Mixtures of inelastic rough hard spheres

Andrés Santos* Universidad de Extremadura, Badajoz (Spain)

*In collaboration with Gilberto M. Kremer and Vicente Garzó

Outline

- Mixture of inelastic rough hard spheres. The Boltzmann equation.
- Collisional thermal rates. Equilibration and cooling rates
- Application to the homogeneous cooling state. Non-equipartition of energy.
- Simple kinetic model for monodisperse systems. Application to the USF.
- Conclusions and outlook.

Minimal model of a granular gas: A gas of *identical smooth inelastic* hard spheres

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

Have a non-constant coefficient of restitution

www.oxfordcroquet.com/tech/

Are non-spherical

Are polydisperse

http://www.cmt.york.ac.uk/~ajm143/nuts.html

Model of a granular gas: A mixture of inelastic rough hard spheres

This model unveils an inherent breakdown of energy equipartition in granular fluids, even in homogeneous and isotropic states

Some previous works

Monodisperse inelastic rough spheres

 \checkmark

- ✓ Jenkins & Richman (1985): Shear flow
- ✓ Lun (1991): Quasi-smooth, shear flow
- ✓ Goldshtein & Shapiro (1995): Rates of change, HCS
- ✓ Luding, Huthmann, McNamara & Zippelius (1998): Evolution HCS, MD
- ✓ Hayakawa, Mitarai & Nakanishi (2002): Micropolar fluid model

✓ Goldhirsch, Noskowicz & Bar-Lev (2005): Quasi-elastic, quasi-smooth, constitutive equations

Polydisperse inelastic smooth spheres
 Garzó & Dufty (1999): Rates of change, HCS
 Barrat & Trizac (2002): WN driving
 ...

Mechanical parameters:

- *X* components (*i*=1, ..., *X*)
- Masses m_i
- Diameters σ_i
- Moments of inertia I_i
- Coefficients of normal restitution α_{ii}
- Coefficients of tangential restitution β_{ij}
- $\alpha_{ij} = 1$ for elastic particles
- β_{ij} =-1 for smooth particles
- $\beta_{ij} = +1$ for totally rough particles

Collision rules:

Translational velocities: $\mathbf{v}'_i = \mathbf{v}_i - \frac{1}{m_i} \mathbf{Q}_{ij}, \quad \mathbf{v}'_j = \mathbf{v}_j + \frac{1}{m_j} \mathbf{Q}_{ij}$

Angular velocities:
$$\boldsymbol{\omega}_{i}' = \boldsymbol{\omega}_{i} + \frac{\sigma_{i}}{2I_{i}}\widehat{\boldsymbol{\sigma}} \times \mathbf{Q}_{ij}, \quad \boldsymbol{\omega}_{j}' = \boldsymbol{\omega}_{j} + \frac{\sigma_{j}}{2I_{j}}\widehat{\boldsymbol{\sigma}} \times \mathbf{Q}_{ij}$$

Smooth spheres

Impulse exerted by i on j:

$$\mathbf{Q}_{ij} = \overline{\beta}_{ij} \left[\mathbf{v}_{ij} - (\mathbf{v}_{ij} \cdot \widehat{\boldsymbol{\sigma}}) \widehat{\boldsymbol{\sigma}} + \frac{1}{2} \widehat{\boldsymbol{\sigma}} \times (\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j) \right] + \overline{\alpha}_{ij} (\mathbf{v}_{ij} \cdot \widehat{\boldsymbol{\sigma}}) \widehat{\boldsymbol{\sigma}}$$

$$\mathbf{v}_{ij} \equiv \mathbf{v}_i - \mathbf{v}_j, \quad \overline{\alpha}_{ij} \equiv m_{ij} \left(1 + \alpha_{ij} \right), \quad \overline{\beta}_{ij} \equiv \frac{m_{ij} \kappa_{ij}}{1 + \kappa_{ij}} \left(1 + \beta_{ij} \right)$$

$$m_{ij} \equiv \frac{m_i m_j}{m_i + m_j}, \quad \kappa_{ij} \equiv \kappa_i \kappa_j \frac{m_i + m_j}{\kappa_i m_i + m_j \kappa_j}, \quad \kappa_i \equiv \frac{I_i}{m_i (\sigma_i/2)^2}$$

Energy collisional loss

$$E_{ij} = \frac{1}{2}m_i v_i^2 + \frac{1}{2}m_j v_j^2 + \frac{1}{2}I_i \omega_i^2 + \frac{1}{2}I_j \omega_j^2$$
$$E'_{ij} - E_{ij} = -(1 - \alpha_{ij}^2) \times \cdots$$
$$-(1 - \beta_{ij}^2) \times \cdots$$

Energy is conserved *only* if the spheres are • elastic ($\alpha_{ii}=1$) and

- either
 - smooth (β_{ij} =-1) or
 - perfectly rough (β_{ij} =+1)

Partial (granular) temperatures

Translational temperatures: $T_i^{\text{tr}} = \frac{m_i}{3} \langle v_i^2 \rangle$

Rotational temperatures: $T_i^{\text{rot}} = \frac{I_i}{3} \langle \omega_i^2 \rangle = \frac{m_i \kappa_i}{12} \sigma_i^2 \langle \omega_i^2 \rangle$

Total temperature: $T = \sum_{i} \frac{n_i}{2n} \left(T_i^{\text{tr}} + T_i^{\text{rot}}\right)$

Collisional rates of change for temperatures

Thermal rates: $\xi_{i}^{\text{tr}} = -\frac{1}{T_{i}^{\text{tr}}} \left(\frac{\partial T_{i}^{\text{tr}}}{\partial t}\right)_{\text{coll}}, \quad \xi_{i}^{\text{tr}} = \sum_{j} \xi_{ij}^{\text{tr}}$ $\xi_{i}^{\text{rot}} = -\frac{1}{T_{i}^{\text{rot}}} \left(\frac{\partial T_{i}^{\text{rot}}}{\partial t}\right)_{\text{coll}}, \quad \xi_{i}^{\text{rot}} = \sum_{j} \xi_{ij}^{\text{rot}}$ Net cooling rate:

 $\zeta = -\frac{1}{T} \left(\frac{\partial T}{\partial t} \right)_{\text{coll}}, \quad \zeta = \sum_{i} \frac{n_i}{2nT} \left(\xi_i^{\text{tr}} T_i^{\text{tr}} + \xi_i^{\text{rot}} T_i^{\text{rot}} \right)$

Our main goal

To obtain the binary thermal rates ξ_{ij}^{tr} and ξ_{ij}^{rot} in terms of $T_i^{\text{tr}}, T_j^{\text{tr}}, T_i^{\text{rot}}, T_j^{\text{rot}}, n_i, n_j$ and the mechanical parameters $m_i, m_j, \sigma_i, \sigma_j, \kappa_i, \kappa_j, \alpha_{ij}, \beta_{ij}$

(Cartoon by Bernhard Reischl, University of Vienna)

Boltzmann equation:

$$\partial_t f_i(\mathbf{r}, \mathbf{v}_i, \boldsymbol{\omega}_i, t) + \mathbf{v}_i \cdot \nabla f_i(\mathbf{r}, \mathbf{v}_i, \boldsymbol{\omega}_i, t) = \sum_j J_{ij}[\mathbf{r}, \mathbf{v}_i, \boldsymbol{\omega}_i, t | f_i, f_j]$$

Binary collisions

"Exact" results

$$\begin{aligned} \xi_{ij}^{\mathrm{tr}} &= \frac{n_j \sigma_{ij}^2 \pi}{3T_i^{\mathrm{tr}}} \left[\left(\overline{\alpha}_{ij} + \overline{\beta}_{ij} \right) \langle v_{ij} \mathbf{v}_i \cdot \mathbf{v}_{ij} \rangle + \frac{2\overline{\beta}_{ij}}{3} \langle (\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j) \cdot (\mathbf{v}_i \times \mathbf{v}_j) \rangle \right. \\ &\left. - \frac{\overline{\alpha}_{ij}^2 + \overline{\beta}_{ij}^2}{2m_i} \langle v_{ij}^3 \rangle - \frac{\overline{\beta}_{ij}^2}{16m_i} \langle v_{ij}^{-1} \left[\mathbf{v}_{ij} \cdot (\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j) \right]^2 \rangle - \frac{3\overline{\beta}_{ij}^2}{16m_i} \langle v_{ij} \left(\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j \right)^2 \rangle \right] \end{aligned}$$

$$\xi_{ij}^{\text{rot}} = \frac{n_j \sigma_{ij}^2 \pi}{24 T_i^{\text{rot}}} \overline{\beta}_{ij} \left\{ 3\sigma_i \langle v_{ij} \left[\boldsymbol{\omega}_i \cdot (\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j) \right] \rangle - \sigma_i \langle v_{ij}^{-1} \left[\mathbf{v}_{ij} \cdot (\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j) \right] (\mathbf{v}_{ij} \cdot \boldsymbol{\omega}_i) \rangle - \frac{\overline{\beta}_{ij}}{m_i \kappa_i} \left[4 \langle v_{ij}^3 \rangle + \frac{3}{2} \langle v_{ij} \left(\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j \right)^2 \rangle - \frac{1}{2} \langle v_{ij}^{-1} \left[\mathbf{v}_{ij} \cdot (\sigma_i \boldsymbol{\omega}_i + \sigma_j \boldsymbol{\omega}_j) \right]^2 \rangle \right] \right\}$$

Additional assumptions

1. No mutual diffusion, no chirality:

$$\langle \mathbf{v}_i
angle = \langle \mathbf{v}_j
angle, \quad \langle oldsymbol{\omega}_i
angle = \langle oldsymbol{\omega}_j
angle = \mathbf{0}$$

- 2. Translational and rotational degrees of freedom uncorrelated: $f_i(\mathbf{v}_i, \boldsymbol{\omega}_i) = f_i^{\text{tr}}(\mathbf{v}_i) f_i^{\text{rot}}(\boldsymbol{\omega}_i)$
- 3. Maxwellian form:

$$f_i^{\rm tr}(\mathbf{v}_i) = n_i \left(\frac{m_i}{2\pi T_i^{\rm tr}}\right)^{3/2} \exp\left(-\frac{m_i v_i^2}{2T_i^{\rm tr}}\right)$$

Results

$$\xi_{ij}^{\text{tr}} = \frac{\nu_{ij}}{m_i T_i^{\text{tr}}} \left[2 \left(\overline{\alpha}_{ij} + \overline{\beta}_{ij} \right) T_i^{\text{tr}} - \left(\overline{\alpha}_{ij}^2 + \overline{\beta}_{ij}^2 \right) \left(\frac{T_i^{\text{tr}}}{m_i} + \frac{T_j^{\text{tr}}}{m_j} \right) \right. \\ \left. - \overline{\beta}_{ij}^2 \left(\frac{T_i^{\text{rot}}}{m_i \kappa_i} + \frac{T_j^{\text{rot}}}{m_j \kappa_j} \right) \right]$$

$$\xi_{ij}^{\text{rot}} = \frac{\nu_{ij}}{m_i \kappa_i T_i^{\text{rot}}} \overline{\beta}_{ij} \left[2T_i^{\text{rot}} - \overline{\beta}_{ij} \left(\frac{T_i^{\text{tr}}}{m_i} + \frac{T_j^{\text{tr}}}{m_j} + \frac{T_i^{\text{rot}}}{m_i \kappa_i} + \frac{T_j^{\text{rot}}}{m_j \kappa_j} \right) \right]$$

$$\nu_{ij} \equiv \frac{4\sqrt{2\pi}}{3} n_j \sigma_{ij}^2 \sqrt{\frac{T_i^{\rm tr}}{m_i} + \frac{T_j^{\rm tr}}{m_j}}$$

Decomposition

Thermal rates = Equilibration rates + Cooling rates

Net cooling rate = Σ Cooling rates

Decomposition

$$\xi_{ij}^{\rm tr} = \xi_{ij}^{\rm tr,\alpha} + \xi_{ij}^{\rm tr,\beta} + \zeta_{ij}^{\rm tr} + \kappa_i \frac{T_i^{\rm rot}}{T_i^{\rm tr}} \xi_{ij}^{\rm rot}$$

$$\xi_{ij}^{\rm rot} = \xi_{ij}^{\rm rot,\beta} + \zeta_{ij}^{\rm rot}$$

Thermal rates

Equilibration rates

$$\boldsymbol{\xi_{ij}^{\text{rot},\beta}} \propto (1+\beta_{ij}) \left\{ T_i^{\text{rot}} - T_j^{\text{rot}}, T_i^{\text{tr}} - T_j^{\text{tr}}, T_i^{\text{tr}} - T_i^{\text{rot}} \right\}$$

 $\xi_{ij}^{\text{tr},\alpha} \propto (1+\alpha_{ij})(T_i^{\text{tr}} - T_j^{\text{tr}}) \qquad \xi_{ij}^{\text{tr},\beta} \propto (1+\beta_{ij})(T_i^{\text{tr}} - T_i^{\text{rot}})$

$$\begin{array}{c} \zeta_{ij}^{\mathrm{tr}} \propto \left(1 - \alpha_{ij}^{2}\right) \\ \zeta_{ij}^{\mathrm{rot}} \propto \left(1 - \beta_{ij}^{2}\right) \end{array} \end{array} \begin{array}{c} \text{Cooling} \\ \text{rates} \end{array}$$

Net cooling rate

$$\zeta = \sum_{i} \frac{n_i}{2nT} \left(\xi_i^{\rm tr} T_i^{\rm tr} + \xi_i^{\rm rot} T_i^{\rm rot} \right)$$

$$\zeta = \sum_{ij} \frac{n_i \nu_{ij}}{4nT} \frac{m_i m_j}{m_i + m_j} \left[(1 - \alpha_{ij}^2) \left(\frac{T_i^{\text{tr}}}{m_i} + \frac{T_j^{\text{tr}}}{m_j} \right) + \frac{\kappa_{ij}}{1 + \kappa_{ij}} (1 - \beta_{ij}^2) \left(\frac{T_i^{\text{tr}}}{m_i} + \frac{T_j^{\text{tr}}}{m_j} + \frac{T_i^{\text{rot}}}{m_i \kappa_i} + \frac{T_j^{\text{rot}}}{m_j \kappa_j} \right) \right]$$

Simple application: The Homogeneous Cooling State (HCS)

The HCS is

$$\partial_t f_i(\mathbf{v}_i, \boldsymbol{\omega}_i, t) = \sum_j J_{ij}[\mathbf{v}_i, \boldsymbol{\omega}_i, t | f_i, f_j]$$

- Spatially homogeneous
- Isotropic
- Undriven
- Freely cooling

$$\frac{\partial T}{\partial t} = -\zeta T$$

5 2

$$\frac{\partial}{\partial t} \frac{T_i^{\text{tr}}}{T} = -\left(\xi_i^{\text{tr}} - \zeta\right) \frac{T_i^{\text{tr}}}{T}, \quad \frac{\partial}{\partial t} \frac{T_i^{\text{rot}}}{T} = -\left(\xi_i^{\text{rot}} - \zeta\right) \frac{T_i^{\text{rot}}}{T}$$
$$\rightarrow \infty \Rightarrow \xi_1^{\text{tr}} = \xi_2^{\text{tr}} = \dots = \xi_1^{\text{rot}} = \xi_2^{\text{rot}} = \dots$$

Single-component case (ĸ=2/5)

$$\begin{array}{c} \alpha < 1 \\ \beta \rightarrow -1 \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} \xi^{\mathrm{tr}} \sim (1 - \alpha^2) \Rightarrow \partial_t T^{\mathrm{tr}} < 0 \\ \xi^{\mathrm{rot}} \rightarrow 0 \Rightarrow T^{\mathrm{rot}} \rightarrow \mathrm{const} \end{array} \right\} \Rightarrow \left[\begin{array}{c} T^{\mathrm{tr}} \\ \overline{T^{\mathrm{rot}}} \rightarrow 0 \end{array} \right]$$

$$\begin{array}{c} \alpha = 1 \\ \beta \rightarrow -1 \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} \xi^{\mathrm{tr}} \sim \kappa (1 + \beta) \Rightarrow \partial_t T^{\mathrm{tr}} < 0 \\ \xi^{\mathrm{rot}} \sim (1 + \beta) \Rightarrow \partial_t T^{\mathrm{rot}} < 0 \end{array} \right\} \Rightarrow \xi^{\mathrm{tr}} < \xi^{\mathrm{rot}} \Rightarrow \left[\begin{array}{c} T^{\mathrm{tr}} \\ \overline{T^{\mathrm{rot}}} \rightarrow \infty \end{array} \right]$$
Frontiers in Nonequilibrium Physics. Granular Physics, Kyoto, 21 July 2009 \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} T^{\mathrm{tr}} \\ T^{\mathrm{rot}} \rightarrow \infty \end{array} \right\}

Binary mixture

Three independent temperature ratios: $\frac{T_1^{\text{tr}}}{T_1^{\text{rot}}}, \frac{T_2^{\text{tr}}}{T_1^{\text{tr}}}, \frac{T_2^{\text{rot}}}{T_1^{\text{tr}}}$

Eleven parameters:

- Coefficients of normal restitution $\alpha_{11}, \alpha_{12}, \alpha_{22}$
- Coefficients of tangential restitution $\beta_{11}, \beta_{12}, \beta_{22}$
- Inertia-moment parameters κ_1, κ_2
- Size ratio σ_2/σ_1
- Mass ratio m_2/m_1
- Mole fraction $n_1/(n_1 + n_2)$

Binary mixture

Three independent temperature ratios: $\frac{T_1^{\text{tr}}}{T_1^{\text{rot}}}, \frac{T_2^{\text{tr}}}{T_1^{\text{tr}}}, \frac{T_2^{\text{rot}}}{T_1^{\text{tr}}}$

Eleven parameters:

- Coefficients of normal restitution $\alpha_{11} = \alpha_{12} = \alpha_{22} = \alpha$
- Coefficients of tangential restitution $\beta_{11} = \beta_{12} = \beta_{22} = \beta$
- Inertia-moment parameters $\kappa_1 = \kappa_2 = \frac{2}{5}$
- Size ratio $\sigma_2/\sigma_1 = 2$
- Mass ratio $m_2/m_1 = 8$
- Mole fraction $n_1/(n_1 + n_2) = \frac{1}{2}$

Frontiers in Nonequilibrium Physics. Granular Physics, Kyoto, 21 July 2009

2

Translational/Rotational

Rotational/Rotational

Translational/Translational

"Ghost" effect: A tiny amount of roughness has dramatic effects on the temperature ratio (enhancement of non-equipartition)

Binary mixture

Three independent temperature ratios: $\frac{T_1^{\text{tr}}}{T_1^{\text{rot}}}, \frac{T_2^{\text{tr}}}{T_1^{\text{tr}}}, \frac{T_2^{\text{rot}}}{T_1^{\text{rot}}}$

Eleven parameters:

- Coefficients of normal restitution $\alpha_{11} = \alpha_{12} = \alpha_{22} = \alpha$
- Coefficients of tangential restitution $\beta_{11} = \beta_{12} = \beta_{22} = \beta$
- Inertia-moment parameters $\kappa_1 = 0, \ \kappa_2 = \frac{2}{3}$
- Size ratio $\sigma_2/\sigma_1 = 1$
- Mass ratio $m_2/m_1 = 1$
- Mole fraction $n_1/(n_1 + n_2) = \frac{1}{2}$

Frontiers in Nonequilibrium Physics. Granular Physics, Kyoto, 21 July 2009

1

2

Translational/Translational

"Ghost" effect: A tiny amount of roughness has dramatic effects on the temperature ratio

Simple application: White-noise heating (steady state)

$$-\frac{\chi_0^2}{2} \left(\frac{\partial}{\partial \mathbf{v}_i}\right)^2 f_i(\mathbf{v}_i, \boldsymbol{\omega}_i) = \sum_j J_{ij}[\mathbf{v}_i, \boldsymbol{\omega}_i, t | f_i, f_j]$$

$$T_1^{\mathrm{tr}}\xi_1^{\mathrm{tr}} = T_2^{\mathrm{tr}}\xi_2^{\mathrm{tr}} = \cdots$$

$$\xi_1^{\rm rot} = \xi_2^{\rm rot} = \dots = 0$$

Translational/Rotational

Weak influence of inelasticity

Rotational/Rotational

Same qualitative behavior for different inelasticities

Translational/Translational

No "ghost" effect! (steady state)

Locus of equipartition: Under which conditions does equipartition hold?

- Coefficients of normal restitution $\alpha_{11} = \alpha_{12} = \alpha_{22} = \alpha$
- Coefficients of tangential restitution $\beta_{11} = \beta_{12} = \beta_{22} = \beta$
- Inertia-moment parameters $\kappa_1 = \kappa_2 = \kappa$
- Size ratio $\sigma_1/\sigma_2 = \text{free}$
- Mass ratio $m_1/m_2 = \text{free}$
- Mole fraction $n_1/(n_1 + n_2) =$ free

Simple kinetic model for monodisperse inelastic rough hard spheres

Three key ingredients we want to keep:

- 1. $(\partial_t T^{\mathrm{tr}})_{\mathrm{coll}} = -\xi^{\mathrm{tr}} T^{\mathrm{tr}}$
- 2. $(\partial_t T^{\rm rot})_{\rm coll} = -\xi^{\rm rot} T^{\rm rot}$

 $\partial_t f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) = J[\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t| f, f]$

$$J[f,f] \rightarrow -\lambda\nu_0 (f - f_0) + \frac{\xi^{\text{tr}}}{2} \frac{\partial}{\partial \mathbf{v}} \cdot [(\mathbf{v} - \mathbf{u})f] + \frac{\xi^{\text{rot}}}{2} \frac{\partial}{\partial \boldsymbol{\omega}} \cdot (\boldsymbol{\omega}f)$$

$$\lambda \equiv \frac{1+\alpha}{2} + \frac{\kappa}{1+\kappa} \frac{1+\beta}{2}, \quad \nu_0 = \frac{16\sqrt{\pi}}{5} n\sigma^2 \sqrt{T^{\rm tr}/m}$$

$$f_0 = n \left(\frac{mI}{4\pi^2 T^{\rm tr} T^{\rm rot}}\right)^{3/2} \exp\left[-\frac{m(\mathbf{v} - \mathbf{u})^2}{2T^{\rm tr}} - \frac{I\omega^2}{2T^{\rm rot}}\right]$$

An even simpler version ...

$$\partial_t f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) = -\lambda \nu_0 \left[f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) - f_0^{\rm tr}(\mathbf{r}, \mathbf{v}, t) \right] \\ + \frac{\xi^{\rm tr}}{2} \frac{\partial}{\partial \mathbf{v}} \cdot \left[(\mathbf{v} - \mathbf{u}) f^{\rm tr}(\mathbf{r}, \mathbf{v}, t) \right]$$

$$\partial_t T^{\mathrm{rot}} + \nabla \cdot \left(\mathbf{u} T^{\mathrm{rot}}\right) = -\xi^{\mathrm{rot}} T^{\mathrm{rot}}$$

Application to simple shear flow

Application to simple shear flow Translational/Rotational temperature ratio

Application to simple shear flow Shear stress

 $\frac{P_{xy}}{nT^{\mathrm{tr}}} = -\frac{\sqrt{3\widehat{\xi}^{\mathrm{tr}}/2}}{1+\widehat{\zeta}^{\mathrm{tr}}}$

$$=\frac{5}{6}\frac{1-\alpha^2+2\kappa(1-\beta^2)/(2\kappa+1-\beta)}{1+\alpha+\kappa(1+\beta)/(1+\kappa)}$$

Scaled thermal rate

Application to simple shear flow Anisotropic translational temperatures

Conclusions and outlook

- Collisional thermal rates obtained for mixtures of inelastic rough hard spheres.
- Interesting non-equipartition phenomena in the HCS ("ghost" effect).
- Simulations planned to test the theoretical predictions.
- Proposal of a simple model kinetic equation for the single-component case.
- Solution of the above model in the uniform shear flow. Simulations planned.
- Derivation of the Navier-Stokes constitutive equations.

Thanks for your attention!

\$6

