deduced from integration of (4.12), taking
into account that the limit values of y are y = +h/2.
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It must be stressed that in (4.7)-(4.11) the only assumptions made are the
stationarity of the system, the geometry and symmetry properties of the planar
Couette—Fourier flow and the applicability of Grad’s method.

The exact momentum balance equations (2.14) imply that P,, = const and P,, =
const. Moreover, if one assumes that p = const, equation (4.9) yields 9,q, = const.
Next, the exact energy balance equation (2.15) implies that the reduced shear rate
a = o;u, defined by (3.9) is also constant (recall that ¢* = ¢ /v = const). Taking all
of this into account, we get that d,q, = const and P,, = const from (4.7) and (4.8),
respectively. Finally, (4.10) and (4.11) imply that both g, and g, are proportional to the
thermal gradient d,7. As a consequence, 8S2T = const.

Since the pressure p, the shear stress P,, and the shear rate a = vila,,ux are constant,
it follows that the ratio P,,/ny0,u, is also constant (recall that ny = p/v). That ratio
defines a (reduced) non-Newtonian shear viscosity coefficient n*(«, a) by

ou,
ny = —77077*(05, (l) 9 . (4]3)
Analogously, the fact that g, o 9,T, together with the relationship Ay « p/v, allows us
to define a (reduced) non-Newtonian thermal conductivity coefficient A*(«, a) by

oT
qy = —AoA (o, a)—. (4.14)
7 ay

Equations (4.13) and (4.14) can be seen as generalizations of Newton’s and Fourier’s
law, (3.2) and (3.10), respectively, in the sense that the reduced transport coefficients
n* and A* are nonlinear functions of the shear rate a and thus they differ from the NS
coefficients ny, and Ay of a granular gas (Brey et al. 1998). It is important to note
that, due to the coupling between collisional cooling and gradients in steady states
(Brey & Cubero 1998; Santos et al. 2004), the generalized transport coefficients do not
reduce to the NS coefficients in the absence of shearing (a = 0). In fact, at equal wall
temperatures and in the absence of shearing, an autonomous thermal gradient appears
in the system that is controlled by inelasticity only, so that A*(«, 0) differs from the
NS quantity Ayg(c).

It is interesting to remark that, among the hypotheses (i)—(iv) described in § 1, only
the p = const hypothesis is needed in the framework of Grad’s set of equations.

Apart from the generalized coefficients n* and A*, departures from Newton’s and
Fourier’s laws are characterized by normal stress differences and a component of
the heat flux orthogonal to the thermal gradient. These effects are measured by the
(reduced) directional temperatures

P. P,
Gx(a7 Cl) = ev(a, Cl) = is (415)
p ’ p

and by a cross-conductivity coefficient ¢* defined as

i} aT
qx = hod"(a, a) —. (4.16)
dy

Equation (4.15) is consistent with the fact that the diagonal elements of the
pressure tensor (i.e. the normal stresses) are uniform, while (4.16) is consistent
with 9,g, = const. The parameters 6, and 6, account for the distinction between the
diagonal elements (P, and P,,) of the pressure tensor from the hydrostatic pressure
p =[Pu + Py, + (d — 2)P,]/d. Moreover, ¢* characterizes the presence of a heat flux
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component ¢, induced by the shearing. These three coefficients are clear consequences
of the anisotropy of the system created by the shear flow. Note that, by symmetry, the
coefficients n*, A* and 6; are even functions of the shear rate a, while ¢* is an odd
function.

Inserting (4.13) into the (exact) energy balance equation (2.15), it is straightforward
to obtain

19g,  dd+2)

—-—— = A (a, ,a), 4.17
I (@, a)y (@, ) (4.17)
with
d—1 n*(a,a)d® —(d/2)§* (@)
,a) = . 4.18
vl a =i () a) (4.18)
Using (4.14), equation (4.17) yields
19 /10T
—— | —— ) =-2my(a, a). (4.19)
vay \ v dy

The technical steps needed to derive the transport coefficients n*, A*, 6,, 6, and ¢*,
as well as the thermal curvature parameter y, in the framework of Grad’s method are
worked out in appendix B.

In summary, we have shown that Grad’s 13-moment method to solve the Boltzmann
equation is consistent with the general assumptions made in § 1. Moreover, explicit
expressions for the generalized non-Newtonian transport coefficients are derived. On
the other hand, given the approximate character of Grad’s method, a more quantitative
agreement with computer simulations is not necessarily expected.

5. Generalized non-Newtonian hydrodynamics
5.1. Basic hypotheses

Sections 3 and 4 show that the exact balance equations (2.14) and (2.15) allow for a
class of base-state solutions characterized by the following features:

(i) the hydrostatic pressure p is uniform;
(ii) the reduced shear rate defined by (3.9) is uniform;

(iii) the shear stress P,, is a nonlinear function of a but is independent of the thermal
gradient 9,7; and

(iv) the heat flux component g,, properly scaled, is linear in the reduced thermal
gradient but depends nonlinearly on the reduced shear rate a.

As shown before, in the NS description properties (i)—(iv) are a consequence of
the constitutive equations themselves, while in the Grad description one only needs to
assume point (i) and then the other three points are derived.

It is important to remark that hypotheses (iii) and (iv) are fully consistent with
the Burnett-order constitutive equations in the Couette—Fourier geometry; taking into
account the general structure (Chapman & Cowling 1970) of the Burnett contribution
to the shear stress, P(z), and to the heat flux, qQ), it is straightforward to check that

P(z) = q(z) =0if Viu;=20 ux(S,y(SJX, V.T =0,Té;, and V,p = 9,pé;,.
The aim of this section is to assume the Valldlty of hypotheses (i)—(iv) in the bulk
domain of the system (i.e. outside the boundary layers) and analyse the different

classes of base states that are compatible with them. In doing so, we are assuming that
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the Boltzmann equation admits for solutions which, in the bulk domain of the system,
are essentially in agreement with (i)—(iv), beyond the NS or Grad’s approximations.
Previous results obtained for ordinary (Garzé & Santos 2003) and granular (Tij et al.
2001) gases support the above expectation.

Assumptions (iii) and (iv) can be made more explicit by (4.13) and (4.14),
respectively, where the generalized transport coefficients n*(«, a) and A*(«, a) have
not necessarily the explicit forms provided by Grad’s solution. The same can be said
about (4.15) and (4.16). Moreover, from the energy balance equation (2.15) one can
again derive (4.17)—(4.19), provided that the possible spatial dependence of the ratio
* =¢ /v due to higher-order gradients is discarded. This assumption is supported by
kinetic theory calculations (Brey et al. 1998) and simulations (Tij et al. 2001; Astillero
& Santos 2005).

According to the assumption p = nT = const, the collision frequency defined by
(3.8) has the explicit form

pod+!
Jmey, Ay

and thus (4.17) implies that the product T'/2d,q, is uniform. Moreover, the sign of
dyq, is determined by that of the coefficient y. Equivalently, in view of (4.19), the
parameter y has a direct influence on the curvature of the thermal gradient.

We see from (4.18) that the main difference between y for elastic and inelastic
gases is the absence or presence of the term proportional to ¢*, respectively. In both
cases (i.e. £*=0 or ¢* > 0), y is constant. On the other hand, while y is positive
definite in the elastic case, its sign results from the competition between viscous
heating (n*a*) and inelastic cooling (d¢*/2) in the inelastic case. As a consequence, as
we will show below, inelasticity spans a more general set of solutions, which includes
the elastic profiles as special cases (Vega Reyes & Urbach 2009).

v=KT"'? K= (5.1

5.2. Properties of the hydrodynamic profiles
In terms of the scaled spatial variable s defined by (4.12), Equations (3.9) and (4.19)
take the following forms
ou,
as

=a, 5.2)

0°T
— = —2my(a, a). (5.3)
52
From (5.2) and (5.3), it is straightforward to obtain analytical solutions, in terms of the
scaled variable:

u(s) =as + C, (5.4)
T(s) = —my (, a)s* + As + B, (5.5)

where A, B, C are integration constants. Please note that integration of the differential
equations (5.2) and (5.3) is done independently of the nature of the boundary
conditions. We may set C =0 by a Galilean transformation. The constants B and
A represent the values of T and o,T, respectively, at a reference point s = 0. Therefore,
since it is always possible to choose the point s = 0 within the physical region,
henceforth we can take B > 0 without loss of generality. Note that (5.4) and (5.5)
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imply that T is also quadratic when expressed as a function of u, or, equivalently,

9T ,
- —zm”(o‘2 Y. (5.6)

2
dus a

Taking into account the definition of s and (5.1) (with K = const), we may write the
derivative 8] T in the natural variable y in terms of 3,7 and ;T as

3T d aT PT 1/aT\’
— =K1V TV =K T | T——=— ) |. (5.7)
9y? as s 9s2 2\ 0s
By using (5.5), one gets
o’T
KT 20 (w, a), (5.8)
0y?
where @ is also uniform and is defined by
@ (a,a) = —2mBy (a, a) — 1A%, (5.9)

In the same spirit as in (5.6), the parameter @ can be conveniently expressed as

FOT 1 (3T>2 _ P(a,a)

BT@_E o, a?

In contrast to y, the quantity @, which measures directly the curvature of the
thermal profile, is determined not only by the shear rate and the inelasticity, but also
by the temperature boundary conditions through B and A. Similarly, from the identity
0T = KT~'23,T and (5.5), it is straightforward to obtain

. (5.10)

aT\> ,
T<8y) = —2K“(® 4+ 2mTvy). (5.11)
This implies that @ is upper bounded: @ < —2mTy. For y > 0, one has @ <
—2mT 0y, while @ < 2mT,,,|y| for y < 0. Here, T,,, and T,,;, are the maximum and
minimum values, respectively, of the temperature in the system. Another interesting
consequence of (5.11) is that, according to the constitutive equation (4.14), qi is a
linear function of 7

. P d+2)°pPar?
Y 2(d—1)7 m?
The same relationship is obtained for g2, except that A* is replaced by ¢*.
Since both y and @ are constant across the system, equations (5.6) and (5.8) imply
that neither 7'(u,) nor T(y) exhibit a curvature change, i.e. they do not possess an

inflection point. On the other hand, this is not necessarily so for the velocity profile
u,(y). To clarify this point, note that, according to (3.9) and (5.1),

(D +2mTy). (5.12)

0%u Ka oT
s _KapspdT (5.13)
0y? 2 ay
Thus (assuming a > 0), u,(y) is convex (concave) in the spatial regions where the
temperature increases (decreases). In case the temperature presents a minimum or a
maximum at a certain point inside the system, the flow velocity presents there an
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inflection point. In the derivation of (5.13), no use of the form of the temperature
profile has been made. On the other hand, taking derivatives on both sides of (5.13)
and using (5.8) and (5.11), one obtains

3u,

=5 = —K?aT77? 2@ +3mTy). (5.14)
y

Therefore, similarly to 7 (37/dy)* and ¢, T7?8%u,/dy* is a linear function of
temperature.

Equations (5.2)—(5.14) also apply in the NS hydrodynamic description (Vega Reyes
& Urbach 2009), except that n*(«, a), A*(«, @) and y(«, a) are replaced by their NS
counterparts nys(a), Aig(e) and yns(o, a), respectively (see §3). While nic (o) and
Ang(a) are independent of the shear rate, one sees from (3.12) that yys(a, a) is a linear
function of a°.

5.3. General classification of states

In a previous work (Vega Reyes & Urbach 2009), the complete set of steady-state
solutions based on the signs of the parameters y and & was described in the
framework of NS hydrodynamics. It was shown in that work that the analytical
expressions of the temperature and flow velocity profiles depend on the signs of
these two parameters. Thus, each possible combination of signs of y and @ yields
a different class of constant pressure laminar flows. Now, we can perform the same
analysis in the non-Newtonian regime and find the same set of classes of steady base
states.
It is convenient to define the following constants

|®| N _wh,”

oy VT 0= Tk

A
Cose= (5.15)

2m2y?’ 2my

As we will see below, the constants Tj, w and £, set the natural scales for 7, u, and vy,
respectively. According to the signs of y and @, the following cases are possible:

Case (i) y > 0.

This case (see (4.18)) corresponds to states where viscous heating is larger than
collisional cooling. Therefore, this class exists only in the presence of shearing
(a # 0) and inelasticity is not required (Tij et al. 2001). Note that, according to
(5.9), y > 0 implies

@ <0. (5.16)

From (5.3) and (5.6), T(s) and, equivalently, T'(#,) are convex. We will refer to
this class as XTu. Also, from (5.8) and (5.16) we conclude that the profile T(y) is
convex as well. Moreover, equation (5.12) shows that q,.z (i=x,y) decreases with
increasing temperature.

Making use of the definitions (5.15) in (5.5), the quadratic function 7'(s) can be

written as
2
T(s) =T, [1 — <S_SO) ] . (5.17)
w




446 F. Vega Reyes, A. Santos and V. Garzé

Since dy = K~!'T"/2ds, the relationship between the true and scaled space variables
is

2
Y=y + £ | 20 1—<S s0> Fsin 20 (5.18)
w w w

Eliminating s between (5.17) and (5.18) one obtains 7'(y) in implicit form:

T T . T
—|1—= ] +sin 1 ——
Ty Ty Ty

Equation (5.18) also provides the velocity profile u,(y) in implicit form just by
replacing s by u,/a:

Uy — Up Uy — Uy ? . _1ux_u0
y=yo+ Lo 1- +sin' 2 (5.20)
aw aw aw

ly — yol = 4o . (5.19)

where uy = asp. A similar replacement in (5.17) yields T as a function of u,.

In the above equations sy and y, denote the point where the temperature reaches
its maximum value 7 = T;. This point may be inside the system (i.e. |yo| < h/2) or
outside the system. In the latter case, the maximum corresponds to a continuation
of T(y) into the external region |yy| > #/2. The physical condition 7'(y) > 0 implies
the domains

T
Is —sol <w, [y—yol < 530- (5.21)

Although the hydrodynamic profiles in terms of the s variable are quite simple
(see (5.4) and (5.5)), equations (5.19) and (5.20) show that the dependence of T
and u, on the real space variable y is highly nonlinear. A similar comment applies
to the cases discussed below (except in the cases LTu and LTy, where the profiles
are simpler).

Case (ii) y = 0.

Now viscous heating exactly equals collisional cooling. As a consequence, T(s)
and T'(u,) are linear functions. For this reason, we formerly referred to this class as
LTu (Santos et al. 2009; Vega Reyes et al. 2010, 2011a). Moreover, the heat flux is
uniform (see (4.17)).

Two possibilities for @ are found:

Case (ii.a) @ < 0. From (5.9), A> =2|®| # 0 and the profiles are

T(s) =As+ B, (5.22)
al3 - B 4B
u(y) = Z [ZAK()’ - )’0)} - X’ (5.23)
3 2/3
T(y) = [2AK (y— ?o)} . (5.24)

Here y, represents the mathematical point where T(y) — 0. Obviously, positivity
of T(y) requires y >y, if A >0 and y <y, if A < 0. It is possible to prove that
(5.19) reduces to (5.24) in the limit y — 0.

Note that, from (4.18), y(«,a) =0 is fulfilled for a threshold shear rate
arru (o), whose specific value (for a given «) requires knowledge of n* and ¢*.
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In the special case of elastic collisions (¢ =1, i.e. £* =0), y =0 implies
a;n,, = 0. This corresponds to the conventional Fourier flow of an ordinary gas.

Case (ii.b) ® = 0. This implies A =0, so the temperature is uniform and the
heat flux vanishes. In this case s is a linear function of y and thus (5.4) yields

u(y) = avy (5.25)

with v = const. This state is the well-known USF (or simple shear flow; see, for
instance, work by Campbell (1989)). Note that here the USF is not generated
by the usual Lees—Edwards boundary conditions (Lees & Edwards 1972) but
by thermal walls in relative motion. The USF needs again the condition
a = arp(a). Note that @ =1 gives only the trivial equilibrium state of an
elastic gas.

Case (iii) y < 0.

In this wide class, inelastic cooling overcomes viscous heating. Therefore,
collisions must be inelastic and shearing is not required (Brey & Cubero 1998).
A negative y implies a concave curvature of 7(s) and T (u,), qi2 being an increasing
(linear) function of T. According to (5.9), we find now three possibilities for the
curvature of the temperature profile 7'(y).

Case (iii.a) ® < 0. In this subclass, henceforth referred to as CTu/XTy, T(y) is

a convex function. The profiles are

2
T(s) =T, {(S :Vs()) _ 11 , (5.26)

2
s— s—

y=yo++4 0 ( 0> -1
w w

2
I N S0+ (S So) _1 +g ’ (5.27)

w w

Ty )y LAY RV
— — | —1In — — =1
T, T T, T, 2

In (5.26)—(5.28) sy and y, denote the mathematical point where the temperature
reaches its formal minimum value T = —T7,. This point must obviously lie
outside the system (i.e. |yo| > h/2). The physical condition 7'(y) > O implies that

[y = Yol =& (5.28)

T
ls —sol =w, |y—yol = 550- (5.29)

Case (iii.b) @ = 0. This case corresponds to a linear function 7'(y). Thus, we
call this class LTy. From (5.9) we have B = A?/4m|y| and the profiles are
simply

T(s) = mly| (s —5)’, (5.30)

5o + (/2K _)1/2 o —30"|, (5.31)
mly|
T(y) = 2K\/mly|(y — o), (5.32)

ux@) =a
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where, without loss of generality, we have assumed T(h/2) > T(—h/2).
Similarly to the LTu case, 5o and y, represent the point where 7'— 0. Thus,
one must have y > y,. It is straightforward to reobtain (5.32) from (5.28) in the
limit @ — 0. Note that in the LTy class of states qi2 /T is constant (see (5.12)).

If we denote by

1 AT
~KJm h

the reduced applied gradient, where AT = T'(h/2) — T(—h/2), then the LTy flow
requires a transitional value given by

5T (5.33)

8T (@, @) =2+/|y (o, @)l. (5.34)

Note that, because of expected temperature jumps at the walls (Lun 1996;
Galvin, Hrenya & Wildman 2007; Nott 2011), T(£h/2) # T.. Moreover, by
T(xh/2) here we mean the extrapolation to y = £h/2 of the bulk temperature
profile, which might differ from the respective temperatures of the fluid layers
adjacent to the walls, due to boundary-layer effects.

As we will show below, if y <0, |y| always increases with decreasing shear
rate a, and thus 8777, («, a) has an upper bound at a = 0 given by

(0, @) < 24/]y (o, 0)]. (5.35)

8T}
The LTy state has been studied previously (Brey et al. 2001, 2009, 2011, 2012)
in the absence of shearing (a = 0).

In (5.34) it is implicitly assumed that the shear rate a is a free parameter.
Reciprocally, given an imposed gradient 67 < 2/|y(a, 0)], it is always
possible to find a certain value of the reduced shear rate, a;5 (o, 67%), such
that

y (e, apry (e, 8TY)) = —1(8T*)’. (5.36)

Since |y | is a decreasing function of a, it is obvious that a7 increases with
decreasing §T*. Therefore, the maximum value occurs at §7* =0 (i.e. y =0),
which coincides with a;z, (see figure 2). In other words,

arpy(a, 8T%) < app(@). (5.37)

In fact, the case a;7, = a;p, corresponds to the USF state.
Case (iii.c) @ > 0. In this class, T(y) is a concave function and so we call this
class CTy. The resulting profiles are
2
S — S
1+ ( ) ] , (5.38)
w

2
y=yo+ 4o . 1+<S SO) +sinh S (5.39)
w w w

T (T T
— | = —1] +sinh — =
Ty \To To

where sy and y, denote the point where the temperature reaches its minimum
value T =T,.

T(S) = T()

[y = Yol = 4o ) (5.40)
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FIGURE 3. (Colour online) Phase diagram illustrating the classification of Couette—Fourier
flows. This particular case corresponds to o = 0.9 and d = 3, as obtained from Grad’s
solution.

Label sign(y) sign(®) Shearing Inelasticity T(s), T(u,) T(®) ¢ (T), qi(T)
needed?  needed?

XTu + - Yes No Convex Convex  Decreasing

LTu 0 - Yes* Yes* Linear Convex Constant

USF 0 0 Yes® Yes' Constant  Constant Zero

(LTu)

CTu/XTy - - No Yes Concave Convex Increasing

LTy — 0 No Yes Concave Linear Increasing

CTy - + No Yes Concave Concave  Increasing

“ Except for the Fourier flow of an ordinary gas (¢ =0, a = 1).
b Except for the equilibrium state of an ordinary gas (a =0, §T* =0, a = 1).

TABLE 1. Classification of Couette—Fourier flows (see the text).

The main features of the six classes of flows described above are summarized in
table 1. Note that these six profile types have been obtained independently of the
specific details of the boundary conditions. Once they are specified (and they can be
described more realistically than we do later in the simulations, see for instance the
work by Nott er al. (1999)), they will determine, for a given value of the coefficient
of restitution and in the hydrodynamic bulk (i.e. the region where our four hypotheses
(1)—-@1v) hold), which type of profile among those in (5.17)—(5.40) the system will
show.

An illustration of the phase diagram in the a—§7* plane at a given value of o < 1 is
presented in figure 3. In fact, the LTu and LTy curves have been obtained from Grad’s
solution of the Boltzmann equation (see §4) for « = 0.9. It is apparent that the LTy
class cannot be attained if §7™ is larger than 2./|y (¢, 0)| (=0.26 in the case displayed
in figure 3) or a is larger than a;7,(o) (=0.36 in the case displayed in figure 3). As
the coefficient of restitution increases, both |y(«, 0)| and a;7 decrease, so that the
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CTu/XTy and CTy regions shrink. Of course, in the elastic case only the region XTu
persists. All of these features are clearly seen in the full phase diagram depicted in
figure 2.

An interesting remark in the case of symmetric walls, i.e. 67* =0, is the
impossibility of having a temperature profile that is concave in the variables s or u,
but convex in the variable y (CTu/XTy region). As figure 3 shows, if §7* =0 and both
plates are at rest (a =0), T(y) is concave. As shearing is introduced and increased,
the concavities of T(y) and T'(u,) decrease until the value a = a;7, is reached, where
the temperature is uniform and u,(y) is linear (USF). Further increase of the shearing
produces convex profiles T(y) and T'(u,). Thus, the existence of the ‘hybrid’ CTu/XTy
region requires asymmetric walls (87 # 0).

6. Comparison with computer simulations

6.1. Simulation details

In this section we present the results obtained from DSMC and MD simulations for
hard spheres (d = 3) and compare them with the analytical results derived from Grad’s
theory. The simulation methods that we used for DSMC and MD simulations are
similar to those in our previous works and have been explained in detail elsewhere
(Lobkovsky, Vega Reyes & Urbach 2009; Vega Reyes & Urbach 2009; Vega Reyes
et al. 2011a; Vega Reyes, Santos & Garzé 20115). We will briefly recall that DSMC
yields an exact numerical solution of the corresponding kinetic equation (inelastic
Boltzmann equation in this case), whereas MD vyields a solution of the equations
of motion of the particles. Therefore, the main difference between results from both
methods is that MD simulations lack the bias of the inherent statistical approximation
of the Boltzmann equation, where velocity correlations between particles which are
about to collide are not considered. As in our previous work (Vega Reyes et al.
2011a), the global solid volume fraction in the MD simulations has been taken equal
to 7 x 107% (dilute limit), using N ~ 10*-~10° particles. In DSMC simulations we
take a similar number of particles, N = 2 x 10°. The boundary conditions used here
are analogous in both methods. When a particle collides with a wall, its velocity
is updated following the rule v — v’ 4 U.e,. The first contribution (v’) of the new
particle velocity is due to thermal boundary condition, while the second contribution
(Uye,) is due to wall motion. The horizontal components of v’ are randomly drawn
from a Maxwellian distribution (at a temperature 7..), whereas the normal component
v) is sampled from a Rayleigh probability distribution: P(|vy|) = (m|v}|/ Ti)e_”’“;‘z/ b
(Alexander & Garcia 1997).

At a given value of o, we consider a common wall distance h = 15 (ﬁnﬁaz)_l,
where 7 is the average density and 8 different series of simulations with 7, /7T_ =2.5,
5.0, 7.5,...,20.0. For each value of the wall temperature ratio, a number of wall
velocity differences (U, — U_)//2T_/m =~ 2-20 is taken.

Once the steady state is reached, the local values of p(y), u.(y), T(y) and
v(y) « p(y) [T(y)]"/? are coarse-grained into 25 layers (Vega Reyes et al. 2011b).
The local shear rate a is obtained from (3.9). Next, the local curvature parameters
y and @ are obtained from (5.6) and (5.10), respectively. In order to evaluate the
derivatives du,/dy, dT/du, and 9°T/du?, the profiles u,(y) and T(u,) are fitted to
polynomials (typically of fifth degree).
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U, —U. T(=h/2) TMh/2) u(=h/2)—U. U, —u(h/2) n(—h/2) n(h/2)

System =t T T J2T m V2T m 7 7

A 55 09706 7.1799 0.1892 0.6080  2.1357  0.2939
B 106 12953  8.9035 0.2634 0.8651 28482 0.4193
C 113 13397 92022 0.2715 0.8457 3.0905 04610
D 11.85 13741 93722 0.2727 0.8584  3.1788  0.4897
E 140 15154 102501  0.2861 0.8934  3.5821  0.5625
F 170 17316 109953  0.3062 09302 41538  0.6889

TABLE 2. Values of the wall velocity difference and of the hydrodynamic fields near the

walls for six representative systems. In all of the cases « =0.9, h =15 (ﬁnﬁoz)_l and
T,/T_=10.

6.2. Hydrodynamic profiles

Similarly to previous works, we have observed in all simulation runs that p, a, y
and @ practically remain constant in the central layers of the system. Thus, in the
subsequent analysis the local values of p, a, y and @ are replaced by global values
obtained by a spatial average in the bulk domain.

The five classes of flows summarized in table 1 and figure 3 are found in
the simulations. The USF state with thermal walls, which requires §7* = 0, was
analysed elsewhere (Vega Reyes et al. 2010, 2011a) and is not considered here. As
an illustration, let us consider the six representative systems described in table 2.

We observe that, at fixed values h = 15 (ﬁnﬁaz)_l and T,/T_ = 10, the fluid
temperatures near the walls do not coincide with the imposed wall values (temperature
jumps). As we increase shearing, the differences 7(+£h/2) — T, increase, changing
from negative to positive values (see three first columns in table 2). As for the velocity
slips (Lun 1996), i.e. the differences u,(+h/2) — U, they also tend to increase (with
one exception) with increasing shearing.

In what follows, as in former works (Vega Reyes & Urbach 2009; Vega Reyes
et al. 2011a), we take the quantities near the cold wall as reference units. Thus,
m, T, =T(—h/2) and 1, = 1/v(—h/2) define the units of mass, energy and time,
respectively. Therefore, distances are measured in units of the nominal mean free path
t,3/T,/m = 5¢,/(16/nn,0?), where n, = n(—h/2). Moreover, the density is scaled
with respect to n,. The steady-state hydrodynamic profiles for the systems in table 2
are shown in figures 4 and 5. Since the profiles in system C are very close to those of
systems B and D, system C is absent in figure 4 and its temperature profiles are shown
separately in figure 5. It is quite apparent that the pressure is practically uniform in
all of the cases, thus confirming the hypothesis (i) made in §5. Note also that, even

though in the simulations the size is fixed at A =15 (ﬁnﬁaz)_l, the dimensionless
size of systems A-E in the units of our choice varies since n,/n is different in
each case. Moreover, in our reduced units p(y) ~ 1 at all places and systems and
so, for better visualization, in figure 4(c) we choose to plot p(y) instead. The (bulk)
temperature profile 7'(y) is concave for system A, linear for system B and convex for
systems C-F. Regarding the profile 7'(u,), it is concave for systems A—C, linear for
system D and convex for systems E and F. The parametric dependence of q)z, versus
T is linear (in the bulk region) in all of the cases, in agreement with (5.12), being
an increasing function for systems A-C, constant for system D and decreasing for
systems E and F.
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FIGURE 4. (a) Profile T(y), (b) parametric plot T'(u,), (c) profile p(y) = (n,/n)p(y) and (d)
parametric plot qf(T), as obtained from DSMC simulations for the systems A (A), B (4),
D (x), E (A) and F (M) described in table 2. Lines in (a) and (b) represent the theoretical
profiles. In addition, we present 7'(y) and T (u,) plots () as obtained from MD simulations
for state E. The quantities are scaled with respect to the reference units described in the text.
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FIGURE 5. (a) Profile T(y) and (b) parametric plot T'(u,), as obtained from DSMC
simulations for the system C described in table 2. Lines represent the theoretical profiles.
The quantities are scaled with respect to the reference units described in the text.

The values of the quantities K, §T*, a, y and @ obtained from the hydrodynamic
profiles of systems A-F are displayed in table 3. Note in this table that the measured
values of @ and y correctly predict in all cases the observed curvatures of 7'(y) and
T(u,), respectively. Moreover, we have obtained a very close approach to LTy and LTu
states in systems B and D (for which @ = —0.00004 and y = —0.0006 respectively).

We introduced the simulation values of K, a, y and & into the, according to
our description, corresponding theoretical profiles for 7T(y) and 7T(u,), by using the



Steady base states for granular hydrodynamics 453

System K 8T* a y D Class
A 0.994 0.1589 0.2491 —-0.0110 0.0218 CTy
B 1.044 0.1064 0.3597 —0.0022 —0.00004 LTy
C 1.038 0.1008 0.3697 —0.0013 —0.0049 CTu/XTy
D 1.047 0.0972 0.3753 —0.0006 —0.0087 LTu
E 1.062 0.0854 0.3994 0.0017 —0.0260 XTu
F 1.073 0.0683 0.4251 0.0044 —0.0558 XTu

TABLE 3. Values of the parameters K (equation (5.1)), §T7* (equation (5.33)), a (equation
(3.9)), y (equation (4.19)) and @ (equation (5.8)) for the systems described in table 2. The
right-most column shows the class each system belongs to.

pertinent (depending on the signs of y and @) expressions given in § 5.3. It is worth
remarking that the theoretical profiles T(y) do not depend on the separate values of
K, a, y and @ but only on the two combinations Ty and ¢, (cf. (5.15)); as for the
theoretical profiles 7T'(«,), they depend on the same parameter 7 as before plus the
combination aw. The resulting profiles are included in figures 4(a,b) and 5, where the
integration constants y, and u, are determined as to reproduce T and u, at y =0. As
we can observe, the agreement between the theoretical curves from our generalized
hydrodynamic description (see §5.3) and simulation data is excellent, the deviations
typically being restricted to one or two layers near the cold wall and two to four layers
near the hot wall. Those small deviations can be due to boundary-layer effects and/or
to residual limitations of the hydrodynamic description exposed in § 5. In any case, it
is worth remarking that the local mean free path (inversely proportional to the local
density) is larger near the hot wall (where deviations present a longer range) than near
the cold wall. As a matter of fact, in the employed reference units, the mean free path
is ~1 near the cold wall and ~n(—h/2)/n(h/2) = 67 near the hot wall. It is also
interesting to note that the lack of agreement near the boundaries seems to become
less important as the shearing increases (i.e. from systems A to F).

The simulation data plotted in figures 4 and 5 have been obtained from the DSMC
method but they perfectly agree with those obtained from MD. As an example, we
compare the results obtained from both simulation methods in one of the curves of
figure 4(a,b).

6.3. Transport coefficients

Once we have checked that the steady base states discussed in § 5 are supported by
the simulations, we now proceed to present the simulation results for the transport
coefficients and compare them with Grad’s theoretical predictions.

As a general trend, we have observed a relatively good semi-quantitative agreement
between simulation and Grad’s theory for all relevant quantities, except for the reduced
thermal conductivity A* and for the reduced viscosity n* at low a. In figure 6 we
plot the results for the thermal curvature parameter y for two different values of the
coefficient of restitution: @ = 0.9 and 0.7. We detect, both in simulations and theory,
the aforementioned transition from y < 0 for low shear rates to y > 0 for higher shear
rates. This transition is also predicted by the NS solution (Vega Reyes & Urbach
2009), in which case y is a linear function of a* (see (3.12)). As we see, the true
parameter y has a more complex dependency on a. It is apparent that Grad’s theory
predicts well the value a = a;;;, where y =0, as already shown elsewhere (Vega Reyes
et al. 2010, 2011a). It is also noteworthy that, in the region y > 0, Grad’s theory does
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FIGURE 6. Thermal curvature parameter y as a function of shear rate squared a* for two
values of the coefficient of restitution: (a) @ = 0.9 and (b) o« = 0.7. Lines represent results
from Grad’s analytical solution (solid lines) and from the NS prediction (dashed lines), while

symbols stand for DSMC ([J) and MD (M) simulations.
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FIGURE 7. Phase diagram in the plane 67" versus a (see figures 2 and 3) for two values of «:
(@) « =0.9 and (b) @ = 0.7. Lines stand for the analytical solution from Grad’s method, while
open and solid symbols stand for DSMC and MD simulations, respectively. The LTy curve is
represented by solid lines (theory) and squares (simulation), while the LTu line is represented
by dashed lines (theory) and triangles (simulation).

a better job for « = 0.7 than for o = 0.9. It might seem surprising that both NS and
Grad’s predictions for y show significant discrepancies with simulation data in the
region of small shear rates, especially for « = 0.7. The explanation lies in the fact
that, apart from a and 67*, y is an additional measure of the strength of the gradients,
which in the limit @ — 0 is governed by « and thus cannot be done arbitrarily small
for finite inelasticity.

As discussed in §5.3, for a given value of «, it is possible to find pairs (§T*, a)
such that the temperature profile 7'(y) is linear (LTy states). It is also possible to find
a value of a, independent of §7*, where the temperature profile 7'(u,) is linear (LTu
states). These two loci split the plane §7* versus a into the three regions sketched in
figure 3. We represent in figure 7 the phase diagram, as obtained from our simulations,
for (@) « =0.9 and (b) a =0.7. For comparison, the curves predicted by Grad’s
solution are also included. As we see, the agreement between theory and simulation is
qualitatively good for both values of «. As a complement, figure 8 shows the threshold
value aiTy versus the coefficient of restitution for §7* = 0.015. We observe that the LTy
is not possible for this value of the slope 67* if o > 0.967.

In figures 9 and 10 we plot the shear-rate dependence of the reduced shear
viscosity n* and of the normalized diagonal components of the stress tensor 6, and
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FIGURE 8. Threshold value aiTy for which the linear T'(y) occurs if §7* = 0.015, as a
function of the coefficient of restitution. Line stands for Grad’s method solution, while open
and solid symbols stand for DSMC and MD simulations, respectively.
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FIGURE 9. Generalized viscosity n* as a function of a* for (a) « = 0.9 and (b) a = 0.7. Lines
stand for Grad’s method solution, while open and solid symbols stand for DSMC and MD
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respectively.
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cross-coefficient ¢* (dashed lines and squares) as functions of a? for (a) @ = 0.9 and (b)
o = 0.7. Lines stand for Grad’s method solution, while open and solid symbols stand for
DSMC and MD simulations, respectively.

0, respectively. It is quite apparent that, except for the shear viscosity in the range of
low shear rates, the agreement between Grad’s analytical solution and DSMC and MD
simulations is quite good (somewhat better for ¢ = 0.9). The agreement is especially
good around the LTu states (i.e. a> ~ 0.15 and a* ~ 0.55 for « = 0.9 and o = 0.7,
respectively), as reported previously (Vega Reyes et al. 2010, 2011a). Figure 9 shows
that the nonlinear shear viscosity decreases with increasing shear rate (‘shear thinning’
effect). In what concerns the reduced directional temperatures, figure 10 shows that
O, (0y) increases (decreases) with increasing shearing. It is interesting to note that
O, < 6, for very small shear rates, until both quantities cross at a certain value
of a. This phenomenon is qualitatively captured by Grad’s solution. Comparison
between figure 9(a,b) shows that, as the inelasticity decreases, the region of shear
rates corresponding to y < 0, and hence the region with worse Grad’s predictions,
shrinks. In fact, in the purely elastic case (o = 1) the Grad expression for n* is rather
accurate (Garzo & Santos 2003).

Finally, in figure 11 we plot the results for the two heat flux transport coefficients
(thermal conductivity A* and cross-coefficient ¢*). As already explained, there is in
general a (non-Newtonian) horizontal component of the heat flux, from which the
cross-thermal conductivity coefficient ¢* results. Perhaps surprisingly, we find that the
agreement between Grad’s theory and simulations is better for the cross-coefficient ¢*
than for the thermal conductivity A*. Moreover, while Grad’s theory predicts that A*
weakly increases with a (¢ = 0.9) or exhibits a non-monotonic behaviour (« = 0.7),
simulations yield a decreasing A* versus a. In contrast, the agreement for the cross-
coefficient is qualitatively good, since ¢* versus a is increasing both for Grad’s theory
and simulation. This agreement is very good in the region of low shear rates up to the
threshold value for LTu states (as expected), whereas for higher shear rates the theory
and simulation results tend to separate.

A final comment regarding the comparison between simulation and Grad’s theory is
in order. According to (4.18), ¢* o kn*a* — A*y, where k= (d — 1)/d(d + 2). Since
the reduced cooling rate ¢* is satisfactorily captured by Grad’s method (see (3.7)), we
conclude that the deviations of n*, A* and y from the simulation data are not entirely
independent and are somewhat constrained by the combination (2/15)n*a®> — A*y (note
that k =2/15 for d = 3). In fact, figures 6, 9 and 11 show that, in the region with
y <0, |y| and A* are underestimated by Grad’s solution, while n* is overestimated.
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In the region of y > 0, however, n* is quite accurate, so that the underestimation
of y is compensated by an overestimation of A*. It is interesting to remark that the
accuracy of Grad’s quantitative predictions is highly correlated with the magnitude
of the thermal curvature parameter y, i.e. the smaller |y| the better the general
performance of Grad’s solution. In fact, the agreement between theory and simulation
is quite good in the LTu state (y = 0), as previously shown by Vega Reyes et al.
(2010, 2011a). This confirms the role played by y as an intrinsic measure of the
strength of the gradients (Vega Reyes & Urbach 2009).

7. Conclusions
7.1. Summary

We have studied in this paper the laminar flows in a low-density granular gas confined
between two infinite parallel walls, which, in general, are at different temperatures.
In addition, the granular gas can be sheared if there is relative motion between both
walls. We have described a general classification of steady granular Couette—Fourier
flows that occur in this system, at constant pressure, for arbitrarily large velocity and
temperature gradients. We have shown that, due to symmetries in the system, the
steady-state equations for the flow velocity and temperature are quite simple, even in
the non-Newtonian regime, and have a straightforward analytical solution. Moreover,
the type of solutions for the hydrodynamic profiles turn out to be dependent on just
two constant parameters: the thermal curvature coefficients y and @. The former is
proportional to the second derivative of T in a spatial variable scaled with collision
frequency, while @ is related to the second derivative in the natural spatial variable.
Depending on the different possible combinations of signs of these two parameters, the
corresponding steady profiles can be grouped into five different classes of flows, each
one having peculiar properties (see table 1).

The main conclusions of this work are that the assumptions made on the form of
the hydrodynamic profiles (see (3.9) and (4.13)-(4.16)), as well as the associated
classification of flows, have been validated by three independent routes. From a
theoretical perspective, we have obtained an exact solution of the set of moment
equations derived from Grad’s method applied to the inelastic Boltzmann equation.
Next, we have simulated the Couette—Fourier flows by using the DSMC method
(which numerically solves the Boltzmann equation) and MD simulations (which
numerically solve the equations of motion of the system of inelastic hard spheres).

This triple validation extends in a non-trivial way some of the qualitative features of
the NS description to the realm of non-Newtonian hydrodynamics. This is summarized
in table 4. As shown in §3, the NS constitutive equations, complemented by the
momentum and energy balance equations in the steady Couette—Fourier geometry,
imply the fulfillment of points (i)—(iv) without further assumptions. On the other
hand, they do not account for normal stress differences or a heat flux component
parallel to the flow. This is remedied by Grad’s moment method, in which case only
hypothesis (i) on the constancy of pressure is needed. A more general non-Newtonian
treatment makes use of the four assumptions on the same footing, thus allowing
us to accommodate for any specific form of the generalized transport coefficients.
Finally, the simulation results are seen to support the validity of those assumptions,
providing as well the dependence of the main quantities on both the shear rate
and the coefficient of normal restitution. However, it must be kept in mind that,
while simulations are essentially consistent to a large extent with the generalized
hydrodynamic description of §5, slight deviations due to the high intricacy of the
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Features Level of description
NS Grad Generalized Simulation
non-Newtonian

(i) p = const Derived Assumed Assumed Observed
(i1) a = const Derived Derived Assumed Observed
(iii) Py, # F(0,T) Construction Derived Assumed Observed
(iv) ¢, x 0, T Construction Derived Assumed Observed
Py #Py#P, No Yes Yes Yes

q: #0 No Yes Yes Yes
Transport Explicit Explicit Unspecified Measured
coefficients

TABLE 4. Hypotheses (i)—(iv) and main features of the plane Couette—Fourier flow
according to the level of description: NS (§3), Grad’s 13-moment method (§4),
generalized non-Newtonian hydrodynamics (§ 5) and simulation (§ 6).

Boltzmann equation cannot be discarded. Those small deviations have been reported in
the case of the pure Fourier flow for elastic hard spheres by Montanero et al. (1994).

While Grad’s moment method supports the four assumptions (i)—(iv), as well as
the existence of normal stress differences and a heat flux component orthogonal to
the thermal gradient (see table 4), we have observed that a quantitative agreement
with simulations is generally good near the LTu state (i.e. for small values of |y|)
only. As the magnitude of the thermal curvature parameter y increases, some transport
coefficients (n* for y > 0, ¢* for y <0 and 6, and 6, for both y <0 and y > 0) are
better predicted by Grad’s theory than other ones (n* for y <0, ¢* for y > 0 and A*
for both y <0 and y > 0).

7.2. Discussion

The signs of y and @ depend on both the physical properties of the granular gas and
the boundary conditions. However, rather than analysing the interaction between gas
and wall, our work is focused, similarly to previous works (Vega Reyes & Urbach
2009; Vega Reyes et al. 2010), on the bulk properties of the gas itself and we study
all possible transitions between the different classes of flows. All class transitions have
been generated by using the usual hard wall boundary conditions, both in DSMC and
MD simulations (see, for instance, the work by Galvin et al. (2007), where the same
boundary conditions are used for simulation of thermal walls). The phase diagram
obtained from simulations is completely analogous to the theoretical diagram, depicted
in figures 2 and 3, as shown in figure 7. We have checked in the simulations that,
as in figure 2, only two of the five possible flow classes (see table 1) define surfaces
in the three-parameter space {«, 37", a}. They divide this space into three regions
that define three other entire classes of granular flows. Thus, we have taken these
surfaces as a reference for our analysis of flow class transitions. One of the surfaces
is the LTu flow class (y = 0), characterized by linear temperature versus flow velocity
profiles and already studied in former works (Vega Reyes et al. 2010, 2011a). The
other surface is the LTy class (@ = 0), characterized by linear temperature versus
vertical coordinate profiles. The LTy surface is always below (lower shear rates) the
LTu surface (figure 2), except for walls at the same temperature (67" = 0 plane),
where they coincide, defining a curve that is the remaining sixth flow class, which
can be regarded as a subclass of the LTy or LTu classes. This class (or subclass)
is actually the well-known USF, i.e. constant 7" and linear u,(y). Note that here the
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USF is achieved with thermal walls rather than with generalized periodic boundary
conditions (Lees & Edwards 1972). Regarding the other classes, the first region (CTy)
is below the LTy surface and is characterized by y < 0 and @ > 0. The second region
(CTu/XTy) occupies the space between the LTy and LTu surfaces, being characterized
with ¥ <0 and @ < 0. Finally, the third region (XTu) is above the LTu surface and
corresponds to y > 0 and @ < 0 (see figure 2).

One important difference between LTy and LTu classes is that, while LTu flows are
possible for arbitrarily large 67, the LTy flows are restricted to values of §7* smaller
than a threshold value 6777 (e, a), which has an upper bound at a =0 (see figures 3
and 7). The agreement between theory and simulation in this aspect is qualitatively
good. In particular, we have checked that a too large §7* in the simulations results
in a direct LTu transition without passing through an LTy transition, when increasing
shear rate from a = 0. For instance, for « = 0.9, and following results in figure 7(a), a
value of 67 = 0.3 suffices to suppress the LTy transition. Thus, in this case we would
already start from @ < 0 at a = 0, never entering the class of flows with concave T (y).

So far we have not detected instabilities (departures from laminar flows) in the
simulations. This is reasonable since the flows that we have analysed are either below
or not far above the LTu surface, and thus they occur at low Reynolds number Re (LTu
flows typically have Re < 100, see the work by Vega Reyes et al. 2011a). In order
to see higher Re we would need to separate much further above the LTu surface, at
extremely large shear rates, or apply larger 67*.

In conclusion, we have described in detail, by means of theoretical and
computational studies, all possible classes of base laminar flows for a low-density
granular gas in a Couette—Fourier flow geometry. Those classes differ in the curvature
of the T(y) and T(u,) profiles but otherwise they can be described within a common
framework characterized by a heat flux proportional to the thermal gradient and
uniform stress tensor and reduced shear rate. This unified setting encompasses known
and new states, from the Fourier flow of ordinary gases to the uniform shear flow
of granular gases, from the symmetric Couette flow of ordinary gases to Fourier-
like flows of granular gases with constant thermal gradient and from states with a
magnitude of the heat flux |q| increasing with temperature to states with a decreasing,
a constant or even a zero |q|.

7.3. Outlook

The flow classes described in this work might be useful for future works in a
variety of problems in granular dynamics, such as the study of a granular impurity
under Couette flow (Garz6 & Vega Reyes 2010; Vega Reyes er al. 2011b). This
implies that the same set of flow classes should exist for the granular impurity; LTu
and LTy classes for instance. This may have implications to segregation conditions
for a granular impurity (Jenkins & Yoon 2002; Garz6 & Vega Reyes 2009, 2010).
Moreover, a complete determination of the steady base states is convenient for studies
of instabilities (Hopkins & Louge 1991; Wang et al. 1996; Alam & Nott 1998; Nott
et al. 1999; Khain & Meerson 2003; Alam, Shukla & Luding 2008). Furthermore,
analogous temperature curvature properties are observed for the same geometry in
moderately dense granular gases, except that for higher densities a region with
temperature curvature inflections grows from the boundaries (Lun 1996; Alam & Nott
1998). Thus, we expect some of the conclusions of the present analysis to be useful
for instability in quite generic problems of granular flow. We are currently working on
extensions of this work in granular segregation and flow instability.
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Appendix A. Navier-Stokes transport coefficients

The expressions for the NS transport coefficients are (Brey et al. 1998; Brey &
Cubero 2001)

Mis(e) = ——————, (A1)
Bi(a) + EC*(OO
1
s @) = S (A2)
Ba(ar) — ﬁé’ ()
4w
() = — d—1 = . (A3)
{,32(01) - m( (01)] [,32(0!) - mf (01)}
Here,

1 +a d—1
Bi(a) = 5 [1 - 7(1 — Of)} , (A4)

1 3d+8
Ba(a) = ;“ [1 + g%(1 —a)} , (AS5)

and the reduced cooling rate {*(«) is given by (3.7). In (3.7) and (A 1)—(AS), terms
associated with the deviation of the homogeneous cooling state distribution from a
Maxwellian have been neglected (Garzé, Santos & Montanero 2007).

Appendix B. Explicit expressions in Grad’s approximation

Taking into account in (4.7)—(4.11) the form of the fluxes given by (4.13)—(4.16),
one gets, after some algebra,

2d
a [Qy — (B + C*)U*] - djﬂb* =0, (B1D
* * 2 2d *
(B1 + 90 —2n"a +HWM = B, (B2)
6d
(Bi +¢90, + ﬁ)’)\* =B, (B3)
d

(d+4)a [77* + d—l)h*} —(d+2)B¢p* =0, B4)
Aty A2t 9 o, (B5)

2 7 2 d—1
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The algebraic equations (B 1)-(B5) allow one to express n*, A%, 0y, 6, and ¢* in terms
of a, « and y as

N = AT 28 d + D pia — (d— 1) (d +2)* b1 B2

+2d [dd+4) ((d+ B —2B,) —6(d — D(d+2)B] v}, (B6)
MV =A"d-D{[2B, =@+ D] [d—1D(d+2)B,B +2d(d+4)y]
—2d(d+4pia}, (B7)

6, = (AB) {B12d* + BD2d(d + 4 — (d — 1)* (d +2) B]
+2d[2d(d + H)a*((d +2)B; —2B,) — (d — 1)(d +2) B>
x (12a> + B,(2B, + 3(d + 4 B)ly — 8d*(d + H[B, + (d + HBi1y*}, (BY)
0, = A" {2d°(d+ DB, p1a” — [(d — 1)(d +2)Bi B, + 12dy]
x [d—1)(d+2)B,B+2dd+ 4]}, (B9)
¢* =A"'(d—1)(d+4a{dB, 2B, — d+Hpi] — (d— 1)d+2)Bp, — 12dy},
(B 10)

where B, =B, + ¢* and
A =2d*(d + 4B, — 6y)a* — (d — 1)* (d +2)* B, B
—8d(d — 1)(d+2)(d+4)B,foy — 12d° (d + 4)* y*. (B11)

Finally, substitution of n* and A* into (4.18) yields a quadratic equation for y. Its
physical solution gives y as a function of the shear rate a and the coefficient of
restitution «.

Setting ¥ =0 in (4.18), (B6) and (B 7), we get the prediction for the LTu threshold
shear rate in Grad’s approximation. The result is

lde+_
arg (o) = 25 Bi- (B12)

The expressions for the LTu transport coefficients n*, A*, 0, 6, and ¢* are obtained by
making a =ay, and y =0 in (B6)—(B 11). The explicit expressions have been given
elsewhere (Vega Reyes et al. 2011a).
In the absence of shearing (a — 0), equations (4.18) and (B 6)-(B 11) yield
. (d+2)(d — 1) B,

- 7 B 13
YT T2 27 B+ B+ 10d — 4)¢7] (B 13)

_ d+2)° B+ B+ 10d — 4)¢*
T (d+2) B+ 2 +3d - 2)¢

*

{Bil(d +2)*(d = Dy + d*(d +4)¢"]

+de*[3(d +2)(d — DB, +dd +4)¢*1}/(d — 1) (d +2)° ﬂzBi B14)
2 2 _ *
oo @27+ G 5104 = 45" ®15
(d+2) BB,
@+ 2p +di7 (B 16)
(d+2)B,

_ @+ 2P +3d¢

= B 17
(d+2)B, 1

y
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o* d+4 (d+2)* B+ Bd> +10d — 4)¢*

@ (@ 1)(d+2) BB (d+27 i+ 2d +3d — )¢
x {d (d +2)* B + Bil(d + 2)*(d — 1) B + 2d*2d + T)¢*]
+de*[3(d + 2)(d — 1) By + (3d* — 10d + 4)¢*]}. (B 18)

In the elastic case ((* — 0, By — 1, o — 1), one has 6, — 1, 6, = 1, A* — 1,
n*— 1,y > 0and ¢*/a— 2d — 1)(d+4)/(d — 1)(d + 2), which corresponds to the
Fourier flow of conventional gases.
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