COMMENT

Comment on 'A general integral identity'

Andrés Santos
Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain
E-mail: andres@unex.es

Received 13 May 2011, in final form 12 September 2011
Published 28 September 2011
Online at stacks.iop.org/JPhysA/44/428001

Abstract

A simple heuristic proof of an integral identity recently derived (Glasser M L 2011 J. Phys. A: Math. Theor. 44 225202) is presented.

PACS numbers: 02.30.-f, 02.30.Gp

In a recent paper [1], Glasser has derived the integral identity

$$
\begin{equation*}
I(r) \equiv \int_{0}^{\pi / 2} \mathrm{~d} \theta \int_{0}^{\pi / 2} \mathrm{~d} \phi \sin \theta F(r \sin \theta \sin \phi)=\frac{\pi}{2} \int_{0}^{1} \mathrm{~d} t F(r t) \tag{1}
\end{equation*}
$$

where $F(u)$ is an arbitrary function, by following a relatively sophisticated method. At the end of his paper, Glasser states that 'the results derived here also follow from the invariance of an integral over the surface of an n-sphere under a permutation of the angular hyperspherical coordinates' and cites a private communication from the eminent physicist F J Dyson. The aim of this comment is to provide a simple proof of equation (1) based on symmetry arguments, thus fleshing out the details of the previous brief quotation.

First, we make the change of variables $\theta \rightarrow \pi-\theta$ to obtain

$$
\begin{align*}
I(r) & =\int_{\pi / 2}^{\pi} \mathrm{d} \theta \int_{0}^{\pi / 2} \mathrm{~d} \phi \sin \theta F(r \sin \theta \sin \phi) \\
& =\frac{1}{2} \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\pi / 2} \mathrm{~d} \phi \sin \theta F(r \sin \theta \sin \phi) \tag{2}
\end{align*}
$$

Next, we perform the analogous change $\phi \rightarrow \pi-\phi$. Thus,

$$
\begin{equation*}
I(r)=\frac{1}{4} \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\pi} \mathrm{d} \phi \sin \theta F(r \sin \theta \sin \phi) . \tag{3}
\end{equation*}
$$

Now, let us assume that $r>0$ (the case $r<0$ can be treated separately in a similar way). In that case, the arguments of the function F in equation (1) are positive. This implies that, when proving equation (1), only $F(u)$ for $u>0$ matters and thus we are free to extend $F(u)$
for $u<0$. If we extend it as an even function, i.e. $F(-u)=F(u)$, and make the change $\phi \rightarrow \phi+\pi$ in equation (3), the result is

$$
\begin{align*}
I(r) & =\frac{1}{4} \int_{0}^{\pi} \mathrm{d} \theta \int_{\pi}^{2 \pi} \mathrm{~d} \phi \sin \theta F(r \sin \theta \sin \phi) \\
& =\frac{1}{8} \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi \sin \theta F(r \sin \theta \sin \phi) \tag{4}
\end{align*}
$$

This can be recognized as an integration over all the spatial directions of the function F evaluated at $y=r \sin \theta \sin \phi$ in (three-dimensional) spherical coordinates, i.e.

$$
\begin{equation*}
I(r)=\frac{1}{8} \int \mathrm{~d} \Omega F(y) \tag{5}
\end{equation*}
$$

where $\mathrm{d} \Omega=\mathrm{d} \theta \mathrm{d} \phi \sin \theta$ is the elementary solid angle.
Thus far, only formal manipulations in the integrals defining $I(r)$ have been made. To conclude the proof of equation (1) we simply take into account that, by symmetry, $I(r)$ must be independent of the choice of Cartesian axes, so that we can freely replace $F(y)$ by $F(x)$ or $F(z)$ inside the integral. In particular, the latter choice yields

$$
\begin{align*}
I(r) & =\frac{1}{8} \int \mathrm{~d} \Omega F(r \cos \theta) \\
& =\frac{2 \pi}{8} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta F(r \cos \theta) \\
& =\frac{\pi}{4} \int_{-1}^{1} \mathrm{~d} t F(r t) \tag{6}
\end{align*}
$$

where the change $\theta \rightarrow t=\cos \theta$ has been made in the last step. Recalling the extension $F(-u)=F(u)$, equation (1) is finally obtained.

Acknowledgments

Support from the Ministerio de Ciencia e Innovación (Spain) through grant no FIS2010-16587 and the Junta de Extremadura (Spain) through grant no GR10158, partially financed by FEDER funds, is gratefully acknowledged.

References

[1] Glasser M L 2011 A general integral identity J. Phys. A: Math. Theor. 44225202

