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Abstract. The Boltzmann equation for inelastic Maxwell models is considered
to determine the velocity moments through the fourth degree in the simple shear
flow state. First, the rheological properties (which are related to the second-
degree velocity moments) are exactly evaluated in terms of the coefficient of
restitution α and the (reduced) shear rate a∗. For a given value of α, the above
transport properties decrease with increasing shear rate. Moreover, as expected,
the third-degree and the asymmetric fourth-degree moments vanish in the long
time limit when they are scaled with the thermal speed. On the other hand,
our results show that, for a given value of α, the scaled symmetric fourth-degree
moments diverge in time for shear rates larger than a certain critical value a∗c(α)
which decreases with increasing dissipation. The explicit shear-rate dependence
of the fourth-degree moments below this critical value is also obtained.

Keywords: exact results, granular matter, kinetic theory of gases and liquids,
rheology and transport properties

ArXiv ePrint: 0706.0475

c©2007 IOP Publishing Ltd and SISSA 1742-5468/07/P08021+22$30.00

mailto:andres@unex.es
mailto:vicenteg@unex.es
http://www.unex.es/eweb/fisteor/andres/
http://www.unex.es/eweb/fisteor/vicente/
http://stacks.iop.org/JSTAT/2007/P08021
http://dx.doi.org/10.1088/1742-5468/2007/08/P08021
http://arxiv.org/abs/0706.0475


J.S
tat.M

ech.
(2007)

P
08021

Simple shear flow in inelastic Maxwell models

Contents

1. Introduction 2

2. The Boltzmann equation for IMM. Collisional moments 4

3. Uniform shear flow. Rheological properties 7
3.1. Hierarchy of moment equations . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Second-degree moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1. Model A. Hydrodynamic solution. . . . . . . . . . . . . . . . . . . . 9
3.2.2. Model B. Steady-state solution. . . . . . . . . . . . . . . . . . . . . 12

4. Third- and fourth-degree moments 13
4.1. Third-degree moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2. Fourth-degree moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1. Asymmetric moments. . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2. Symmetric moments. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Concluding remarks 19

Acknowledgments 20

References 21

1. Introduction

One of the most widely studied inhomogeneous states in granular gases is the so-called
simple or uniform shear flow (USF) [1, 2]. This state is characterized by a constant density
n, a uniform granular temperature T , and a linear velocity profile ux = ay, where a is the
constant shear rate. The temperature changes over time due to two competing effects: the
viscous heating and the inelastic collisional cooling. Depending on the initial condition,
one of the effects prevails over the other one so that the temperature either increases
or decreases over time, until a steady state is reached for sufficiently long times. After
a short kinetic regime, the time evolution and the steady state of the system admits
a non-Newtonian hydrodynamic description [3, 4] characterized by shear-rate dependent
viscosity and normal stress differences.

The prototypical model of granular gases consists of inelastic hard spheres (IHS)
with a constant coefficient of normal restitution α ≤ 1. In the low density limit, all the
relevant information on the system is provided by the one-particle velocity distribution
function f(r,v; t), which obeys the Boltzmann equation [5]. However, it is generally not
possible to get exact analytical results from the Boltzmann equation for IHS, especially
in far from equilibrium situations such as the USF. Consequently, most of the analytical
results reported in the literature have been derived by using approximations and/or kinetic
models [6]–[17].

The lack of exact analytical results can be overcome in some situations by considering
the so-called inelastic Maxwell models (IMM), where the collision rate is independent of
the relative velocity of the two colliding particles. These models have received a lot of
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attention in the last few years since they allow for the derivation of a number of exact
results [18]–[44]. Therefore, the influence of inelasticity on the dynamic properties can be
analyzed without introducing additional, and sometimes uncontrolled, approximations.
In addition, it is interesting to remark that recent experiments [45] for magnetic grains
with dipolar interactions turn out to be well described by IMM.

In the context of the USF, the rheological properties, which are related with the
second-degree velocity moments, have been obtained exactly in the steady state from
the Boltzmann equation for IMM [21, 37]. However, even though these properties are
physically important, they provide a partial piece of information about the velocity
distribution function f , especially in the high velocity region, where higher degree velocity
moments play a prominent role. By symmetry reasons, the third-degree moments are
expected to vanish in the USF. Therefore, the first non-trivial moments beyond the
ones associated with the rheological properties are the fourth-degree moments. Their
knowledge provides relevant information about the combined effect of shearing and
inelasticity on the velocity distribution.

The effort of going from second-degree to fourth-degree moments in the USF problem
can be justified by a number of reasons. For instance, their knowledge is needed to evaluate
transport properties in situations slightly perturbed from the USF state [46], which allows
one to perform a linear stability analysis around that state. Another interesting issue is to
explore whether or not the divergence of the fourth-degree moments for elastic Maxwell
molecules beyond a certain critical shear rate [47]–[49] is also present in the inelastic case
and, if so, to what extent.

The main aim of this paper is to determine the fourth-degree moments of IMM subject
to USF. This can be carried out thanks to recent derivations by the authors of the fourth-
degree collisional moments for IMM [44]. Those moments are proportional to an effective
collision frequency ν0, which in principle can be freely chosen. Here we will consider two
classes of IMM: (a) a collision frequency ν0 independent of temperature (Model A) and (b)
a collision frequency ν0(T ) monotonically increasing with temperature (Model B). While
Model A is closer to the original model of Maxwell molecules for elastic gases [47, 50],
Model B, with ν0(T ) ∝ T 1/2, is closer to IHS. The possibility of having a general function
ν(T ) is akin to the class of inelastic repulsive models recently introduced by Ernst and
co-workers [41, 42]. As will be shown below, Models A and B yield the same results in
the steady state. In particular, the reduced shear rate a∗ = a/ν0 in the steady state
is a ‘universal’ well-defined function a∗

s(α) of the coefficient of restitution α. The main
feature of Model A is that a∗ does not change in time and so a steady state does not
exist, except for the specific value a∗ = a∗

s(α). However, a non-Newtonian hydrodynamic
regime (in which a∗ and α are independent and arbitrary parameters) is reached for
asymptotically long times. This allows to study analytically the combined effect of both
control parameters on the (scaled) velocity moments for Model A.

The plan of the paper is as follows. In section 2, the Boltzmann equation for IMM is
introduced and the explicit expressions for the collisional moments through fourth-degree
are given. Section 3 deals with the rheological properties (a non-linear shear viscosity
η∗ and a viscometric function Ψ) of the USF state, which are related to the second-
degree velocity moments (pressure tensor). While Model A lends itself to obtain the
exact forms of η∗ and Ψ as non-linear functions of a∗ and α, that is not the case for
Model B since those rheological quantities require to be solved numerically, except in the
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steady state. For elastic collisions (α = 1), our expressions of η∗ and Ψ obtained for
Model A reduce to the results derived long time ago by Ikenberry and Truesdell [51] for
Maxwell molecules. The third- and fourth-degree moments for Model A are analyzed in
section 4. As expected, the results show that, when the third- and asymmetric fourth-
degree moments are conveniently scaled with the thermal speed, they vanish in the long
time limit. This is not the case for the symmetric fourth-degree moments. In a way
similar to the case of elastic Maxwell molecules [47]–[49], we find that, for a given value
of the coefficient of restitution, those moments diverge in time for shear rates larger than
a certain critical value a∗

c(α), which decreases as α decreases. Below this critical value,
the (scaled) fourth-degree moments have well-defined values in the long time limit. The
paper is closed in section 5 with some concluding remarks.

2. The Boltzmann equation for IMM. Collisional moments

In the absence of external forces, the inelastic Boltzmann equation for IMM reads

(∂t + v · ∇) f(r,v; t) = J [v|f, f ], (1)

where the Boltzmann collision operator J [v|f, f ] is given by [36]

J [v1|f, f ] =
ν

nΩd

∫
dv2

∫
dσ̂

[
α−1f(v′

1)f(v′
2) − f(v1)f(v2)

]
. (2)

Here,

n =

∫
dvf(v) (3)

is the number density, ν is the collision frequency (assumed to be independent of α),
Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions, and α ≤ 1 refers to the
constant coefficient of restitution. In addition, the primes on the velocities denote the
initial values {v′

1,v
′
2} that lead to {v1,v2} following a binary collision:

v′
1 = v1 − 1

2

(
1 + α−1

)
(σ̂ · g)σ̂, v′

2 = v2 + 1
2

(
1 + α−1

)
(σ̂ · g)σ̂, (4)

where g = v1 − v2 is the relative velocity of the colliding pair and σ̂ is a unit vector
directed along the centers of the two colliding particles. Apart from n, the basic moments
of f are the flow velocity

u =
1

n

∫
dvvf(v) (5)

and the granular temperature

T =
m

dn

∫
dv V 2f(v), (6)

where V = v − u(r) is the peculiar velocity. The momentum and energy fluxes are
characterized by the pressure tensor

Pij = m

∫
dv ViVjf(v) (7)
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and the heat flux

q =
m

2

∫
dv V 2Vf(v). (8)

Finally, the rate of energy dissipated due to collisions defines the cooling rate ζ as

ζ = − m

dnT

∫
dv V 2J [v|f, f ]. (9)

The main advantage of the Boltzmann equation for Maxwell models (both elastic
and inelastic) is that the (collisional) moments of J can be exactly evaluated in terms of
the moments of f , without the explicit knowledge of the latter [50]. This property has
been recently exploited [44] to obtain the detailed expressions for all the third- and fourth-
degree collisional moments as functions of α in d dimensions. In order to get the collisional
moments, it is convenient to introduce the Ikenberry polynomials [50] Y2r|i1i2...is(V) of
degree 2r + s. The Ikenberry polynomials of degree smaller than or equal to four are

Y0|0(V) = 1, Y0|i(V) = Vi, (10)

Y2|0(V) = V 2, Y0|ij(V) = ViVj −
1

d
V 2δij , (11)

Y2|i(V) = V 2Vi, Y0|ijk(V) = ViVjVk −
1

d + 2
V 2 (Viδjk + Vjδik + Vkδij) , (12)

Y4|0(V) = V 4, Y2|ij(V) = V 2

(
ViVj −

1

d
V 2δij

)
, (13)

Y0|ijk�(V) = ViVjVkV� −
1

d + 4
V 2(ViVjδk� + ViVkδj� + ViV�δjk + VjVkδi� + VjV�δik

+ VkV�δij) +
1

(d + 2)(d + 4)
V 4 (δijδk� + δikδj� + δi�δjk)

= ViVjVkV� −
1

d + 4
[Y2|ij(V)δk� + Y2|ik(V)δj� + Y2|i�(V)δjk + Y2|jk(V)δi�

+ Y2|j�(V)δik + Y2|k�(V)δij] −
1

d(d + 2)
V 4(δijδk� + δikδj� + δi�δjk). (14)

The corresponding velocity moments M2r|i1i2...is and collisional moments J2r|i1i2...is are
defined, respectively, as

M2r|i1i2...is =

∫
dv Y2r|i1i2...is(V)f(v), (15)

J2r|i1i2...is =

∫
dv Y2r|i1i2...is(V)J [v|f, f ]. (16)

In particular, M0|0 = n, M0|i = 0 (by definition of the peculiar velocity), M2|0 = pd/m,
where p = nT is the hydrostatic pressure, M0|ij = (Pij − pδij)/m, and M2|i = 2qi/m.
Moreover, conservation of mass and momentum implies J0|0 = 0 and J0|i = 0, respectively,
while J2|0 = −ζM2|0.
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The explicit expressions for the collisional moments J2r|i1i2...is for 2r + s ≤ 4 are [44]

J2|0 = −ζM2|0, J0|ij = −ν0|2M0|ij , (17)

J2|i = −ν2|1M2|i, J0|ijk = −ν0|3M0|ijk, (18)

J4|0 = −ν4|0M4|0 + λ1n
−1M2

2|0 − λ2n
−1M0|ijM0|ji, (19)

J2|ij = −ν2|2M2|ij + λ3n
−1M2|0M0|ij − λ4n

−1

(
M0|ikM0|kj −

1

d
M0|k�M0|�kδij

)
, (20)

J0|ijk� = −ν0|4M0|ijk� + λ5n
−1

[
M0|ijM0|k� + M0|ikM0|j� + M0|i�M0|jk −

2

d + 4

× (M0|ipM0|pjδk� + M0|ipM0|pkδj� + M0|ipM0|p�δjk + M0|jpM0|pkδi�

+ M0|jpM0|p�δik + M0|kpM0|p�δij) +
2

(d + 2)(d + 4)
M0|pqM0|qp

× (δijδk� + δikδj� + δi�δjk)

]
. (21)

In equations (19)–(21), the usual summation convention over repeated indices is assumed.
The cooling rate ζ and the effective collision frequencies ν2r|s are given by the expressions

ζ =
d + 2

4d

(
1 − α2

)
ν0, (22)

ν0|2 = ζ +
(1 + α)2

4
ν0, (23)

ν2|1 = 3
2
ζ +

(1 + α)2(d − 1)

4d
ν0, (24)

ν0|3 = 3
2
ν0|2, (25)

ν4|0 = 2ζ +
(1 + α)2 (4d − 7 + 6α − 3α2)

16d
ν0, (26)

ν2|2 = 2ζ +
(1 + α)2 [3d2 + 7d − 14 + 3α(d + 4) − 6α2]

8d(d + 4)
ν0, (27)

ν0|4 = 2ζ +
(1 + α)2 [d3 + 9d2 + 17d − 9 + 3α(d + 4) − 3α2]

2d(d + 4)(d + 6)
ν0, (28)

where we have called ν0 ≡ 2ν/(d+2). According to equations (17) and (23), ν0 represents
the effective collision frequency associated with the shear viscosity in the elastic limit [52].
Finally, the cross coefficients λi in equations (19)–(21) are

λ1 =
(1 + α)2(d + 2) (4d − 1 − 6α + 3α2)

16d2
ν0, (29)
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λ2 =
(1 + α)2 (1 + 6α − 3α2)

8d
ν0, (30)

λ3 =
(1 + α)2 [d2 + 5d − 2 − 3α(d + 4) + 6α2]

8d2
ν0, (31)

λ4 =
(1 + α)2 [2 − d + 3α(d + 4) − 6α2]

4d(d + 4)
ν0, (32)

λ5 =
(1 + α)2 [d2 + 7d + 9 − 3α(d + 4) + 3α2]

2d(d + 4)(d + 6)
ν0. (33)

The above results hold independently of the specific form of the collision frequency ν0.
On physical grounds, ν0 ∝ n. In the case of elastic Maxwell molecules, ν0 is independent
of temperature. The extension of this feature to the inelastic case defines Model A. On
the other hand, one can assume that ν0 is an increasing function of temperature (Model
B). In particular ν0(T ) ∝ nT 1/2 makes Model B mimic the properties of IHS.

3. Uniform shear flow. Rheological properties

3.1. Hierarchy of moment equations

Let us assume that the gas is under the USF. As said in the Introduction, this state is
macroscopically defined by a constant density n, a spatially uniform temperature T (t),
and a linear flow velocity u(y) = ayx̂ [47]. At a microscopic level, the USF is characterized
by a velocity distribution function that becomes uniform in the local Lagrangian frame,
i.e.,

f(r,v; t) = f(V, t). (34)

In this frame, the Boltzmann equation (1) reduces to

∂tf(V) − aVy
∂

∂Vx

f(V) = J [V|f, f ]. (35)

Equation (35) is invariant under the transformations

(Vx, Vy) → (−Vx,−Vy), (36)

Vj → −Vj , j �= x, y. (37)

This implies that if the initial state f(V, 0) is consistent with the symmetry properties (36)
and (37) so is the solution to equation (35) at any time t > 0. Even if one starts
from an initial condition inconsistent with (36) and (37), it is expected that the solution
asymptotically tends for long times to a function compatible with (36) and (37). The
investigation of this expectation, at the level of moments of degree less than or equal to
four, is one of the objectives of this paper.

The properties of uniform temperature and constant density and shear rate
are enforced in computer simulations by applying the Lees–Edwards boundary
conditions [47, 53], regardless of the particular interaction model considered. In the case
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of boundary conditions representing realistic plates in relative motion, the corresponding
non-equilibrium state is the so-called Couette flow, where density, temperature, and shear
rate are no longer uniform [54].

Multiplying both sides of equation (35) by Yr|i1i2...is(V) and integrating over V one
gets

∂tMr|i1i2...is + aNr|i1i2...is = Jr|i1i2...is , (38)

where we have called

Nr|i1i2...is ≡
∫

dV f(V)Vy
∂

∂Vx
Yr|i1i2...is(V). (39)

In particular,

N2|0 = 2M0|xy, N0|yy = −2

d
M0|xy, N0|xy = M0|yy +

1

d
M2|0, (40)

N0|ij = M0|iyδjx + M0|jyδix +
1

d
M2|0(δixδjy + δjxδiy) −

2

d
M0|xyδij , (41)

N4|0 = 4M2|xy. (42)

More in general, since Vy∂VxYr|i1i2...is(V) is a polynomial of degree 2r + s, the quantity
Nr|i1i2...is can be expressed as a linear combination of moments of the same degree. In
addition, thanks to the structure of the collision operator for IMM, the collisional moments
Jr|i1i2...is only involve moments of degree equal to or smaller than 2r + s. Consequently,
the hierarchy (38) can be exactly solved in a recursive way. We will call asymmetric
moments those that vanish for velocity distributions compatible with the invariance
properties (36) and (37). The remaining moments will be referred to as symmetric
moments. In particular, all the moments of odd degree are asymmetric. Among the
moments of even degree, M2r|xz and M2r|xxxy, for instance, are also asymmetric.

In the particular case of the moment M2|0 = nTd/m, equation (38) becomes

∂tM2|0 + 2aM0|xy = −ζM2|0, (43)

where use has been made of equation (17). This is not but the balance equation for the
energy in the USF. It is convenient to introduce the scaled moments

M∗
2r|i1i2...is =

1

nv2r+s
0

M2r|i1i2...is, v0 ≡
√

2T

m
=

√
2M2|0

dn
, (44)

v0 being the thermal speed, and the reduced shear rate

a∗ ≡ a

ν0

. (45)

In terms of these scaled variables, equation (38) can be rewritten as
1

ν0

∂tM
∗
r|i1i2...is + a∗N∗

r|i1i2...is −
(
r +

s

2

)(
ζ∗ +

4

d
a∗M∗

0|xy

)
M∗

r|i1i2...is = J∗
r|i1i2...is, (46)

where ζ∗ ≡ ζ/ν0 and

N∗
r|i1i2...is ≡

1

nv2r+s
0

Nr|i1i2...is , J∗
r|i1i2...is ≡

1

ν0nv2r+s
0

Jr|i1i2...is . (47)

It is apparent that the evolution equation (46) involves the second-degree moment
M∗

0|xy = Pxy/2p, which is the (reduced) shear stress. This quantity, along with the normal

stress differences M∗
0|xx = (Pxx − p)/2p and M∗

0|yy = (Pyy − p)/2p, are the most relevant
ones from a rheological point of view. They will be analyzed in the next subsection.
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3.2. Second-degree moments

From equation (46) one gets a coupled set of equations for the moments M∗
0|xy and M∗

0|yy:

1

ν0
∂tM

∗
0|xy + a∗

(
M∗

0|yy +
1

2

)
+

(
ω0|2 −

4

d
a∗M∗

0|xy

)
M∗

0|xy = 0, (48)

1

ν0
∂tM

∗
0|yy −

2

d
a∗M∗

0|xy +

(
ω0|2 −

4

d
a∗M∗

0|xy

)
M∗

0|yy = 0, (49)

where we have introduced the (reduced) shifted quantities

ω2r|s ≡
ν2r|s − (r + s/2)ζ

ν0
, (50)

so that

ω0|2 =
(1 + α)2

4
. (51)

To close the set, we need in general the evolution equation for the reduced shear rate a∗.
From equation (43) is straightforward to obtain

1

ν0
∂ta

∗ = a∗
(

ζ∗ +
4

d
a∗M∗

0|xy

)
∂ ln ν0

∂ lnT
. (52)

3.2.1. Model A. Hydrodynamic solution. In Model A the collision frequency ν0 is
independent of temperature and thus it is a constant. Consequently, ∂ta

∗ = 0 so that the
reduced shear rate a∗ remains in its initial value (regardless of the value of the coefficient
of restitution α) and represents a control parameter measuring the departure of the system
from the homogeneous cooling state.

As in the elastic case [47, 50], it is easy to check that, after a certain kinetic regime
lasting a few collision times, the scaled moments M∗

0|xy and M∗
0|yy reach well-defined

stationary values, which are non-linear functions of α and a∗ ≡ a/ν0. From equations (48)
and (49), one has

−M∗
0|xy

(
1 − 4

d
ãM∗

0|xy

)
= ã

(
M∗

0|yy +
1

2

)
, (53)

M∗
0|yy

(
1 − 4

d
ãM∗

0|xy

)
=

2

d
ãM∗

0|xy (54)

for the stationary values, where we have defined

ã ≡ a∗

ω0|2
=

4a∗

(1 + α)2
. (55)

The solution to the set of equations (53) and (54) is

M∗
0|yy = − γ(ã)

1 + 2γ(ã)
, M∗

0|xy = −d

2

γ(ã)

ã
= − ã/2

[1 + 2γ(ã)]2
, (56)

where

γ(ã) =
2

3
sinh2

[
1

6
cosh−1

(
1 +

27

d
ã2

)]
(57)
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is the real root of the cubic equation

γ(1 + 2γ)2 =
ã2

d
. (58)

Note that the reduced second-degree moments depend on α and a∗ through the scaled
quantity ã only. From equation (46) it is also easy to prove that, for long times, the
normal stresses M∗

zz, . . . , M
∗
dd along directions orthogonal to the shear plane xy are equal

to M∗
yy. Consequently, M∗

0|xx = −(d−1)M∗
0|yy. Analogously, the asymmetric second-degree

moments (i.e., all the off-diagonal elements M∗
0|ij except M∗

0|xy) vanish.
It is convenient to define a non-linear shear viscosity η∗ and a viscometric function Ψ

as

η∗(a∗) = −ν0

p

Pxy

a
= −2

M∗
0|xy

a∗ , (59)

Ψ(a∗) =
ν2

0

p

Pxx − Pyy

a2
= 2

M∗
0|xx − M∗

0|yy

a∗2
. (60)

From equations (56) and (58), we have

η∗(a∗) =

(
2

1 + α

)2
1

[1 + 2γ(ã)]2
, (61)

Ψ(a∗) =

(
2

1 + α

)4
2

[1 + 2γ(ã)]3
. (62)

Interestingly enough, the combination

[η∗(a∗)]3

[Ψ(a∗)]2
=

(
1 + α

4

)2

(63)

is independent of the shear rate. Moreover, in the limit of small shear rate (for fixed α),
equation (58) implies that γ → 0, so that equations (61) and (62) reduce to

η∗(0) =
4

(1 + α)2
, Ψ(0) =

32

(1 + α)4
. (64)

The quantities η∗(0) and Ψ(0) are the NS shear viscosity and the Burnett value of the
viscometric function, respectively, of Model A.

It is important to remark that, although the scaled moments reach stationary values,
the system is not in general in a steady state since the temperature changes in time.
Actually, inserting the second expression of (56) into equation (43), we get

1

ν0
∂t ln T = −2ω0|2 [γs − γ(ã)] , (65)

where we have called

γs ≡
ζ∗

2ω0|2
=

d + 2

2d

1 − α

1 + α
. (66)

Equation (65) shows that T (t) either grows or decays exponentially. The first situation
occurs if γ(ã) > γs. In that case, the imposed shear rate is sufficiently large (or the
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Figure 1. Plot of η∗(a∗) (top panel) and Ψ(a∗) (bottom panel) as functions
of a∗ for d = 3 and α = 0.5 (solid lines), α = 0.7 (dashed lines), and α = 1
(dotted lines). The dash–dotted lines are the loci of steady-state points (a∗s, η

∗
s)

and (a∗s,Ψs). They intercept the curves representing η∗(a∗) and Ψ(a∗) at the
steady-state values indicated by circles. Note that the loci end at the points
(a∗s, η

∗
s) = (1.054, 0.563) and (a∗s,Ψs) = (1.054, 1.688) corresponding to α = 0

(represented by filled circles).

inelasticity is sufficiently low) as to make the viscous heating effect dominate over the
inelastic cooling effect. The opposite happens if γ(ã) < γs. A perfect balance between
both effects takes place if γ(ã) = γs. Inserting this condition into equation (58) one gets
the steady-state point

a∗
s = ω0|2

√
dγs(1 + 2γs) =

√
d + 2

2
(1 − α2)

d + 1 − α

2d
. (67)

In this state, the α-dependence of the rheological properties is

η∗
s = η∗(a∗

s) =

(
d

d + 1 − α

)2

, Ψs = Ψ(a∗
s) =

4

1 + α

(
d

d + 1 − α

)3

. (68)

Equations (67) and (68) agree with the results reported in [37], while the more general
expressions (61) and (62) had not been previously derived.

Figure 1 shows the shear-rate dependence of the rheological functions η∗(a∗) and
Ψ(a∗) for d = 3 and three values of the coefficient of restitution: α = 0.5 (highly inelastic
system), α = 0.7 (moderately inelastic system), and α = 1 (elastic system). The steady-
state points (a∗

s, η
∗
s) and (a∗

s, Ψs) are also represented by circles for each one of the values
of α. Given a value of α, the steady-state point splits each curve into two branches: the
one with a∗ > a∗

s corresponds to γ(ã) > γs and so the temperature increases in time, while
the branch with a∗ < a∗

s corresponds to states with a decreasing temperature. We observe
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Figure 2. Plot of η∗(a∗) (top panel) and Ψ(a∗) (bottom panel) as functions of
a∗ for d = 3 and α = 0.7. The dashed and solid lines correspond to Model A
(equations (61) and (62)) and Model B with ν0(T ) ∝ T 1/2 (numerical solution of
equations (48)–(52)), respectively. The circles represent the steady-state points
(a∗s, η

∗
s) and (a∗s,Ψs), which are common to Models A and B.

that, for a given value of α, both η∗(a∗) and Ψ(a∗) decrease with increasing shear rate. In
the region of high shear rates (say a∗ > 1.5), the curves are practically insensitive to the
value of the coefficient of restitution. For small and moderate shear rates, however, the
influence of α is noticeable: at a given value of the reduced shear rate a∗, the rheological
quantities η∗(a∗) and Ψ(a∗) increase as α decreases. On the other hand, the steady-state
values η∗

s and Ψ∗
s decrease with increasing dissipation.

3.2.2. Model B. Steady-state solution. In Model B the collision frequency ν0(T ) is an
increasing function of temperature, and so the reduced shear rate a∗ is not constant.
The corresponding steady-state solution is obtained from equations (43)–(52) by setting
∂t → 0. It is given again by equations (56)–(58), except that now γ(ã) → γs and
ã → a∗

s/ω0|2, where γs and a∗
s are given by equations (66) and (67), respectively. Therefore,

the steady-state results are “universal” in the sense that they hold both for Model A and
Model B, regardless of the precise dependence ν0(T ).

In order to have M∗
0|xy(a

∗) and M∗
0|yy(a

∗) in Model B, one has to solve numerically the

non-linear coupled set (48)–(52), discard the kinetic stage of the evolution, and eliminate
time in favor of a∗ [3]. The resulting rheological curves are illustrated in figure 2 at α = 0.7
and for the choice ν0(t) ∝ T 1/2 in Model B. Comparison with the analytical results corre-
sponding to Model A shows that the influence of the temperature dependence of ν0 on the
rheological properties is only significant for reduced shear rates smaller than the steady-
state one. Since in this paper we want to focus on analytical results, henceforth we will only
consider Model A, except for what concerns the common steady state of Models A and B.
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4. Third- and fourth-degree moments

In this section we will analyze, in the context of Model A, the time evolution and the
stationary values of the (scaled) third- and fourth-degree moments in the USF problem.
The results will depend on both the reduced shear rate a∗ and the coefficient of restitution
α, while they only depend on the latter in the common steady state.

Let us assume that the scaled second-degree moments have reached their stationary
values given by equation (56). Therefore, equation (46) becomes

∂sM
∗
r|i1i2...is + a∗N∗

r|i1i2...is −
(
r +

s

2

) [
ζ∗ − 2ω0|2γ(ã)

]
M∗

r|i1i2...is = J∗
r|i1i2...is , (69)

where ds = ν0 dt. In what follows we will particularize to a three-dimensional gas (d = 3).

4.1. Third-degree moments

As said in the preceding section, all the third-degree moments are asymmetric and so they
are expected to vanish for long times. Here we want to confirm this expectation and get
the corresponding relaxation rates.

In a three-dimensional system, there are 10 independent third-degree moments. Here
we take

{M∗
2|x, M

∗
2|y, M

∗
2|z, M

∗
0|xxy, M

∗
0|xxz, M

∗
0|xyy, M

∗
0|yyz, M

∗
0|xzz, M

∗
0|yzz, M

∗
0|xyz}. (70)

From equation (69) and making use of the third-degree collisional moments (cf
equation (18)) and of the definition (39), one gets the following set of equations:
[
∂s + ω0|3 + 3ω0|2γ(ã)

] (
1
4
M∗

0|xxz + M∗
0|yyz

)
= 0, (71)

[
∂s + ω0|3 + 3ω0|2γ(ã)

] (
1
4
M∗

0|xxy + M∗
0|yzz

)
= 0, (72)

⎛
⎝

∂s + ω2|1 + 3ω0|2γ(ã) 0 2a∗

0 ∂s + ω0|3 + 3ω0|2γ(ã) −2
5
a∗

1
5
a∗ a∗ ∂s + ω0|3 + 3ω0|2γ(ã)

⎞
⎠

×

⎛
⎝

M∗
2|z

M∗
0|yyz

M∗
0|xyz

⎞
⎠ =

⎛
⎝

0

0

0

⎞
⎠ , (73)

⎛
⎜⎜⎝

∂s + ω2|1 + 3ω0|2γ(ã) 7
5a∗ 2a∗ 0

2
5a∗ ∂s + ω2|1 + 3ω0|2γ(ã) 0 2a∗

8
25a∗ 0 ∂s + ω0|3 + 3ω0|2γ(ã) 8

5a∗

0 8
25a∗ − 23

20a∗ ∂s + ω0|3 + 3ω0|2γ(ã)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎝

M∗
2|x

M∗
2|y

M∗
0|xxy

M∗
0|xyy

⎞
⎟⎟⎟⎠ = a∗ (

1
4
M∗

0|xxy + M∗
0|yzz

)
⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠ , (74)

[
∂s + ω0|3 + 3ω0|2γ(ã)

]
M∗

0|xzz = a∗ (
2
5
M∗

2|y + 2
5
M∗

0|xxy − M∗
0|yzz

)
. (75)
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Figure 3. Plot of the smallest eigenvalue, �min, associated with the time evolution
of the third-degree moments as a function of a∗ for d = 3 and α = 0.5 (solid line),
α = 0.7 (dashed line), and α = 1 (dotted line).

The characteristic equations associated with equations (71)–(75) are

� = ω0|3 + 3ω0|2γ(ã) = 3
4
(1 + α)2

[
γ(ã) + 1

2

]
, (76)

[
ω0|3 + 3ω0|2γ(ã) − �

]2 [
ω2|1 + 3ω0|2γ(ã) − �

]
=

2(ω0|3 − ω2|1)

5
a∗2, (77)

[
ω0|3 + 3ω0|2γ(ã) − �

]2 [
ω2|1 + 3ω0|2γ(ã) − �

]2

=
2(ω0|3 − ω2|1)

25
a∗2

[
7ω0|3 + 23ω2|1 + 30

(
3ω0|2γ(ã) − �

)]
, (78)

where � denotes the corresponding eigenvalues. The time evolution for long times is
governed by the eigenvalue �min with the smallest real part. It can be checked that �min

(which is the smallest real root of the quartic equation (78)) is positive definite for all α
and a∗. Consequently, all the scaled third-degree moments vanish in the long time limit,
as expected by symmetry arguments. In addition, at a given value of a∗, the larger the
inelasticity the longer the relaxation time (which is proportional to �−1

min). The shear-rate
dependence of �min is plotted in figure 3 for the same values of α as considered before. It
is interesting to remark that �min is not a monotonic function of a∗, reaching a minimum
value at a certain shear rate.

4.2. Fourth-degree moments

In a three-dimensional system, there are 15 independent fourth-degree moments, of which
9 are symmetric and 6 are symmetric, in the sense described at the beginning of section 3.

4.2.1. Asymmetric moments. Because of the symmetries of equation (35), the symmetric
and asymmetric moments are uncoupled. Although the relevant moments are the
symmetric ones, we first analyze the time evolution of the asymmetric moments, for the
sake of completeness. As the set of asymmetric moments, we choose

{M∗
2|xz, M

∗
2|yx, M

∗
0|xxxzy, M

∗
0|yyyz , M

∗
0|xzzz, M

∗
0|yzzz}. (79)
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Figure 4. Plot of the smallest eigenvalue, �min, associated with the time evolution
of the asymmetric fourth-degree moments as a function of a∗ for d = 3 and α = 0.5
(solid line), α = 0.7 (dashed line), and α = 1 (dotted line).

They verify the following set of equations:[
∂s + ω0|4 + 4ω0|2γ(ã)

]
(M∗

0|yyyz − M∗
0|yzzz) = 0, (80)

⎛
⎜⎜⎝

∂s + ω2|2 + 4ω0|2γ(ã) 9
7a∗ 0 −2a∗

2
7a∗ ∂s + ω2|2 + 4ω0|2γ(ã) −2a∗ 0

0 − 12
49a∗ ∂s + ω0|4 + 4ω0|2γ(ã) − 11

14a∗

− 12
49a∗ 0 12

7 a∗ ∂s + ω0|4 + 4ω0|2γ(ã)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎝

M∗
2|xz

M∗
2|yz

M∗
0|xxxz + M∗

0|xzzz

M∗
0|yyyz + M∗

0|yzzz

⎞
⎟⎟⎟⎠ =

1

2
a∗(M∗

0|yyyz − M∗
0|yzzz)

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠ , (81)

[
∂s + ω0|4 + 4ω0|2γ(ã)

]
(M∗

0|xxxz − M∗
0|xzzz) = 7

2
a∗(M∗

0|yyyz + M∗
0|yzzz)

− 1
2
a∗(M∗

0|yyyz − M∗
0|yzzz). (82)

The eigenvalues associated with the time behavior of the asymmetric fourth-degree
moments are

� = ω0|4 + 4ω0|2γ(ã) = (1 + α)2

[
γ(ã) +

50 + 7α − α2

126

]
(83)

and the roots of the characteristic quartic equation[
ω0|4 + 4ω0|2γ(ã) − �

]2 [
ω2|2 + 4ω0|2γ(ã) − �

]2

=
6(ω0|4 − ω2|2)

49
a∗2

[
3ω0|4 + 11ω2|2 + 14

(
4ω0|4γ(ã) − �

)]
. (84)

All the eigenvalues have a positive real part. Therefore, all the asymmetric moments
defined in equation (79) decay to zero in the long time limit, the final stage being
characterized by the smallest real root �min of equation (84). This eigenvalue is plotted in
figure 4 for the same cases as in figure 3. Again, a non-monotonic behavior is observed. On
the other hand, for given values of a∗ and α, the value of �min corresponding to the third-
degree moments is smaller than the one corresponding to the asymmetric fourth-degree
moments.
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4.2.2. Symmetric moments. In parallel to the elastic case [47], we choose the following set
of 9 symmetric moments

{M∗
4|0, M

∗
2|xx, M

∗
2|yy, M

∗
2|xy, M

∗
0|xxxx, M

∗
0|yyyy, M

∗
0|zzzz, M

∗
0|xxxy, M

∗
0|xyyy}. (85)

The combination

M9 ≡ 3M∗
0|xxxx − 4M∗

0|yyyy − 4M∗
0|zzzz =

1

nv4
0

∫
dV

(
6V 2

y V 2
z − V 4

y − V 4
z

)
f(V) (86)

is the average of a quantity independent of Vx, so the associated combination 3N∗
0|xxxx −

4N∗
0|yyyy − 4N∗

0|zzzz vanishes. Moreover, the combination 3J∗
0|xxxx − 4J∗

0|yyyy − 4J∗
0|zzzz =

−ν0|4M9 due to the fact that M0|yy = M0|zz. Therefore, equation (69) yields[
∂s + ω0|4 + 4ω0|2γ(ã)

]
M9 = 0. (87)

The solution to this equation is simply

M9(s) = M9(0)e−�9s, �9 ≡ ω0|4 + 4ω0|2γ(ã). (88)

Since ω0|4 > 0 [44], one has �9 > 0 and so M9 decays to 0.
The remaining eight moments in (85) are coupled. In matrix form, equation (69)

becomes

(δσσ′∂s + Lσσ′)Mσ′ = Cσ, σ = 1, . . . , 8. (89)

Here, M is a vector made of the following 8 moments

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M∗
4|0

M∗
2|xx

M∗
2|yy

M∗
0|yyyy

M∗
0|zzzz

M∗
2|xy

M∗
0|xxxy

M∗
0|xyyy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (90)

and the square matrix L is

L = 4ω0|2γ(ã)I + L′, (91)

where I is the 8 × 8 identity matrix and

L′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω4|0 0 0 0 0 4a∗ 0 0

0 ω2|2 0 0 0 32
21

a∗ 2a∗ 0

0 0 ω2|2 0 0 −10
21

a∗ 0 2a∗

0 0 0 ω0|4 0 − 96
245

a∗ 0 −12
7
a∗

0 0 0 0 ω0|4
24
245

a∗ 12
7
a∗ 12

7
a∗

7
15

a∗ 2
7
a∗ 9

7
a∗ −7

3
a∗ −1

3
a∗ ω2|2 0 0

0 15
49

a∗ − 6
49

a∗ −5
2
a∗ − 5

14
a∗ 0 ω0|4 0

0 − 6
49

a∗ 15
49

a∗ 2a∗ 1
7
a∗ 0 0 ω0|4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (92)
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Figure 5. Plot of the smallest eigenvalue, �min, associated with the time evolution
of the symmetric fourth-degree moments as a function of a∗ for α = 0.5 (solid
line), α = 0.7 (dashed line), and α = 1 (dotted line). The circles indicate the
location of the corresponding values of the critical shear rate.

In addition, C is a vector of elements made of second-degree moments, namely

C1 = 9
4
λ∗

1 − λ∗
2

(
M∗

0|xx
2 + M∗

0|yy
2 + M∗

0|zz
2 + 2M∗

0|xy
2
)
, (93)

C2 = 3
2
λ∗

3M
∗
0|xx − 1

3
λ∗

4

(
2M∗

0|xx
2 − M∗

0|yy
2 − M∗

0|zz
2 + M∗

0|xy
2
)
, (94)

C3 = 3
2
λ∗

3M
∗
0|yy − 1

3
λ∗

4

(
2M∗

0|yy
2 − M∗

0|xx
2 − M∗

0|zz
2 + M∗

0|xy
2
)
, (95)

C4 = 1
35

λ∗
5

(
51M∗

0|yy
2 + 6M∗

0|xx
2 + 6M∗

0|zz
2 − 48M∗

0|xy
2
)
, (96)

C5 = 1
35

λ∗
5

(
51M∗

0|zz
2 + 6M∗

0|xx
2 + 6M∗

0|yy
2 + 12M∗

0|xy
2
)
, (97)

C6 = 3
2
λ∗

3M
∗
0|xy − λ∗

4M
∗
0|xy

(
M∗

0|xx + M∗
0|yy

)
, (98)

C7 = 3
7
λ∗

5M
∗
0|xy

(
5M∗

0|xx − 2M∗
0|yy

)
, (99)

C8 = 3
7
λ∗

5M
∗
0|xy

(
5M∗

0|yy − 2M∗
0|xx

)
. (100)

The solution of equation (89) can be written as

M(s) = e−Ls · [M(0) − M∞] + M∞, (101)

where

M∞ = L−1 · C. (102)

Similarly to the cases discussed above, the long time behavior of Mσ (σ = 1, . . . , 8) is
governed by the eigenvalue �min of the matrix L with the smallest real part. We have
checked that �min is a real quantity that, for a given value of α, monotonically decreases
with increasing shear rate. It is plotted in figure 5 for α = 0.5, 0.7, and 1. The most
important feature of figure 5 is that, for any given value of α, �min becomes negative for
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Figure 6. Phase diagram for the asymptotic long time behavior of the fourth-
degree (symmetric) moments. The shaded region below the curve a∗c(α) (thick
solid line) corresponds to states with finite asymptotic values of the scaled fourth-
degree moments, while the region above the curve defines the states where those
moments diverge in time. The dash–dotted line represents the steady-state points
a∗s(α). It intercepts the critical curve a∗c(α) at the point (α, a∗) = (0.046, 1.041).

shear rates larger than a certain ‘critical’ value a∗
c(α). This means that, if a∗ > a∗

c , the
symmetric fourth-degree moments exponentially grow in time. This singular behavior of
the scaled moments implies that the velocity distribution function (scaled with the thermal
speed) develops an algebraic high velocity tail in the long time limit. It is interesting to
remark that this effect is also present in the elastic limit, where it has been extensively
studied [47]–[49]. As observed in figure 5, the main influence of inelasticity is to decrease
the value of the critical shear rate.

Let us analyze the phase diagram associated with the singular behavior of the fourth-
degree moments. This is shown in figure 6, where the curve a∗

c(α) splits the parameter
space into two regions: the region below the curve corresponds to states (α, a∗) with
finite asymptotic values of the scaled fourth-degree moments (i.e., �min > 0), while the
region above the curve defines the states where those moments diverge in time (�min < 0).
Figure 6 also includes the locus of steady-state points (α, a∗

s) (cf equation (67)). Below
the latter curve the inelastic cooling dominates over the viscous heating and so the
temperature decreases in time, while the opposite happens above it. It is apparent that
the curve a∗

s(α) lies inside the region a∗ < a∗
c(α), except for the small interval α ≤ 0.046

or, equivalently, a∗
s(0.046) = 1.041 ≤ a∗ ≤ a∗

s(0) = 1.054. In conclusion, in order to find
diverging moments, one has to consider states with rather large values of the shear rate
at which the viscous heating is much higher than the collisional cooling.

For states with a∗ < a∗
c(α) the scaled (symmetric) fourth-degree moments reach well-

defined finite values in the asymptotic long time limit. From equation (101) one has

lim
s→∞

M(s) = M∞, (103)

where M∞ is defined by equation (102). As an illustration, figure 7 shows the shear-
rate dependence of the asymptotic long time values of M∗

4|0 = (nv4
0)

−1
∫

dVV 4f(V) for
α = 0.5, 0.7, and 1. The values of M∗

4|0 at a∗ = 0 correspond to the homogeneous cooling

state [44]. We observe that, given a value of α, the scaled moment M∗
4|0 rapidly increases
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Figure 7. Plot of the asymptotic long time value of the scaled moment M∗
4|0 as a

function of a∗ for α = 0.5 (solid line), α = 0.7 (dashed line), and α = 1 (dotted
line). The dash–dotted line represents the values of M∗

4|0 at the steady states
a∗s(α) for 0.046 < α ≤ 1. It intercepts the curves representing M∗

4|0(a
∗) at the

points indicated by circles. The vertical dotted lines are the asymptotes of the
curves.

with the shear rate, having a vertical asymptote at a∗ = a∗
c(α). Moreover, for a given

value of a∗, the value of the moment increases with dissipation. Figure 7 also includes the
curve representing the values of M∗

4|0 at the steady states a∗
s(α). This curve has a vertical

asymptote at a∗ = 1.041.

5. Concluding remarks

The simple or uniform shear flow is perhaps the most widely studied inhomogeneous state
for elastic and inelastic gases. Despite its apparent simplicity, this state has proven to
be useful to shed light on the non-linear response of the system to the presence of strong
shearing. This response is conventionally measured by the non-Newtonian rheological
properties (namely, the non-linear shear viscosity η∗ and viscometric function Ψ), which
are related to the second-degree velocity moments (pressure tensor). On the other hand,
higher degree moments are also important to provide indirect information on the features
of the velocity distribution function. For inelastic gases, there are two relevant control
parameters: the shear rate a scaled with an effective collision frequency ν0, i.e., the
reduced shear rate a∗ = a/ν0, and the coefficient of normal restitution α. When the
velocity moments are conveniently scaled with the thermal speed, they are expected to
become, after a kinetic transient regime, non-linear functions of both control parameters.

To address the above issues in the context of the Boltzmann equation without having
to resort to approximate methods or computer simulations, one can consider simplified
collision models. As in the case of elastic collisions [47], the inelastic Maxwell model (IMM)
renders itself to an analytical treatment. Here, taking advantage of a recent derivation
by the authors of the collisional moments for IMM through the fourth degree [44], we
have determined the pressure tensor and the fourth-degree velocity moments of the USF
problem in an exact way. Two different classes of IMM have been defined: Model A,
where ν0 is independent of temperature, and Model B, where ν0 is an increasing function
of temperature. In the USF the temperature changes in time due to two opposite effects:
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viscous heating and collisional cooling. Therefore, a steady state is eventually achieved in
Model B when both effects cancel each other. However, in Model A a steady state does
not generally exist, except for a specific value a∗ = a∗

s(α), equation (67). It is important
to note that the results in the steady state are the same for both classes of models.
Since the reduced shear rate a∗ changes with time in Model B, the goal of obtaining the
velocity moments as functions of a∗ and α requires the use of numerical tools in that case.
However, a∗ = const in Model A and so the independent influence of a∗ and α can be
studied analytically. Thus, in this paper we have focused on Model A, except in what
concerns the steady state which, as said before, is common to Models A and B.

As mentioned above, the relevant transport properties in the USF problem are the
non-linear shear viscosity η∗(a∗) and the viscometric function Ψ(a∗). Their explicit
forms are given by equations (61) and (62), respectively. These results extend to
inelastic collisions the expressions obtained long time ago by Ikenberry and Truesdell for
(elastic) Maxwell molecules [51]. With respect to the dependence of η∗(a∗) and Ψ(a∗) on
inelasticity, our results show that its influence is quite significant for small and moderate
shear rates, both rheological properties being practically insensitive to dissipation in the
region of high shear rates. In the steady-state solution, η∗

s and Ψs decrease when decreasing
the coefficient of restitution. Moreover, as expected, the (scaled) third- and asymmetric
fourth-degree moments vanish in the long time limit. Consequently, beyond the rheological
properties, the next non-trivial moments are the symmetric fourth-degree moments. An
important result is that, for a given value of the coefficient of restitution, these moments
are divergent for shear rates larger than a certain critical value a∗

c(α). This singular
behavior is also present in elastic systems [47]–[49], where it has been shown that this
divergence is consistent with an algebraic high velocity tail of the velocity distribution
function. The main effect of inelasticity is to decrease the value of a∗

c(α) as the gas
becomes more inelastic. In addition, the phase diagram associated with this singular
behavior shows that the value of a∗

c(α) is rather large in the whole domain 0 < α ≤ 1, so
that in order to get diverging moments one has to consider states at which the collisional
cooling is strongly dominated by the viscous heating effect. As a consequence, non-linear
shearing effects are still significant for a∗ < a∗

c , as illustrated in figure 7 for the scaled
moment M∗

4|0.

The results derived in this paper can be useful for analyzing different situations. First,
the knowledge of the shear-rate dependence of the second- and fourth-degree moments
of the USF allows one to determine the generalized transport coefficients characterizing
transport around the simple shear flow [46]. Another possible direction of study is the
extension of the present analysis for the rheological properties to multicomponent systems.
Previous works carried out for IMM [37, 39] have shown the tractability of the Maxwell
kinetic theory for these complex systems and stimulate the performance of this study in
the near future.
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