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Mixture of inelastic rough hard spheres.
The Boltzmann equation.
Collisional thermal rates. Equilibration and
cooling rates
Application to the homogeneous cooling
state. Non-equipartition of energy.
Simple kinetic model for monodisperse
systems. Application to the USF.
Conclusions and outlook.
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Outline



Minimal model of a granular gas:
A gas of identical smooth inelastic hard

spheres
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http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

Elastic collision Inelastic collision

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/


But … real grains

Frontiers in Nonequilibrium Physics. Granular Physics, Kyoto,  21 July 2009 4

Have a non-constant coefficient of restitution

www.oxfordcroquet.com/tech/



But … real grains
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Are non-spherical



But … real grains
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Are polydisperse

http://www.cmt.york.ac.uk/~ajm143/nuts.html



But … real grains
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Are rough
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Model of a granular gas:
A mixture of inelastic rough hard spheres
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Several circles
(Kandinsky, 1926)

This model unveils an inherent
breakdown of energy equipartition in
granular fluids, even in homogeneous
and isotropic states



Some previous works
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o Monodisperse inelastic rough spheres
Jenkins & Richman (1985): Shear flow
Lun (1991): Quasi-smooth, shear flow
Goldshtein & Shapiro (1995): Rates of change, HCS
Luding, Huthmann, McNamara & Zippelius (1998): Evolution HCS, MD
Hayakawa, Mitarai & Nakanishi (2002): Micropolar fluid model
Goldhirsch, Noskowicz & Bar-Lev (2005): Quasi-elastic, quasi-smooth,        

constitutive equations
…

o Polydisperse inelastic smooth spheres
Garzó & Dufty (1999): Rates of change, HCS
Barrat & Trizac (2002): WN driving
…
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Mechanical parameters:

• X components (i=1, …, X)
• Masses mi
• Diameters σi
• Moments of inertia Ii
• Coefficients of normal restitution αij
• Coefficients of tangential restitution βij
• αij =1 for elastic particles
• βij=-1 for smooth particles
• βij=+1 for totally rough particles
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Collision rules:
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Smooth spheres



Energy collisional loss
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Energy is conserved only if the spheres are 
• elastic (αij=1) and 
• either

• smooth (βij=-1) or
• perfectly rough (βij=+1)



Partial (granular) temperatures
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Collisional rates of change for
temperatures
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Our main goal
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(Cartoon by Bernhard
Reischl, University of 

Vienna)

(1844-1906)

Boltzmann equation:

Binary collisions



“Exact” results
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Additional assumptions
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Results
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Decomposition
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Thermal rates = Equilibration rates + Cooling rates

Equil. Equil. Equil.

Cooling Cooling

Net cooling rate = Σ Cooling rates



Decomposition
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Thermal
rates

Equilibration
rates

Cooling
rates



Net cooling rate
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Simple application:
The Homogeneous Cooling State (HCS)
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The HCS is
• Spatially homogeneous
• Isotropic
• Undriven
• Freely cooling



Single-component case (κ=2/5)
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Equipartition



Binary mixture
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Binary mixture
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1
2



Translational/Rotational
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Equipartition



Rotational/Rotational
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Equipartition



Translational/Translational
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Equipartition

“Pure” smooth spheres
(Garzó&Dufty, 1999)

“Ghost” effect: A tiny amount of roughness has dramatic effects on the temperature ratio
(enhancement of non-equipartition)



Binary mixture
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2
1



Translational/Translational
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Equipartition

“Pure” smooth spheres

“Ghost” effect: A tiny amount of roughness has dramatic effects on the temperature ratio



Simple application:
White-noise heating (steady state)
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Translational/Rotational
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Equipartition

Weak influence of inelasticity



Rotational/Rotational
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Equipartition

Same qualitative behavior for different inelasticities



Translational/Translational
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Equipartition

“Pure” smooth spheres
(Barrat&Trizac, 2002)

No “ghost” effect! (steady state)



Locus of equipartition: 
Under which conditions does

equipartition hold?
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Simple kinetic model for
monodisperse inelastic rough 

hard spheres
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Elastic smooth spheres
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An even simpler version …
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Application to simple shear flow
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Application to simple shear flow
Translational/Rotational temperature ratio
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Independent of α



Application to simple shear flow
Shear stress
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Scaled thermal rate



Application to simple shear flow
Anisotropic translational temperatures
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Conclusions and outlook
Collisional thermal rates obtained for mixtures of
inelastic rough hard spheres.
Interesting non-equipartition phenomena in the
HCS (“ghost” effect).
Simulations planned to test the theoretical
predictions.
Proposal of a simple model kinetic equation for
the single-component case.
Solution of the above model in the uniform shear
flow. Simulations planned.
Derivation of the Navier-Stokes constitutive
equations.
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Thanks for your attention!
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