Playing with Marbles: Structural and
Thermodynamic Properties of Hard-Sphere
Systems

Andrés Santos

Abstract These lecture notes present an overview of equilibriunssizdl mechan-

ics of classical fluids, with special applications to theistural and thermodynamic
properties of systems made of particles interacting viahttuel-sphere potential
or closely related model potentials. The exact statisticathanical properties of
one-dimensional systems, the issue of thermodynamicdirgjstency among dif-
ferent routes in the context of several approximate thepaed the construction
of analytical or semi-analytical approximations for theustural properties are also
addressed.

1 Introduction

Hard-sphere systems represent a favorite playgroundtistgtal mechanics, both
in and out of equilibrium, as they represent the simplestefwdf many-body sys-
tems of interacting particles [1].

Apart from their academic or pedagogical values, hard+sph®dels are also
important from a more practical point of view. In real fluidsspecially at high
temperatures and moderate and high densities, the stalietod thermodynamic
properties are mainly governed by the repulsive forces gmuoolecules and in this
context hard-core fluids are very useful as reference syst2n3].

Moreover, the use of the hard-sphere model in the realm d€soflensed matter
has become increasingly popular [4]. For instance, thetffeinteraction among
(sterically stabilized) colloidal particles can be tunedratch almost perfectly the
hard-sphere model [5].

As a very imperfect measure of the impact of the hard-sphedeiron current
research, Fig. 1.1 shows the number of papers per year pablis the ten-year
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Fig. 1.1 Number of papers RO0
per year published in the ten-
year period 2003-2012 that r I I —1 1
include the terms “hard” and
“sphere” as a topic (hollow
columns) or in the title (col-
ored columns).
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period 2003-2012 (according to Thomson Reuters’ Web of Hedge) that include
the words “hard’and“sphere” as a topic (that is, in the title, in the abstracta®a

keyword). It can be observed that the number is rather &abilfluctuating around
700 papersl/year. If one constrains the search criteriorapes including “hard”
and “sphere” in the title, about 100 papers/year are found.

Despite the title of this work and the preceding paragraiblesnain aim of these
lecture notes is neither restricted to hard-sphere fluiddotused on the “state of
the art” of the field. Instead, the notes attempt to presemtamduction to the equi-
librium statistical mechanics of liquids and non-idealegmsat a graduate-student
textbook level, with emphasis on the basics and fundaneeotéhe topic. The treat-
ment uses classical (i.e., non-quantum) mechanics andeweasprerequisites are
required, apart from standard statistical-mechanicamides. Most of the content
applies to any (short-range) interaction potential, amgetisionality, and (in gen-
eral) any number of components. On the other hand, somdispgmplications deal
with the properties of fluids made of particles interactifeythe hard-sphere poten-
tial or related potentials. The approach is unavoidablgdiatoward those aspects
the author is more familiarized with. Thus, important tgscch as inhomogeneous
fluids and density functional theory [6, 7, 8, 9, 10, 11], rstdhle glassy states
[12, 13, 14], and perturbation theories [2, 3] are not regmé=d in these notes.

Apart from a brief concluding remark, the remainder of thiesgture notes is
split into the following sections:

2. A Brief Survey of Thermodynamic Potentials

3. A Brief Survey of Equilibrium Statistical Ensembles

4. Reduced Distribution Functions

5. Thermodynamics from the Radial Distribution Function
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6. One-Dimensional Systems. Exact Solution for NearestiNmr Inter-

actions

7. Density Expansion of the Radial Distribution Function

8. Ornstein—Zernike Relation and Approximate Integral&mn Theories
9. Some Thermodynamic Consistency Relations in Approxeriaeories
10. Exact Solution of the Percus—Yevick Equation for Hard&ps . . . and
Beyond

The core of the notes is made of Sects. 4, 5, 7, and 8. Thewsathrthe defini-
tion of the reduced distribution functions and, in partaoubf the radial distribution
function g(r) (Sect. 4), and continues with the derivation of the maintroay-
namic quantities in terms ajf(r) (Sect. 5). This includes the chemical-potential
route, usually forgotten in textbooks. Sections 7 and 8 apeentechnical. They
have to do with the expansion in powers of densitg@f and the pressure, the def-
inition of the direct correlation function(r), and the construction of approximate
equations of state and integral-equation theories. Batticses make extensive use
of diagrams but several needed theorems and lemmas afeflibly simple exam-
ples without formal proofs.

In addition to the four core sections mentioned above, therdéive more sections
that can be seen as optional. Sections 2 and 3 are includeaki® time notes as self-
contained as possible and to unify the notation, but otlerwan be skipped by
the knowledgeable reader. Sections 6, 9, and 10 are “sitheglisWhereas one-
dimensional systems can be seen as rather artificial, it dowistedly important
from pedagogical and illustrative perspectives to derhartexact structural and
thermophysical quantities, and this is the purpose of $e8ection 9 presents three
examples related to the problem of thermodynamic consigtamong different
routes when an approximaggr) is employed. Finally, Sect. 10 derives the exact
solution of the Percus—Yevick integral equation for hartiesps as the simplest
implementation of a more general class of approximations.

2 A Brief Survey of Thermodynamic Potentials

Just to fix the notation, this section provides a summary wiesof the most impor-
tant thermodynamic relations.

2.1 Isolated Systems. Entropy

In a reversible process, the first and second laws of thermadics in a fluid mix-
ture can be combined as [15, 16]
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2.1)

TdS=dE + pdV — ¥ pydN,
Vv

whereSis the entropyE is the internal energy/ is the volume of the fluid, and,

is the number of particles of speciesAll these quantities arextensivei.e., they
scale with the size of the system. The coefficients of theéfitials in (2.1) are the
conjugateintensivequantities: the absolute temperatufg,(the pressurep), and
the chemical potentialgu().

Equation (2.1) shows that timaturalvariables of the entropy akg V, and{N, },
i.e., S(E,V,{Ny}). This implies thatSis the right thermodynamic potential iso-
latedsystems: at giveEk, V, and{N, }, Sis maximal in equilibrium. The respective
partial derivatives give the intensive quantities:

(Bl T (W T (00 @2
T B vy T Ve, T Ny e

The extensive nature d, E, V, and {N,} implies the extensivity condition
S(AE,AV,{ANy}) =AS(E,V,{N,}). Application of Euler’s homogeneous function
theorem yields

S 0S 0S
SEV.{N }):E(_) +v(—) FSN (_) .
’ 0E Vﬁ{NV} av Eﬁ{NV} Z ’ 0NV EaVa{NV#»V}
(2.3)
Using (2.2), we obtain the identity
TS=E+ prZuVNV . (2.4)
Vv

This is the so-calletlindamental equation of thermodynamidgferentiating (2.4)
and subtracting (2.1) one arrives at the Gibbs—Duhem oglati

AT —Vdp+ $ Nydpy = 0. (2.5)
vV

Equation (2.1) also shows th&tV, and{N,}, are the natural variables of the
internal energE(S,V, {N, }), so that

JE JE JE
(5 (e (), @9
VA{Nv} S{Nv} V/ SVANyey }

2.2 Closed Systems. Helmholtz Free Energy

From a practical point of view, it is usually more convenienthoose the tempera-
ture instead of the internal energy or the entropy as a covar@ble. In that case,
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the adequate thermodynamic potential is no longer eitteeetiiropy or the inter-
nal energy, respectively, but the Helmholtz free endtgit is defined fromSor E
through the Legendre transformation

F(Tava{Nv}):E*TSZ*pVJFZHVNV ) (2.7)
Vv
where in the last step use has been made of (2.4). From (2.Gbta&n

v

so that

oF oF oF
V.{Nv} TNy} v/ TV Ny}

The Helmholtz free energy is the adequate thermodynamientiat in a closed
system, that is, a system that cannot exchange mass witmtirerement but can
exchange energy. At fixel, V, and{N, }, F is minimal in equilibrium.

2.3 Isothermal-Isobaric Systems. Gibbs Free Energy

If, instead of the volume, the independent thermodynamiiakie is pressure, we
need to perform a Legendre transformation frérto define the Gibbs free energy
(or free enthalpy) as

G(T,p,{Nv}) =F +pV =75 LNy (2.10)

The second equality shows that the chemical poteptiatan be interpreted as the
contribution of each particle of speciedo the total Gibbs free energy. The differ-
ential relations now become

dG = —SdT +Vdp+  pvdNy , (2.11)
v

S__ (‘;_$) V= (‘;_G) = (:TG) .12
PNV} P/Tingy v/ TNy}

Needless to say; is minimal in equilibrium if one fixed', p, and{N, }.
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2.4 Open Systems. Grand Potential

In an open system, not only energy but also particles can &feaexged with the en-
vironment. In that case, we need to repldbk } by {1y} as independent variables
and define the grand potenti@l from F via a new Legendre transformation:

Q(T.V, {IJV}) =F- ZIJVNV =—pV. (2.13)

Interestingly, the second equality shows thd® /V is not but the pressure, except
that it must be seen as a function of temperature and the chépotentials. Now
we have

dQ = —SdT — pav — 3 Nydl - (2.14)
vV
90 90 o) 20
) () ()
OT /v {u} Nty VY O ) 7 p {0}
(2.15)

2.5 Response Functions

We have seen that the thermodynamic varialles T (or S« T), V + p, and

Ny <> [y appear as extensive intensive conjugate pairs. Depending on the ther-
modynamic potential of interest, one of the members of tliegués as independent
variable and the other one is obtained by differentiatibanladditional derivative is
taken one obtains the so-callesponsdunctions. For example, the heat capacities
at constant volume and at constant pressure are defined as

JE s 0°F
R T
oT Jv.ing OT )y IT% )y ()

S 092G
Co=T (_) =-T (—) ) (2.17)
OT ) v oT% ) b i)

Analogously, it is convenient to define the isothermal coespibility

p 1 <0V) 1 <026>
== (2L I i
V \dp TNy} v\ ap? TNy}

op o 92F o

V(= = |V (= , (2.18)
(5V)T,{Nv}] (aVZ)T,{Nv}]

and the thermal expansivity
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Fig. 3.1 Sketch of the phase

space of a system & iden- dx'=dr" de
tical particles. The horizontal Y /
axis represents theex N posi- p 8

tion variables § components
for each particle), while the
vertical axis represents the N
d x N momentum variables.
A differential phase-space

volume &N around a point

xN is represented.
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The equivalence between the second and fourth terms in)(8. 2% example of a
Maxwell relation.

3 A Brief Survey of Equilibrium Statistical Ensembles

In this section a summary of the main equilibrium ensemidgzrésented, essen-
tially to fix part of the notation that will be needed later &or simplicity, we will
restrict this section to one-component systems, altholiglextension to mixtures
is straightforward.

Let us consider alassicalsystem made dfl identicalpoint particles ird dimen-
sions. In classical mechanics, the dynamical state of teesyis characterized by
theN vector positiongr1,ro,...,rn} and theN vector momentdps, p2,...,pPn}-

In what follows, we will employ the following short-hand raion

o rN={ry,rp,...,rn}, drN=drqdrp---dry,

© pN = {pl7p27"'7pN}: de = dplde"'de,
o XN ={rN pN}, axN =drNdpN.

Thus, the wholenicroscopicstate of the systenmiicrostate is represented by
a single poiniN in the (2d x N)-dimensionaphase spacésee Fig. 3.1). The time
evolution of the microstate" is governed by the Hamiltonian of the systeta(xN)
through the classical Hamilton’s equations [17].

Given the practical impossibility of describing the systaia microscopic level,
a statistical description is needed. Thus, we define thegpbpace probability dis-
tribution functionpn (xN) such thapy (xN)dxN is the probability that the microstate
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of the system lies inside an infinitesimal (hyper)volun¥ dround the phase-space
pointxN.

3.1 Gibbs Entropy

The concept of a phase-space probability distribution tionds valid both out of
equilibrium (where, in general, it changes with time acaogdo the Liouville the-
orem [18, 19]) and in equilibrium (where it is stationary).the latter caspy (x)
can be obtained for isolated, closed, open, ...systems Iwiag logical steps
and starting from thequal a priori probability postulatéor isolated systems. Here
we follow an alternative (but equivalent) method based éorination-theory argu-
ments [19, 20, 21].

Let us define the Gibbs entrofynctional

Slon] = —ks / dx™ o (XM In [Cupon (XY)] |, (3.1)

wherekg is the Boltzmann constant and
Cn = N!haN | (3.2)

In (3.2) the coefficienhdN is introduced to comply with Heisenberg’s uncertainty
principle and preserve the non-dimensional charactereftijument of the loga-
rithm, while the factoriaN! accounts for the fact that two apparently different mi-
crostates which only differ on the particle labels are ptgity the same microstate
(thus avoiding Gibbs's paradox).

Equation (3.1) applies to systems with a fixed number of glagiN. On the
other hand, if the system is allowed to exchange particlél thie environment,
microstates with differerltl exist, so that one needs to define a a phase-space density
PN (xN) for eachN > 0. In that case, the entropy functional becomes

Sl{on}] = —ke Nio [ onx)in [Cupn (x™] (3.3)

Now, the basic postulate consists of asserting that, odt pbasible phase-space
probability distribution functiongy consistent with giveronstraintwhich define
theensembl®f accessible microstates), tlaquilibriumfunctionp,‘jq is the one that
maximizeghe entropy functionabjpy]. Oncep,'f,Ol is known, connection with ther-
modynamics is made through the identifications8 = S[py’ as the equilibrium
entropy.
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3.2 Microcanonical Ensemble (Isolated System)

The microcanical ensemble describes an isolated systethasdt is characterized
by fixed values oV, N, E (the latter with a tolerancAE, in accordance with the
uncertainty principle). Therefore, the basic constrahe normalization condition

/ dxNony(xN)=1. (3.4)
E<HN(XN)<E+AE

Maximization of the entropy functional just says th@f(x") = const for all the
accessible microstat& < Hy(x\) < E 4 AE. Thus,

1 E<HyN)<E+AE
() = ¢ ey B S PNOC) S EHAE, (3.5)
0, otherwise

The normalization function

cone (E,N,V) = / axN (3.6)
E<Hn(XN)<E+AE

is the phase-space volume comprised between the hypaessHy(x\) = E
andHy(xN) = E + AE. By insertion of (3.5) into (3.1) one immediately sees that
wne (E,N,V) is directly related to the equilibrium entropy as

OJAE(E,N,V)

S(EN,V) =ksln =5 g

(3.7)

In this expression the specific valuedE becomes irrelevant in the thermodynamic
limit (as long asAE < E).

3.3 Canonical Ensemble (Closed System)

Now the system can hawmnyvalue of the total energlf. However, we are free to
prescribe a given value of tfeverageenergy(E). Therefore, the constraints in the
canonical ensemble are

/de on(xNy =1, /de Hn M) o (XN) = (E) . (3.8)

The maximization of the entropy functional subject to thestaaints (3.8) can be
carried out through the Lagrange multiplier method withreagult

e_BHN oxN)

~ NINZ4(B,V) (39

on(xN)
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wheref is the Lagrange multiplier associated wita) and thepartition function
2\ Is determined from the normalization condition as

Z(B.V) = @/dx'“ g BN (3.10)
Substitution of (3.9) into (3.1) and use of (3.8) yields

S=kg(InZy + B(E)) . (3.11)

Comparison with (2.7) (where now the internal energy isespnted byE)) allows
one to identify

1

B= T F(T,N,V)=—keTIn2n(B,V) . (3.12)
B
Therefore, in the canonical ensemble the connection withntiodynamics is con-
veniently established via the Helmholtz free energy ratihan via the entropy.
As an average of a phase-space dynamical variable, thaahtenergy can be

directly obtained from Iz as

dln 2,
(E) =— 35 N (3.13)
Moreover, we can obtain the energy fluctuations:
9?1
(E?)—(E)*= ar;;?pN = keT?Cy . (3.14)

In the last step, use has been made of (2.16).

3.4 Grand Canonical Ensemble (Open System)

In an open system neither the energy nor the number of pestieldetermined but
we can choose to fix their average values. As a consequeraggitistraints are

éo/dXNpN(XN):l’ éo/dXN Hn ()N () = (E) . (3.15)

> N/depN(xN) —(N) . (3.16)
=0
The solution to the maximization problem is

e—aNe—BHN(XN)
~ NINZ(B,a,V)

N

PN (XT) (3.17)
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wherea andf are Lagrange multipliers and tigeand partition functionis

[ee]

=(B,a,V) deN/dx e BN (X :éoe-“NgN(ﬁ,V). (3.18)

In this case the equilibrium entropy becomes
S=kg(In=+B(E)+a(N)) . (3.19)

From comparison with the first equality of (2.13) we can idfgnt

B= % , a=-Bu, Q(T,uV)=—ksTIn=(B,a,V). (3.20)
The average and fluctuation relations are
(E) = jg}f . (E®)—(E)2= 02'7”25 —keT?Cy | (3.21)
( >:_a(|;;57 (3.22)
(N?) — (N)? = ‘9;';25 = kBT<NT>2KT : (3.23)

The second equality of (3.23) requires the use of thermadyjoielations and math-
ematical properties of partial derivatives.
3.5 Isothermal-Isobaric Ensemble

In this ensemble the volume is a fluctuating quantity and @slaverage value is
fixed. Thus, similarly to the grand canonical ensemble, thestraints are

[av oo =1, [“av [aduxon) =€) . (3:24)

/ dVV/depN(xN) — W) (3.25)
0
Not surprisingly, the solution is
e*We*BHN(XN)
pn(x") = (3.26)

VoNIhdNAN (B,y)

where\y is an arbitrary volume scale factor (needed to keep the codienen-
sions),y andf3 are again Lagrange multipliers, and the isothermal-isolpaartition
function is
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1 © N 1 />
- - W NgBHNGN) _ & vy
M(B.Y) VoN!th/o Ve /dx e Vo/o VeV K (B,V).
(3.27)
As expected, the entropy becomes

S=kg(InAn+B(E) +y(V)) . (3.28)

From comparison with (2.10) we conclude that

1

B:@7 y:Bpa G(T7p7N):_kBTInAN(B7V) (329)

The main average and fluctuation relations are

dInAN
V) =-=5, (3.31)
2

w2y -2 =2 ;;ZAN — kgT (VKT . (3.32)

Equations (3.23) and (3.32) are equivalent. Both show tietensity fluctuations
are proportional to the isothermal compressibility andredase as the size of the
system increases. In (3.23) the volume is constant, sotibadénsity fluctuations
are due to fluctuations in the number of particles, while thpasite happens in
(3.32).

3.6 ldeal Gas

The exact evaluation of the normalization functions (3(8)10), (3.18), and (3.27)
is in general a formidable task due to the involved depenelefthe Hamiltonian
on the coordinates of the particles. However, in the caseofinteracting particles
(ideal gas), the Hamiltonian depends only on the momenta:

S P

N id /N
) = KN = 3 S

(3.33)
wheremis the mass of a particle. In this case Nuvody Hamiltonian is just the sum
over all the particles of the one-body Hamiltonigfy 2m and the exact statistical-
mechanical results can be easily obtained. The expresgortse normalization
function, the thermodynamic potential, and the first denies of the latter for each
one of the four ensembles considered above are the followrieg:

e Microcanonical ensemble
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d/2
v <4dﬂNE) ]} , (3.34)

d/2
Y (4rm) ]} @3

d/2
%<4ﬂE> ] (3.36)

In ke (E,N,V) = N{%Jrln

SYE,N,V) = NkB{d+2 +1In

2E a_ 2E ia__2E

id __
eTm=GN" P ~gv’ K =—gn™m AN
e Canonical ensemble
id AN Vv _ h
EfN (va) - N! ) Z(va) - [/\(B)]d ’ /\(B) - 27Trn|43-(|—3737)
a I(B) |
FP(T,N,V) = NkeT {In V/N 1] : (3.38)
€= SNt o=, W=kt 48] @)

e Grand canonical ensemble

- N
zidw,a,v)NZe"NMei, z=e "=, (340)
=0

N!
Q9B,a,V)=—pV = —kgTe 9¢(B,V), (3.41)
(€)= SheTe C(BY), N =eBY), (342
e Isothermal-isobaric ensemble
AN (B,y) = W/ dvvNe W = \% . (3.43)
GY(N,p,T) = N = NigT In [BpAY(B)| | (3.44)
(E)d = gNkBT (V)= % : (3.45)

In (3.37)¢ is the one-particle partition function andis the thermal de Broglie
wavelength. In (3.402 is thefugacity Note that (3.35), (3.38), (3.41), and (3.44)
are equivalent. Likewise, (3.36), (3.39), (3.42), and $3 &re also equivalent. This
a manifestation of the ensemble equivalence in the thermadic limit, the only
difference lying in the choice of independent and dependanidbles.
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3.7 Interacting Systems

Of course, particles do interact in real systems, so the Kamn has the form
Hn (M) = H (p") + en () (3.46)

where @y denotes the total potential energy. As a consequence, tligquafunc-
tion factorizes into its ideal and non-ideal parts:

flfN(BaV) = gl\lld(ﬁvv)QN(BaV) ) QN(BaV) =vN /.drNeiﬁmN(rN) - (3.47)

The non-ideal parQy is theconfiguration integralln the canonical ensembi@y
is responsible for thexcessontributions(E)® = (E) — (E)", p* = p— pd, u®*=
H—

_ aIn QN

(9|I’]QN (9|I’]QN

ex ex __ ex _ _
(E)™ = B P keT—o— H keT = (3.48)
The grand partition function does not factorize but can bigtewr as
_ * VN Vv
:(Baavv):1+ %[Z/\(Bvaﬂl\‘ ’ (349)
—1 .
where ()
2(a
Z0(B,a) = (3.50)
AB)°

is a sort of modified fugacity and we have taken into accowatt@y = 1. Thus, the
configuration integrals are related to the coefficients enaékpansion of the grand
partition function in powers of the quantizy .

4 Reduced Distribution Functions

The N-body probability distribution functiorpy(xN) contains all the statistical-
mechanical information about the system. On the other hpadial information
embedded imarginalfew-body distributions are usually enough for the most-rele
vant quantities. Moreover, it is much simpler to introduseful approximations at
the level of the marginal distributions than at thebody level.

Letus introduce the-bodyreduced distribution functions{x®) such thatfs(x%)dx®
is the (average) number of groupssparticles such that one particle lies inside a
volume k; around the (1-body) phase-space poiptother particle lies inside a
volume &, around the (1-body) phase-space paint. .. and so on (see Fig. 4.1 for
s= 3). More explicitly,
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Fig. 4.1 Sketch of the one-
body phase space. The hor- dx =dr d
izontal axis represents tlte /xl 1Py
position coordinates, while L g
the vertical axis represents the e P :
d momentum components. P 1
Three pointsXy, X2, andxs) T, T, T
are represented. ‘
Py ]
N N
fs(x)= % X" 5(xj, —x1) -~ O(X{, —Xs)on(X")
i1 A7 #is
N! N
“N=s! dXst1 [ OXsy2e - [ dXNPON(XT) . (4.1)

In most situations it is enough to take= 2 and integrate out the momenta. Thus,
we define theonfigurationakwo-body distribution function as

Na(ry,rz) = /dpl/ dp f2(X1,X2) - (4.2)
Obviously, its normalization condition is
/dr1/dr2nz(r1,r2):N(Nfl). (4.3)

The importance of, arises especially when one is interested in evaluatinguihe a
erage of a dynamical variable of the form

1
A(rN)zégAz(ri,rj). (4.4)
i#]
In that case, it is easy to obtain

<A> z/deA(rN)pN(xN) = %/drl/drzAz(rl,rz)nz(rl,rz). (4.5)

The quantities (4.1) and (4.2) can be defined both out of anefyirilibrium.
In the latter case, however, we can benefit from the (formadkedge ofpy. In
particular, in the canonical ensemble [see (3.9) and (Bat® has

Na(ry,ro) = N\(/ﬁi(;Nl)/drs---/drN g PO (4.6)

In the absence of interaction®y = 0),
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g = NIN=1) o

V2 »

N
o 4.7)

In the grand canonical ensemble the equations equivaléht3p (4.6), and (4.7)
are

[ [drana(rara) = (N(N-1)) (4.8)

np(ry,ra) = éé [z,\([:\li,'a)]“N(N _1)/.dr3.../.drNe*B‘DN(rN) , (4.9)
& !

n?:%znz, nz\/m. (4.10)

4.1 Radial Distribution Function

Taking into account (4.7) and (4.10), we definejpla@ correlation functiomgy(r,r»)
by

Na(ri,r2) = n2g(ry,ro) . (4.11)
Thus, according to (4.6),
“(N—2) .
g(re,ra) = v o /drs---/drNe*B‘DN(m (4.12)

in the canonical ensemble.

Now, taking into account the translational invariance grtypof the system, one
hasg(ri,rz) =g(r1—r»). Moreover, a fluid is rotationally invariant, so that (assum
ing central forces)g(r; —rz) = g(r12), wherer;o = |r1 —r»| is the distance between
the pointsr, andr». In such a case, the functigir) is calledradial distribution
functionand will play a very important role henceforth.

An interesting normalization relation holds in the grandaaical ensemble. In-
serting (4.11) into (4.8) we get

1 _INN-1) (N2 1
\ /drg(r)_ N)? = N2 N | (4.13)

In the thermodynamic limit(N) — c andV — « with n = const), we know that
(N2)/(N)? — 1 [see (3.23)] (except near the critical point, where diverges).
This implies thatv ! [dr g(r) ~ 1, meaning thag(r) ~ 1 for macroscopicdis-
tancesr, which are those dominating the value of the integral. Ineotivords,
Jdrg(r)—1 < V.

Apart from the formal definition provided by (4.11) and (4),liRis important to
have a more intuitive physical interpretationgif ). Two simple equivalent inter-
pretations are:
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3f

Fig. 4.2 Left panel: Schematic view of how(r) is determined. The red particle is the refer-
ence one and the blue particles are those whose centers amisihnce betweenandr + dr.
The average number of blue particles, divided ryr2dr (in three dimensions) giveg(r).
Right panel: Radial distribution function for a Lennardide fluid at a reduced temperature
T*=0.71 and a reduced density = 0.844, as obtained from Monte Carlo simulations. Source:
http://en.wikipedia.org/wiki/Radiatlistribution function.

e g(r) is the probability of finding a particle at a distancaway from a given
reference particlaglativeto the probability for an ideal gas.

e If a given reference particle is taken to be at the originnttielocal aver-
age density at a distancérom that particle isig(r).

Figure 4.2 illustrates the meaning ofr) and depicts the typical shape of the
function for a (three-dimensional) fluid of particles irgeting via the Lennard-

Jones (LJ) potential
12 6
(p(r)4£[<g) (%)] (4.14)

at the reduced temperaturé = kgT /€ = 0.71 and the reduced density = no3 =
0.844. The Lennard-Jones potential is characterized by a sisthnces and well
depthe, and is repulsive for < 21/6g and attractive for > 21/6g. As we see from
Fig. 4.2,9(r) is practically zero in the region€@r < o (due to the strongly repulsive
force exerted by the reference particle at those distangesents a very high peak
atr ~ o, oscillates thereafter, and eventually tends to unity éogl distances as
compared witho. Thus, a liquid may present a strong structure captureg{ by

Some functions related to the radial distribution functggn) can be defined.
The first one is simply the so-callégtal correlation function

h(r)=g(r)—1]. (4.15)

Its Fourier transform
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Fig. 4.3 Structure factor of a three-dimensional hard-sphere flagdgbtained from the Percus—
Yevick approximation) at several values of the packingtfoacn = (11/6)nc® = 0.05, Q1, 0.2,
0.3, 04, and 05, in increasing order of complexity.

Hmz/mgmmn (4.16)

is directly connected to the (statisfructure factor

S(k) = 1+ nh(K) |. (4.17)

The typical shape d§(k) at several densities is illustrated in Fig. 4.3 for the hard-

sphere (HS) potential [1]
o, r<ag
r= ’ ’ 4.18
o(r) {O, o (4.18)

whereo is the diameter of the spheres.

The structure factor is a very important quantity becauss é@xperimentally
accessible by elastic scattering of radiation (x-rays otm&s) by the fluid [18, 22].
Thus, whileg(r) can be measured directly in simulations (either Monte Carlo
molecular dynamics) [23, 24], it can be obtained indireailgxperiments from a
numerical inverse Fourier transform k) — 1.

5 Thermodynamics from the Radial Distribution Function

As shown by (3.7), (3.12), (3.20), and (3.29), the knowlealtgny of the ensemble
normalization functions allows one to obtain the full theagnamic information
about the system. But now imagine that instead of the nomai#din function (for
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instance, the partition function in the canonical ensejnie are given (from ex-
perimental measures, computer simulations, or a certawry) the radial distribu-
tion functiong(r). Can we have access to thermodynamics directly fgdm? As
we will see in this section, the answer is affirmative in theecaf pairwise interac-
tions.

5.1 Compressibility Route

The most straightforward route to thermodynamics fig{m) is provided by choos-
ing the grand canonical ensemble and simply combining |88 (4.13) to obtain

(5.1)

F
X = nkeTkr — keT <a_g) 14 n/drh(r) —50)

T

wherey is the isothermal susceptibility and we recall that theltooarelation func-
tion is defined by (4.15) and in the last step use has been nigdd.@). Therefore,
the zero wavenumber limit of the structure factor (see Fig) i directly related to
the isothermal compressibility.

Equation (5.1) is usually known as tlisempressibility equation of stater the
compressibility routéo thermodynamics.

5.2 Energy Route

Equation (5.1) applies regardless of the specific form ofpiential energy func-
tion @y (rN). From now on, however, we assume that the interactigraiswise
additive i.e., @y can be expressed as a sum over all pairs of a certain funation (
teraction potentiallp that depends on the distance between the two particles of the
pair. In mathematical terms,

N-1 N

1
o (M) = o(rij) ==Y orij) |- (5.2)
5.3 0= e

=1 j=1+1

We have previously encountered two particular examples @d.4) and (4.18)] of
interaction potentials.

The pairwise additivity condition (5.2) implies thély is a dynamical variable
of the form (4.4). As a consequence, we can apply the pro&&y to the average
potential energy:

(E)* = (oy(rN)) = %/drl/ernZ(rler)QD(rlZ) : (5.3)
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Fig. 5.1 Cavity function in i T - T T
the overlapping region < 1000 -\, —a—n6'=03 -
for a hard-sphere fluid at three \. — A p5=0.5
different densities, as obtained AN e n6'=0.7
from Monte Carlo simulations '\ ¢—no =
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Adding the ideal-gas term [see (3.39)] and taking into aot@d.11), we finally
obtain

(E) =N [ngTJrg/dr (p(r)g(r)] , (5.4)

where we have used the general propgitly; [dro. % (r12) =V [dr .7 (r), Z(r)
being an arbitrary function.

Equation (5.4) defines thenergy route¢o thermodynamics. It can be equivalently
written in terms of the so-callechvity function

y(r) =g(r)eP?m | (5.5)

The resultis

(E) =N EkBTJrg/dr o(ne PoOyr) | |. (5.6)

The cavity functiory(r) is much more regular than the radial distribution func-
tion g(r). It is continuous even if the interaction potential is distiouous or di-
verges. In the case of hard spheres, for instance, while=0if r < g, y(r) is well
defined in that region, as illustrated by Fig. 5.1.

5.3 Virial Route

Now we consider the pressure, which is the quantity morectlyreelated to the
equation of state. In the canonical ensemble, the excessyreeis proportional to
dInQn/0dV [see (3.48)] and thus itis not the average of a dynamicahiséiof type
(4.5). To make things worse, the voluideappears in the configurational integral
[see (3.47)] both explicitly aninplicitly through the integration limits. Let us make
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this more evident by writing
On(V)=VvN [ drN g Bon(™) (5.7)

To get rid of this difficulty, we imagine now that the systenaisphere of volume
V and the origin of coordinates is chosen at the center of thersgp If the whole
system is blown up by a factar [18], the volume changes from to A9V and the
configurational integral changes fra@y (V) to Qn(A%V) with

QAN =AW N [ aNe PR Sy [ arte PO (5)

where in the last step the change— r{ =r;/A has been performed. We see that
Qn(A dV) depends o explicitly through the argument of the interaction potahti
Next, taking into account the identiBin Qu(A9V)/dV = (A /Vd)dINQn(AIV) /A,
we can write

dInQn(V) 1 dInQu(A%V)
ov vd ) a1 (5:9)
so that
aINQNAN)| DN (ANIN)
oA Ao B< 2 /\=1>
= fg/dl‘lfdl‘znz(fl,fﬂ 0(’)(0)\){12) -
_ B de(Ar)
=—5n V/drg(r) A | (5.10)

In the second equality use has been made of (4.5). Finallpthematical property
similar to (5.9) is

de(Ar)|  _ do(r)
0 A:l_r l (5.11)
Inserting (5.11) into (5.10), and using (5.9), we obtaingbaght result:
z7=_P_ nkBT 1——/drr (5.12)

This is known as the pressure routeuinial route to the equation of state, where
Z is thecompressibility factarExpressed in terms of the cavity function (5.5), the
virial route becomes

Bo(r)
ZE%—l—i——/dr ae . (5.13)
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5.4 Chemical-Potential Route

A look at (3.48) shows that we have already succeeded in ssioigethe first two
derivatives of IrQy in terms of integrals involving the radial distribution fttion.
The third derivative involves the chemical potential anchisch more delicate. First,
noting thatN is actually a discrete variable, we can rewrite

2InQn Qn(B,V)
N n Qn+1(B,V)

Thus, the (excess) chemical potential is related to theorespof the system to the
addition of one more particle without changing either terapge or volume.

TheN-body potential energy is expressed by (5.2). Now we add &a particle
(labeled as = 0), so that théN -+ 1)-body potential energy becomes

Bu® = —

(5.14)

N-1 N N

B (FV) = Zl > olrij)+ Y olroj) - (5.15)
i=1j=1+1

=1

The trick now consists of introducing the extra particlee(tbolute”) little by little
through acharging proces§gl8, 19, 26, 27, 28, 29, 30, 31]. We do so by introducing
a coupling parameteg such that its value & & < 1 controls the strength of the
interaction of particlé = 0 to the rest of particles (the “solvent”):

0 E=0
) (pny=1 ’
@\ (roj) = (5.16)
(1) {(P(foj% {=1.
The associated total potential energy and configuratiegial are
() .
D1 (1Y) = on(rN) + 5 9 (o) (5.17)
=1
(€)
GL2(B.V) =V [t g P, (5.18)

Thus, assuming tha;n,(ﬁl is a smooth function of, (5.14) becomes

/ famQN“BV). (5.19)

Since the dependence Q‘ N1 On & takes place through the extra summation in
(5.17) and all the solvent particles are assumed to be whnti

g _
IInQ ) _ v / N+ g B ey 99 (ron) (5.20)
ER ©) 9& '
QN+1
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Now we realize that, similarly to (4.12), the solute-solveadial distribution func-
tion is defined as

v-(N-1) : (&)
g9 (ror) = T/drz---/drN e B | (5.21)
Qnit1

This allows us to rewrite (5.20) in the form

anQ) -y 90
% — —r\]/—B/dro/drlg“)(rm)(pT(roﬂ ) (5.22)
Finally,
B
1= kgTIn (n/\d)Jrn/oldE/drg(E)(r)d%iE(r) , (5.23)

or, equivalently,

ge—ﬁfp“)(f)

Bu=1In(nn?) —n/o'ldE/dry“)(r) Iz

(5.24)

In contrast to the other three conventional routes [sed,(614), and (5.12)], the
chemical-potential routé5.23) requires the knowledge of the solute-solvent corre-
lation functions for all the values€ & < 1 of the coupling parametér.

5.5 Extension to Mixtures

In a multicomponent system the main quantities are

Number of particles of species Ng.

Total number of particled\ = 5 ; Nq.

Mole fraction of species: Xq = Ng /N, $ 4 Xa = 1.

Interaction potential between a particle of speaesand a particle of
species/: @uy(r).

¢ Radial distribution function for the pairy: gay(r)

All the previous thermodynamic routes can be generalizedixtures.

5.5.1 Compressibility Route

The generalization of (5.1) to mixtures is not trivial [3Zhe result is
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-1 oBp\ ~ 1
X (w)Tgy Xk (1+0)

(5.25)

where the elemer‘ﬁ‘ay of the matrixh is proportional to the zero wavenumber limit
of the Fourier transform of the total correlation functiop(r) = gay(r) — 1, namely

5.5.2 Energy Route

In this case, (5.6) is simply generalized as

(E)=N [ngT + g S XaXy / dr qoay(r)e_ﬁ"’“V(r)yay(r)] : (5.27)
a,y

5.5.3 Virial Route

Likewise, the generalization of (5.13) to mixtures reads

_ P n Oe Boay(r)
Z= or =1+ Zd%Xaxy/drygy(r)riar . (5.28)

5.5.4 Chemical-Potential Route

In this case, there exists a chemical potential associaitbdeach species and the
generalization of (5.24) is [31]

) de*B‘ﬂSfx)(r)

Bru =In (mAS) =Y xa [ ag Jarian = ; (5.29)

Here, the solute particie= 0 is coupled to a particle of specigsvia an interaction
potential(ngf,) (r) such that

0 =0
qﬁi)(r){ ’ g 1’ (5.30)
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Fig. 5.2 Hard-sphere interac-

tion potential. The potential is

equal to infinity in the shaded $,,()
region and zero otherwise.

oy r

so that it becomes a particle of speciesat the end of the charging process.
The associated radial distribution and cavity functiors g@(r) and yS,Eo,)(r) =
g&?(r)eﬁdi}(”, respectively.

The Helmholtz and Gibbs free energies can be obtained frpas [see (2.10)]

9 (F/V)

5 (5.31)

Ny =G=—-V?
ZIJV v

5.6 Hard Spheres

Let us now particularize the above expressions for multippnent hard-sphere flu-
ids [33]. The interaction potential function is given by floem (4.18) for any pair
of species, namely (see Fig. 5.2)

©, I<0ay,
r) = 5.32
Bay(r) {O, f> Oay. ( )

Here,oqy is the closest possible distance between the center of aesphspecies

o and the center of a sphere of spegiel we call 0y = 044 to the closest distance
between two spheres of the same spedied is legitimate to refer tao, as the
diameterof a sphere of species. However, that does not necessarily mean that
two spheres of different type repel each other with a distaagual to the sum of
their radii. Depending on that, one can classify hard-sphaxtures into additive

or nonadditive:

e Additive mixtures:.ogy = %(aa + oy) for all pairsary.
¢ Nonadditive mixturesogy # %(aa + oy) for at least one paiay.

As a consequence of (5.32),
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ae*Bq’aY(r)

e Beay(r) — O(r — oay) , 3

=0 (r—0ay) , (5.33)
where®©(x) andd(x) are the Heaviside step function and the Dirac delta function
respectively.

The compressibility route (5.25) does not include the Bxtdon potential explic-
itly and so it is not simplified in the hard-sphere case. Astiierenergy route, the
integral (5.27) vanishes becaugg(r)e P%v(") — 0 both forr < ggy andr > gy,
while yqy(r) is finite even in the region < ogy (see Fig. 5.1). Therefore,

(E) = NngT . (5.34)

But this is the ideal-gas internal energy! This is an expedsult since the hard-
sphere potential is only different from zero when two péescoverlap but those
configurations are forbidden by the Boltzmann factof&v("),

The generic virial route (5.28) is highly simplified for hasgheres. First, one
changes to spherical coordinates and takes into accourhthentald-dimensional
solid angle (area of d-dimensional sphere of unit radius) is

/d?: 2%y | (5.35)
where a2
_ (/4
W TFavdR) (5:38)

is the volume of a-dimensional sphere of unit diameter. Next, using the prigpe
(5.33), we obtain

P

_ d—1 d
kT 1+2 "Ny (Zyxaxyaayyay(aay) . (5.37)

The same method works for the chemical-potential routedjsa2th the choice

e BAL ) — o(r - old)) (5.38)

whereaé? =0 anda\%) = Oyq. Changing the integration variable in (5.29) frédm

to o5, one gets

Ova
Buy =1In (nx\,A\S’) +d2%vy Zxa/o dooa 68 *Yoa (0oa) |, (5.39)
a

where the notation has been simplified@é) — Opq andyf,? — Yoa-

If ogy > % (aa + ay) (positive or zermonadditivity, then it can be proved [31]
that
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Fig. 5.3 Schematic view of d(BF)
the thermodynamic inconsis- (By = ——~ —|F(T,V,N)
tency problem. 9B

e OF

=—— —|F(T,V,N)

e
\/‘p— v
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F
ey kgl = vt F(T,V,N)
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F(T,V,N)

Same result?

1
'ZGH
d2%nyy Zxa/o d0oq 0§y Yoa (G0a) = —IN(1—n) (5.40)
a

where

n=mygy Xa ad (5.41)
a

is the totalpackingfraction. In that case, (5.39) can be rewritten as

nx, A4 Ova B
By =In 1i—r"’erZdnvd S Xa /10_ ddoa 03 1Yo (0oa) |- (5.42)
a 2

5.7 The Thermodynamic Inconsistency Problem

Going back to the case of an arbitrary interaction potentiel have seen that the
knowledge of the radial distribution functiag(r) (where, for simplicity, we are

using the one-component language) allows one to obtainifioportant thermody-

namic quantities: the internal energy, the pressure, titbesmal compressibility,

and the chemical potential. By integration, one could imgple derive the free

energy of the system (except for functions playing the réietegration constants)
from any of those routes, as sketched in Fig. 5.3. The impbdmaestion is, would

one obtain consistent results?

Since all the thermodynamic routes are derived from forynedlact statistical-
mechanical formulas, it is obvious that the use ofékactradial distribution func-
tion g(r) must lead to the same exact free endfgy,V,N), regardless of the route
followed. On the other hand, if aapproximate ¢r) is used, one must be prepared
to obtain (in general) a different approxim&t€T,V,N) from each separate route.
This is known as théhermodynamic (in)consistency probleWhich route is more
accurate, i.e., which route is more effective in conceatimg deficiencies of an
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approximatey(r), depends on the approximation, the potential, and the thaym
namic state.

6 One-Dimensional Systems. Exact Solution for
Nearest-Neighbor Interactions

As is apparent from (4.12), the evaluationgdf) is a formidable task, comparable
to that of the evaluation of the configuration integral itselowever, in the case of
one-dimensional systemd & 1) of particles which only interact with their nearest
neighbors, the problem can be exactly solved [34, 35, 3638]/,

Let us consider a one-dimensional systeniNgdfarticles in a box of length (so
the number density is = N/L) subject to an interaction potenti@(r) such that

1. lim0¢(r) = . This implies that therder of the particles in the line
does not change.

2. limye (1) = 0. The interaction hasfanite range.

3. Each patrticle interactsly with its two nearest neighbors.

The total potential energy is then

N-—-1

on (M) = Zl(p(xiﬂ—m). (6.1)

6.1 Nearest-Neighbor and Pair Correlation Functions

Given a particle at a certain position, g (r)dr be theconditionalprobability of
finding its (right)nearest neighboat a distance betweerandr + dr (see Fig. 6.1,
top panel). More in general, we can defiplé (r)dr as the conditional probability
of finding its (right) /th neighbor (1< ¢ < N — 1) at a distance betweerandr +
dr (see Fig. 6.1, middle panel). Since thh neighbor must be somewhere, the
normalization condition is
/0 drp@(r)=1. 6.2)

In making the upper limit equal to infinity, we are implicithssuming the thermo-
dynamic limit L — o, N — o0, n = const). Moreover, periodic boundary conditions
are supposed to be applied when needed.

As illustrated by the bottom panel of Fig. 6.1, the followiregurrence relation
holds
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Fig. 6.1 Top panel: Two nearest-neighbor particles separated andiat. Middle panel: Two/th-
order neighbors separated a distand@ottom panel: lllustration of the convolution property.

pO(r) = [ arp(r)p U ). 63)

The convolution structure of the integral invites one tedduce the Laplace trans-
form

P (s) = /ooo dr e "pl(r) , (6.4)
so that (6.3) becomes
Pw@:Pm@ﬂ“W$:ﬂm$:Fm@r. (6.5)
The normalization condition (6.2) is equivalent to
PO©0)=1. (6.6)
Now, given a reference particle at a certain positionptgt )dr be thenumber of

particlesat a distance betweerandr + dr, regardless of whether those particles are
the nearest neighbor, the next-nearest neighbor, ... sefbeence particle. Thus,

ng(r) = Tzll o) N5 ﬁl o) ©.7)

Introducing the Laplace transform

qg5fm€%m, (6.8)
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Fig. 6.2 lllustration of the evaluation o (r) in the isothermal-isobaric ensemble.

and using (6.5), we have

G(s) — % i [P (S>r il Pp(lfz 5 (6.9)

Thus, the determination of the radial distribution funotig(r) reduces to the de-
termination of the nearest-neighbor distribution funetig? (r). To that end, we
take advantage of the ensemble equivalence in the therramj;zmmlt and use the
isothermal-isobaric ensemble.

6.2 Nearest-Neighbor Distribution. Isothermal-IsobariEnsemble

The isothermal-isobaric ensemble is described by (3.26).important point is that
the N-body probability distribution function in configuratiopace is proportional
to e BPV-BON(™) Therefore, in this ensemble the one-dimensional neassgthor
probability distribution function is

00 L L L
) r)D/ dLe-BPL/ dx3/ dx4---/ dxy e BN (6.10)
r X2 X3 XN-1

where we have identified the volurdewith the length_ and have taken the particles
i =1 (atxy = 0) andi = 2 (atxp = r) as the canonical nearest-neighbor pair (see
Fig. 6.2). Next, using (6.1) and applying periodic boundaogditions,

L—r—r

p(l)(r) 0 e_ﬁ(p(r) /'°° dL e_BpL\/Lir dr3e_B(p(r3)/ 3dr4e_ﬁ(p(r4>
r 0 0
ol / N e PR Ba) (6.11)
0

where a change of variables— ri = x; —x_1 (i = 3,...,N) has been carried out
andryyy =L —r—rz—rgq—---—ry. Finally, the change of variable— L' =L —r
shows that a factor@P' comes out of the integrals, the latter being independent of
r. In summary,

pV(r) = Ke Pee PP (6.12)
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where the proportionality constait will be determined by normalization. The
Laplace transform of (6.12) is

PY(s) = KQ(s+Bp) (6.13)

where

Q(s) = / dre "se o) (6.14)
0

is the Laplace transform of the Boltzmann factof&"). The normalization condi-
tion (6.6) yields

(6.15)

6.3 Exact Radial Distribution Function and Equation of Stat

Insertion of (6.15) into (6.9) gives the exact radial diasition function (in Laplace
space):

1 Q(s1hp)
G =GB QG pp |

To fully close the problem, it remains to relate the presg tae densityn, and the
temperaturd (equation of state). To do that, we apply the consistencylition

(6.16)

img(r)=1= Isi_rgsG(s) =1. (6.17)

r—co

ExpandingQ(s+ Bp) in powers ofsand imposing (6.17), we obtain

~Q(Bp)
Q'(Bp) |’

2Q(s)

n(p,T)= (6.18)

As a consistency test, let us prove that the equation of &at8) is equivalent
to the compressibility route (5.1). First, according tal@, the isothermal suscep-

tibility is
_(on _ . QBp)Q"(Bp) 6.19
X (aﬁp)a Yo 619

Alternatively, the Laplace transform df(r) is H(s) = G(s) — s%, and thus the
Fourier transform can be obtained as

h(k) = [H(S) + H(=9)]s_i = [G(S) + G(—9)|_i - (6.20)

In particular, the zero wavenumber limit is
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{G@ _ }] _Q'(Bp)  Q"(Bp) (6.21)

so that

. . _,Q(Bp [Q'(Bp) Q"(Bp)
1+n/dr h(r)=1 ZQ'(Bp) [ Q(Bp) ZQ'(BP)
Bp)

Q(Bp)2"(Bp)
—1+ 6.22
TP (6:22)

Comparison between (6.19) and (6.22) shows that (5.1) eciddatisfied.

6.4 Extension to Mixtures

In the case of one-dimensional mixtures the argumentsneatlabove can be ex-
tended without special difficulties [36, 37, 38]. Now, iretieofp(*) (r)dr one defines
pgf,),(r)dr as the conditional probability that tiéh neighbor to the right of a refer-
ence particle of speciasis located at a distance betwereandr + dr and belongs
to speciey. The counterparts of (6.2), (6.3), and (6.7) are

Z/mdrpﬁf;(r) —1, (6.23)
vV 0

=3 [ o piply Ve ) (6.24)
N%Yay(r) ;pay (6.25)

Next, by defining the Laplace transforrﬁe%v(s) andGqy(s) of pﬁfe,(r) andgaqy(r),
respectively, one easily arrives at

Gay(s) = i(P<l>(s)-[|—P<l>(s)}_l) , (6.26)

nxy ay

whereP(¥)(s) is the matrix of elementB{ (s).
The nearest-neighbor probability distribution is againl in the isothermal-
isobaric ensemble with the result

p&l&(r) _ XyKaye—B%V(r)e—Bpr ’ (6.27)

so that )
Péy)(s) = XyKayQay(s+Bp), (6.28)
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where Qqy(s) is the Laplace transform of €%v("). The normalization condition
(6.23) imposes the following relationship for the conssddt, = Kyq:

> XyKayQay(Bp) =1. (6.29)
y

To complete the determination &%, we can make use of the physical condition

stating that lin_,c pé,l&(r)/pgla(r) must be independent of the identity of the
species the reference particle belongs to, soKaatKqy is independent ofr. It is
easy to see that such a condition implies

KZy = KaaKyy - (6.30)
Finally, the equation of statg p, T ) is determined, as in the one-component case,
from the condition liM_e gay(r) = 1= lims_,0SGyy(s) = 1.
6.4.1 Binary Case

As a more explicit situation, here we particularize to a bjrmaixture. In that case,
(6.26) yields

- >
G11(s) = Qu(s)[1 nleE)Zg] Qa9 : (6.31)
- >
G22(S) = QZZ(S) [1 nXQZJSEg] + le(s) , (6.32)
~ Qu2(9)
Giz(s) = n/xeD(S) ’ (6.33)
where
Quy(9) = \/% P(S) = y/KaRKayQay(s+ BP) (6.34)
D(s) = [1 - Qu(8)] [1 — Qz(8)] — Q(S) - (6.35)

The parameterky, are obtained from (6.29) and (6.30). Firsi; andKy, can
be expressed in terms Kf» as

1—xK12Q12(Bp) Koy — 1-x1K12Q12(Bp)
x1Qu(Bp) X2Q22(BP)

The remaining paramet& » satisfies a quadratic equation whose solution is

Kip = (6.36)

_ 1= VI~ %R(Bp) _,_ 2u(B)%(Bp)
K= R uB)  RPP ST T oz o 630

Finally, the equation of state becomes
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Ogw (1) Dgps()

Fig. 6.3 Left panel: Square-well potential. Right panel: Stickyedraphere potential.

1
X2K11Q),(BP) +X2K11Q4,(BP) + 2x1xK12Q4,(BP)

n(p,T)= (6.38)

6.5 Examples

6.5.1 Sticky Hard Rods

As an application, we consider here the sticky-hard-rodiflwhich is the one-
dimensional version of the so-called sticky-hard-sph8i¢S) fluid. Let us first in-
troduce the square-well (SW) potential (see Fig. 6.3, laftgd)

o, r<o,
Gmw(r)=< -, o<r<a, (6.39)
0, r>a.

The associated Boltzmann factor is

0, r<o,
ehmwin —deBe gor<o, (6.40)
1, r>ao,
whose Laplace transformis
_ 1 € 0s —0's —0's
Q(s)fs[eﬁ (eos—e) +e . (6.41)

In order to apply the exact results for one-dimensionaksyst we must prevent the
square-well interaction from extending beyond nearegihi®rs. This implies the
constrainto’ < 20.

Now we take the sticky-hard-sphere limit [39] (see Fig. Gight panel)

0 =0, e—>w, 1 1=(0—0)P =finite, (6.42)
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Fig. 6.4 Radial distribution function for hard rodg (! = 0, left panel) and sticky hard rods
(t~1/o = 0.5, right panel) at several values of the packing fractips no = 0.2, 0.4, 0.6, and
0.8, in increasing order of complexity.

where the temperature-dependent parametérmeasures the “stickiness” of the
interaction. In this limit, (6.40) and (6.41) become

e P —o@r-o)+1t5(r-0), (6.43)

a9 = (ri+g)e. (6.44)

The equation of state (6.18) expresses the density as ddnrufttemperature and
pressure. Solving the resulting quadratic equation foptiessure one simply gets

Bp _ \/1+4r1n/(1—n0)—1. (6.45)

Z L
n 21 1n

In the hard-rod special case ¢ — 0), the equation of state becom&s= (1 —
no)~L.
As for the radial distribution function, application of (&) gives

L
-1 1 —0s -1 1
L (e Lo (o)
T e —oy e (6.46)
- =4 _ - = —O0S — _ 1
T 55 (T +S+Bp)e =1 (r lJ“%)

The last equality allows one to perform the inverse Laplaaesform term by term
with the result

G(s)

(o]

g(r) zlzl%(r—éa)@(r—éa), (6.47)

where
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Fig. 6.5 Threshold situa- a oy w
tion (0w = Oay + Oyw) for -———-—-— e - - -
nearest-neighbor interaction. [EE— . )
Oaxy Oryw
L Y J
Uozw

1 ) Loy T
W) = ST ey [T 203 () i ﬁp] - 69

Note that, although an infinite number of terms formally egya (6.47), only the
first j terms are needed if one is interestedyin) in the range KX r/o < j + 1.
Figure 6.4 showsg(r) for hard rods t ! = 0) and a representative case of a sticky-
hard-rod fluid ¢ /o = 0.5) at several densities [40].

Using (6.43), it is straightforward to see that the radiatrithution function and
the cavity functions are related by

g(r)=1"Yy(0)3(r— o) +y(r)O(r—0). (6.49)

This, together with (6.47) and (6.48), implies the contaitie

1
This value is useful to obtain the mean potential energy peiqgbe,
e a1
Ne = nt y(o) = 171/6p’ (6.51)

where the energy route (5.6) has been particularized toystes.

6.5.2 Mixtures of Nonadditive Hard Rods

As a representative example of a one-dimensional mixtueesamsider here a non-
additive hard-rod binary mixture [see (5.32) and Fig. 5Tje nearest-neighbor
interaction condition requireSq < Jay+ Oy, V(a, Y, w), as illustrated by Fig.
6.5. In the binary case, this condition implies;2 > max(g1, 02).

The Laplace transform of (") js

g Oays

-QaV(S) =

.52

S (6.52)
The recipe described by (6.31)—(6.38) can be easily imphaake In order to obtain
the pair correlation functiongq(r) in real space, we first note that, according to
(6.35),
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Fig. 6.6 Radial distribution functions for a one-dimensional hewd-binary mixture withx; =
Xo = %, Oy =207, 0120 = %50'1, andno; = %

[

=Y [Quu(s)+Qz2(s) + Q%5(S) — Qua(9)Q22(s)] " -

m=0

1
59 (6.53)

When this is inserted into (6.31)—(6.33), one can expBs4s) as linear combina-
tions of terms of the form

ki1

ko2
11

ki2
22

12

e_a(s"'B p)

(s+Bp)k

wherea = ky101 + ko202 + k12012 and k = kgg + koo + kio. The inverse Laplace
transformgyq(r) = £ 1 [Gay(s)] are readily evaluated by using the property

(S) (S) (S) (XlKll) ki1+kiz/2 (XZKZZ) koo+ki2/2 )

(6.54)

g—a(s+pBp)

(r—a)?t
s+Bp)k

(k—1)!

—e Prr O(r—a). (6.55)

Analogously to the case of (6.47), only the terms wika1, ko2, ki2} such that <

'max are needed if one is interested in distancesrmax. Figure 6.6 showsgqy(r)
for a particular binary mixture [37].

7 Density Expansion of the Radial Distribution Function

Except for one-dimensional systems with nearest-neightieractions, the exact
evaluation of the radial distribution functigr) or the equation of state(n, T) by

37



38 Andrés Santos

theoretical tools for arbitrary interaction potentiglr ), densityn, and temperature
T is simply not possible. However, the problem can be corgdoif one gives up
the “arbitrary density” requirement and is satisfied with tbw-density regime. In
such a case, a series expansion in powers of density is t@ategool:

g(r) = go(r) + Ga(r)n+go(r)n+ -+, (7.1)

z =1+4By(T)n+Bg(T)n’+--- . (7.2)

P
nksT
Therefore, our aim in this section is to derive expressionstfevirial coefficients
gk(r) andBy(T) as functions ofl for any (short-range) interaction potentglr).
First, a note of caution: although for an ideal gas onegf4s) = 1 (andzZ'¥ = B; =
1), in a real gago(r) # 1. This is because even, if the density is extremely small,
interactions create correlations among particles. Féait®, in a hard-sphere fluid,
g(r) =0 forr < g, no matter how large or small the density is.

What is the basic idea behind the virial expansions? Thistig elearly stated by
E. G. D. Cohen in a recent work [41]:

The virial or density expansions reduce the intractalle 10°%)—particle prob-
lem of a macroscopic gas in a voluivi¢o a sum of an increasing number of tractable
isolated few (1, 2, 3, ...) particle problems, where eachugrof particlesmoves
alone in the volum& of the system.

Density expansions will then appear, since the number gieiparticles, pairs
of particles, triplets of particles, ..., in the system areportional ton, n?, n3, ...,
respectively, wherea = N/V is the number density of the particles.

In order to attain the goals (7.1) and (7.2), it is conveniemtork with the grand
canonical ensemble. This is because in that ensemble wadgligave a natural
series power expansion for free: the grand canonical jarfitinction is expressed
as a series in powers of fugacity [see (3.49)]. Let us considgeneric quantity
that can be obtained fro®d by taking its logarithm, by differentiation, etc. Then,
from the expansion in (3.49) one could in principle obtain

X iiﬂg , (7.3)

where the coefficients, are related to the configuration integr&§ and depend
on the choice oK. In particular, in the case of the average density (N) /V, we
can write

n= /Zlfbgzg\ . (7.4)

Now, eliminating the (modified) fugacig, between (7.3) and (7.4) one can express
X in powers ofn:
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Fig. 7.1 Left panels: Hard-sphere, square-well, and Lennard-Jpoentials. Right panels: Re-
spective Mayer functions.

X:Zank. (7.5)
K=0
The first few relations are
— X1 Xo 20y X3 4by - <3b3 Sbg)—
=Xo, Xi=2T, Xo="2—Z2X Xg=———2Xo— [ 222Xy,
Xo=Xo 1= by 2 02 63 1 X3 63 b S 1
(7.6)

Xy 6by (
Xg= 22— X2y o (322
bf b3 b7 6§

3b3 1003 o[ 2 2003 156263\
272\ T 68
1 1 1

7.1 Mayer Function and Diagrams

As we have seen many times before, the key quantity relatdtetmteraction po-
tential is the Boltzmann factor €%, Since it is equal to unity in the ideal-gas
case, a convenient way of measuring deviations from thd ghesais by means of
theMayer function

f(ry=ePo_1. (7.8)

The shape of the Mayer function for the hard-sphere potgatiB8), the Lennard-
Jones potential (4.14), and the square-well potentiaBjds3shown in Fig. 7.1.
Let us now rewrite (3.49) as
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= _ d ZN/\ N
= f1+’glm/dr Wh(L,2,...,N) (7.9)

WA(L,2, ..., N) =W (rN) = e B |'| (1+fj), fij=f(rj), (7.10)

<i<]

and use has been made of (3.47) and of the pairwise addproperty (5.2). When
expanding the productMN-1/2 terms appear ikMy. To manage those terms, it is
very convenient to represent them with diagrams. Each dmagontributing ta\y

is made ofN open circles (representing tieparticles), some of them joined by a
bond (representing a factdyj). The diagrams contributing ¥\, are

Wi(1)=1= O , (7.11)

Wo(1,2) =1+ f1p=0 O + O0—0O | (7.12)

W5(1,2,3) = (1+ f12)(1+ f13)(1+ f23)

OOO +3 +3©/Xj A (7.13)

Ws(1,2,3,4) = (1+ f12)(1+ f13)(1+ f1a)(1+ f23) (14 f2a)(1+ f34)
o O o O @] o—O @]
= +6 +12 +3 T4\ +12
o O o—oO o—oO
+4]/ +12M +3i:i +6iZi +m . (7.14)

The numerical coefficients before some diagrams refer tatimber of diagrams
topologically equivalent, i.e., those that differ only hetparticle labels associated
with each circle. Some of the diagrams aisconnectedi.e., there exists at least
one particle isolated from the remaining ones), while theeobnes areonnected
diagrams oclusters(i.e., it is possible to go from any particle to any other et
by following a path made of bonds). Therefore, in general,

Wi (L,2,...,N) = Zall (connected and disconnected) diagramhl glarticles

As we will see, in our goal of obtaining the coefficients in theansions (7.1)
and (7.2), we will follow adistillation process upon which we will get rid of the least
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relevant diagrams at each stage, keeping only those cargaimore information.
The first step consists of taking the logarithm of the gramtitan function:

_ o4
In= :glg—/!\/erUg(l,Z,...,é), (7.15)

where the functionb,(1,2,...,¢) are calleccluster(or Ursell) functions. They are
obviously related to the functionsy(1,2,...,N). In fact, by comparing (7.9) and
(7.15), one realizes that the relationship betwfaf } and{U,} is exactly the same
as that betweemoment@&ndcumulantf a certain probability distribution [19]. In
that analogy= plays the role of theharacteristic functior(or Fourier transform
of the probability distribution) and-iz4 plays the role of the Fourier variable. The
first few relations are

WA(L) = Us (1) (7.16)
\NZ(L 2) = Ul(l)Ul(z) + UZ(lv 2) ’ (7-17)

W;(1,2,3,4) = Uy (1)U1(2)U3(3)U1(4) + 6U1 (1)U1 (2)U2(3,4)
+3U,(1,2)U2(3,4) +4U1(1)U3(2,3,4) +Uy(1,2,3,4) . (7.19)

Again, each numerical factor represents the number of tequivalent (except for
particle labeling) to the indicated canonical term. Usidd.{)—(7.14), one finds

U(l)=1=0 (7.20)

Up(1,2) = f1p= 0—0 (7.21)

J(1.2.3) = 368%‘*48% (7.22)

Us(1,2,3,4) 12i_i +4iéz +12M 3@
+6IZI +m (7.23)

We observe that all the disconnected diagrams have gone awggneral,

Ui(1,2,...,0) = z all connectedliagrams (i.e.,“clusters”) of particles
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For later use, it is important to classify the clusters retucibleandirreducible
The first class is made of those clusters having at leastdiwilation point i.e.,
a point that, if removed together with its bonds, the resgltdiagram becomes dis-
connected. Examples of reducible clusters are

ALY U o

where the articulation points are surrounded by circlagduicible clusters (also
calledstarg are those clusters with no articulation point. For inse&nc

AT UK s

7.2 External Force. Functional Analysis

As can be seen from (3.21)—(3.23), the thermodynamic diiesitian be obtained
in the grand canonical ensemble from derivatives ct.I'On the other hand, the
pair correlation functiomy(r1,r») is given by (4.9) and is not obvious at all how it
can be related to a derivative of#n This is possible, however, by means of a trick
consisting of assuming that anternalpotentialu(r) is added to the system. In that
case,

o (rN) — on(rMu) = %(r“H_iu(n), (7.26)
Ur(r‘6) uz<rf>,|£|e(ri>, o(r)=e P, (7.27)
In=(a,B,V|6) i %/drfw(l,z...,ﬂ@). (7.28)

= *

Thus, the quantitield, and In= becomeunctionalsof the free functiorf(r).
To proceed, we will need a few simple functional derivatives

We(rl):é(rl—r), (7.29)

5 N - N 5(ri—r)
5607 k|:|19(rk) = Ll_lle(rk)} i; o) (7.30)

_ P O(ri—r)d(rj—r’)
59(r)59(”)1!:|19(rk)Llle(rk)]i; 6(r)o(rj) (7:31)
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It is then straightforward to obtain tlsebody reduced distribution functiar in the
absence of external force as titb-order functional derivative o (6) at 6 = 1,
divided by =. In particular,

_ 6In=(0)

1 8=(6)
= 5 ooy T 00 oy )
1 8%22(0)
D) = S50 o s
_ 8%InZ(9) 5In=(6) 5In=(8)
©00(r1)00(r2) |g—y  060(r1) 06(r2) g1
2ln =
= ny(ry)m(rz) + 753(!532?2) oy (7.33)

In (7.32) and (7.33)0.(r) = n= (N) /V is actually independent of the positiomnf
the particle, but it is convenient to keep the notatig(r) for the moment.

7.3 Root and Field Points

Taking into account (7.27), application of (7.30) and (§ a&lds

o ) ¢ . .
W(r)/dr U,(r°|0) 9:l—E/drz---dng(r,rz,...,rg), (7.34)

52 .
W/dréw(rﬂe) :€(€—1)/dr3---drgUg(r,r’;rs,...,rg).
(7.35)

In the above two equations we have distinguished betweetigrosariables that
are integrated out and those which are not. We will iald points to the former
androot points to the latter. Thus,

6=1

Ue(r;ra,...,rg) : Ursell function withl root pointand/ — 1 field points,

Up(r,r';rs,...,ry) : Ursell function with2 root pointsand/ — 2 field points.

Therefore, using (7.28), (7.32), and (7.33), we have

n(r1) = 24 +§2 G ff‘l)! /dr2~~~drgUg(l;2,...,€) , (7.36)
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Z
((=2)!

n2(r1,r2) = nl(rl)nl(rz)Jrzf\Uz(l, 2) +/ZQ /dl’3~ ~~drgUg(1, 2;3,... ,f) .

(7.37)
From (7.20)—(7.23) we see that the first feme-rootcluster diagrams are

b1 =Us(1)=© , (7.38)

2525/'dr2u2(1;2): o—e | (7.39)

ebgz/er/drgug(Lz,s): /O\ +2C/\ +A , (7.40)

24b4z/drz/drg/dr4U4(l;2,3,4):GT_I +6l_I +IZ: +3TZ.
+3M +3M +614
+3I:I +3IZI . (7.41)

Now a filled circle means that the integration over that fiedthpis carried out. As
a consequence, some of the diagrams in (7.22) and (7.23)vérattopologically
equivalent need to be disentangled in (7.40) and (7.41ggme new diagrams are
invariant under the permutation of two field points but notl@inthe permutation
root «» field. We observe from (7.36) that the expansion of densitpdwers of
fugacity has the structure (7.4) with

1 . . :
by = 7 Z all clusters with 1 root and— 1 field points.

Analogously, the first fewwo-rootcluster diagrams are

Uz(1,2) = 0—0 (7.42)

/dr3U3(1,2;3): A +2./J\O +A , (7.43)
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/drg,/dr4U41234)72T4O +4i_I +2l_l +4l_f

v2]/" w2l w2l ] el ]

+4i£f + 1{1 +2L:I l:j
N o

In (7.42)—(7.44) we have colored those diagrams in whichectibond between the
root particlesl and2 exists. We will call thentlosedclusters. The other clusters in
which the two root particles are not directly linked will balled openclusters.

N
+

N
+

Closed clusters factorize into—o times anopencluster. For instance,

f\o _ o0 x Oi. , (7.45)
N
Ll-—l @47
[ ]

In some cases, the root particleand2 become isolatedfter factorization.

7.4 Expansion ofny(rq,r2) in Powers of Fugacity

According to (7.37), the coefficients of the expansiomgfl,2) come from two
sources: the produet (1)n1(2) and the two-root clusters. The first class is repre-
sented by two-root diagrams where particles 1 and 2 are fsdilated. The sec-
ond class includes open and closed clusters, the latterfactesizing as in (7.45)—
(7.48). Taking into account all of this, one realizes thatfitst few coefficients can
be factorized as

Z:1+0—0 =ePuz (7.49)
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Z: (1+40—0)(2 ° +</\O : (7.50)

o—e

as

7 (1+ 0—0) % 2: +zl_f +4T_f +2N +2T_f
+4LT +2T£ +4M +I:I +l§f .

as (7.51)

It can be proved that this factorization scheme extendsltthalorders. Thus, in
general,

[

Na(ry,ro) = e_B(p(rl’rZ)/;aé(fl,fz)Zf\ ; (7.52)

where
oyp(ri,ro) = (5_712)| z all openclusters with 2 root points and- 2 field points.

A note of caution about the nomenclature employed is in okersay that the
diagrams ina, areopenbecause the two root particles are not directly linked. But
they are alsalustersbecause either the group 6particles are connected or they
would be connected if we imagine a bond between the two rétdasing this in
mind, we can classify the (open) clusters into (open) rddaclusters and (open) ir-
reducible clusters (or stars), as done in (7.24) and (7@&)ourse, all open clusters
with particles 1 and 2 isolated are reducible. The open iigtkiclusters factorize
into products of open irreducible clusters. For instance,

(@)
=(0—e )2, (7.53)

o—e
o—e

L(: - , T_f —(0—e )2, (7.54)
VAN

: (7.55)
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I_T:O—OXA,M:O—OXA. (7.56)

Examples of two-root opeinreducibleclusters (“stars”) are

AU TR e

7.5 Expansion in Powers of Density

Equation (7.52) has the structure of (7.3) with= X; = 0 andX, = e #®q,. Elim-
ination of fugacity in favor of density, as in (7.5), allows to write

Mp(ry,rp) = e Polrar2) ;W(rlarZ)nk ; (7.58)
k=

whereXy = X; = 0 andX = e B?y. Using (7.6) and (7.7), we obtain

p=1, (7.59)

%203—452=A : (7.60)

Ya = 04— 603b2 + 2005 — 6b3

SELTA TN e

Here we have taken into account titat= a, = 1. The explicit diagrams displayed
in (7.60) and (7.61) are the ones surviving after considefim39), (7.40), (7.50),
(7.51), and the factorization properties (7.53)—(7.56géneral,

W(ra,ro) = (k—712)' Z all openstarswith 2 root points andk— 2 field points.

A summary of the “distillation” process leading to (7.58)piesented in Table
7.1. Taking into account the definitions (4.11) and (5.5)h& tadial distribution
function and the cavity function, respectively, (7.58) tarewritten as
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Table 7.1 Summary of diagrams contributing to different quantities

Andrés Santos

Quantity Expansion in powers of Coefficient Diagrams Eqrati
= fugacity @,) Wy All (disconnected+clusters) (7.9)
In= fugacity @,) Uy Clusters (reducible+stars) (7.15)
ny fugacity @,) a, Open clusters (reducible+stars) (7.52)
n, density ) Yk Open stars (7.58)
Fig. 7.2 Diagrams contribut- »
ing to ys(r), ya(r), andys(r). Coefficient of VAN =7()
Adapted from Table 8.3.1 of
[18]. Coefficient of %n’ 2 ﬂ+ 4 Vl + N + N = 29,(r)
Coefficient of 3 n* 6ﬂ+ 6ﬁ+12m+12 m
c sl ]
cs[[ T+ e[+ s N+s [
= 6y5(r)
+1z@+ M+ 3@“2 m
+12m+ 3m+ 3ﬁ+ 6 m
+ 6 % + 6 m +3 % + m )
g =e P |1y ym(f)ﬂ"] C YO =1+ S e2(nn€|. (7.62)
k=1 k=1

Thus, the functiongy(r) in (7.1) are given by (r) = e P9y »(r). In particular,
in the limitn — 0,g(r) — go(r) = e #%("), which differs from the ideal-gas function
g9(r) = 1, as anticipated. However, limoy(r) = 1.

The formal extension of the resg(r) = e B to any order in densitgefines
the so-callegotential of mean forcey(r) from

g(r) = e PY0 :>‘ Y(r)=—kgTIng(r) ‘ (7.63)
Obviously,(r) # ¢(r), except in the limih — 0. In general,
Bu(r) =Bo(r) —Iny(r). (7.64)

The diagrams representing the functigg§) andy,(r) are given by (7.60) and
(7.61), respectively. As the ordérincreases, the number of diagrams and their
complexity increase dramatically. This is illustrated byg.F.2.
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The simplest diagram (of course, apart frggn= 1) is the one corresponding to
ys. More explicitly,

Va(r2) = / draf(ris)f(rzs) . (7.65)

In the special case of hard spheres, whigig = —O (0 —r) (see Fig. 7.1)y5(r)
is the overlap volume of two spheres of radimsvhose centers are separated a
distance. In d dimensions, the result is [42]

24-1(y7/4)(4-V/2 d+11
V;?,(I’) = wa 9(20'* I‘)Bl_rz/402 (7, E) 5 (766)
where «
By(a,b) — / dtta(1—t)>L (7.67)
0
is the incomplete beta function [43]. In particular, fordbrdimensional systems,
(1) = 15(2-NA(4+102-T), (7.68)

wherer is assumed to be measured in unitsofFor this system, each one of the
diagrams contributing tgz(r) has also been evaluated [44, 45, 46]. The results are

™3 4.3 2
U _3—6§(r—1) (r°+4r-—53 - 1620 (1—r)
w1

73_650 —3)4(r3+ 122+ 27r —6)0(3—7), (7.69)

x(r—2)2(r°+4r* —51r3 — 102+ 479 —81)0(2—r1), (7.70)

lj =[N, (7.71)

N =x0ea-nxanei-n-[oF. .72
where
Xa(r) = oo (r = 1)*(r? + 4r — 53— 162 1)

It 22 1-Tr?+r+3

L A S ALY g7
"<56o 1572 15+35r)C°S sa 7 )
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32 41 23 36 r
2 —1
N=m|—r1 02— —= | V3-r2— [ —=r—— )cos ' ——
Xe(r) "[ <280 420) <1 35r) > Ba-n)
376 4 2 2r 9 1 r?4r-3
- +o —cost—
560 15 2 15 35 J34-r?)
3¢ 2 o2r 9 1-T1%+r1+3
4 S 4 2 Jeost 2 7.74
+(560 152 15+35r> e (7.74)

7.6 Equation of State. Virial Coefficients

The knowledge of the coefficienig(r) allows us to obtain the virial coefficients
Bk(T) defined in (7.2). As long as all the exact diagramgifr) are incorporated,

it does not matter which route is employed to get the viriagfficients. The most

straightforward route is the virial one [see (5.13)]. THere,

Bk(T) = 2—1d/dr W(r)r%(rr) , (7.75)

where we have taken into account tidat #%() /gr = 3 f(r)/dr. In particular, the
second virial coefficient is

1 of(r) _ aa, [ a0f(N) o aa /°° d-1
BZ(T)fzd/drr ar =2 Vd/o drr T d2° vy [ drr® (),

(7.76)
where we have passed to spherical coordinates [see (5.85()5a36)] and have
integrated by parts. Going back to a volume integral,

Ba(T) :—%/dr £r)|. (7.77)

In general, it can be proved that [19]

Bk(T) = —kk;|1 z all openstarswith 1 root andk — 1 field points.

The first few cases are

B(T)= ~30—e . By(T)

7; A , (7.78)
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1
B4(T) = ~3 3 +6 + . (7.79)

7.6.1 Second Virial Coefficient

Ford-dimensional hard spheres, the second virial coefficiesinigply
By = Zdilde'd , (7.80)

so that the equation of state truncated afigrs

p

LY. B P
e AR R (7.81)

=

where

n =nygo® (7.82)

is the packing fraction [see (5.41) for its definition in theltitomponent case].

The hard-sphere Mayer function is independent of tempergee Fig. 7.1)
and so are the hard-sphere virial coefficients. On the othed hin generaB,(T)
is a function of temperature. As a simple example, the rdsulthe square-well
potential [see (6.39) and Fig. 7.1] is

B(T) = 2¢-1yg0¢ {1f (eﬁf - 1) [(o’/o)d - 1} } . (7.83)
The evaluation is less straightforward in the case of cotirs potentials like

the Lennard-Jones one [see (4.14)]. Let us consider the geareral case of the
Lennard-Jones £2s) potential (withs > d):

o =¢|(2)"-(2)7]- (7.84)

r r

Starting from the last equality in (7.76) and introducing thange of variable—

t=./8B¢&(a/r)3 one has
Bo(T) = —2d‘1vdad% (8Bg)¥/?s / dtt—9/s-2 (e‘t2/2+ 2Bet _ 1) . (7.85)
0

The integral can be compared with the following integralresgntation of the
parabolic cylinder function [43]:

722/4 0
Da(2) = ,‘f(—_a) /o dt > l(e/2 % 1) O<Re@<1.  (7.86)

Thus, (7.85) becomes
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BT)/B"

Boyle temperature

Fig. 7.3 Left panel:By(T) for a square-well fluid witho’/o = 1.5. Right panel:Bx(T) for a
Lennard-Jones &) fluid withs=4, 5, 6, 7, 8, and 12, from bottom to top.

d/2s .
BéiH? N (1_%) (TE) /7Dy <_\/TZ> 7 (7.87)

whereT* =kgT /¢ andBES is given by (7.80). To the best of the author’s knowledge,
the compact expression (7.87) has not been published before

Figure 7.3 shows the temperature-dependen@z ofelative to the hard-sphere
value with the same, for (three-dimensional) square-well and Lennard-Jones fl
ids [47]. For low temperatures the attractive part of theeptil dominates and
thus B, < 0, meaning that in the low-density regime the pressure idlsnthan
that of an ideal gas at the same density. Reciprodaly; O for high temperatures,
in which case the repulsive part of the potential prevailse Transition between
both situations takes place at the so-called Boyle temperag, whereB, = 0.
Note that, while the square-well second virial coefficieltotonically grows with
temperature and asymptotically tends to the hard-sphéue vélhe Lennard-Jones
coefficient reaches a maximum (smaller than the hard-sptadue corresponding
to a diametep) and then decreases very slowly. This reflects the fact tratery
high temperatures the system behaves practically as aspéiete system but with
aneffectivediameter smaller than the nominal valoe

7.6.2 Higher-Order Virial Coefficients for Hard Spheres

The evaluation of virial coefficients beyor®) becomes a formidable task as the
order increases and it is necessary to resort to numericatédvioarlo methods to
perform the multiple integrals involved. Needless to dag thsk is much more man-
ageable in the case of hard spheres. In the one-componentteashird and fourth
virial coefficients are analytically known [48, 49] aBg-B1, have been numerically
evaluated [50, 51, 52, 53, 54].

The third virial coefficient is [55]
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Flg 7.4 SeCOnd and thll’d Table I. The Second and Third Virial Coefficients as Functions of Dimension
virial coefficients ford- BB
dimensional hard spheres. v
Source: [50] D B, Exact Numerical
1 a 1 1
3
2 n6?/2 ﬁ—i 0.782004 - - -
3 =z
3 210°/3 5/8 0.625
3
4 7t /4 Lié 0.506340- - -
3 72
5 4n’s°/15 53/27 0.414063 - - -
3
6 n'a®/12 ﬂ—ig 0.340941 - -
3 n5
7 87°¢7/105 289/21° 0.282227---
4 3
48 VLR
8 n'c®/48 37 % 140 0.234614
9 167°c /945 6413/2" 0.195709 - -
4 \/3297
5,10 PR S ———
10 n°c'"/240 377 120 0.163728
11 327°¢' /10395 35995/21% 0.137310---
4 oz
6,12 I V-4
12 n°c'?/1440 377 110 0.115398
F|g 7.5 Fourth virial coeffi- Table Il. Exact and Numerical Values of the Fourth Virial Coefficient
cient ford-dimensional hard ; ‘ .
By/B; Decimal expansion
spheres. Source: [49].
2 0.53223180...
30 207 21003 43l arcos(/) 0.28694950598....

015184606235 ...
0.151846054(20)
0.15184(7)13

5 25315393 3888425 2 67183425 arccos (1/3) 0.07597248028 . ..

32800768 + 16400384 7~ 32800768 i 9
0.075972512(4)*
0.07592(6)1)

0.075978(4)4

273, 8%
4 2T T e

81 V3 | 38848 1
6 2-HL sl 003336314
299189248759 159966456685 /2 292926667005 arccos (1/3)
7 290596061184 + 4355‘)30‘3]776 Ea ‘)6365353728’ k3 : 0.00986494662....
0.009873(3)1
3 2,%7ﬁ+%$ —0.00255768 ...
2886207717678787 2698457589952103 2 8656066770083523 arccos (1/3)
9 2281372811001856 + 5703432027504640 &~ 2281372811001856 dftto:' - —0.00858079817.....
—0.008575(3)(14)
10 2- 1A, s0ss 1 —0.01096248 ...
11 ITSTA04S6SI64011 | 16554115383300832799 V3
11932824186709344256 29832060466773360640 7
— $Bones6s209 arccos /) —0.01133719858.....
—0.011333(3)(14)
12 2- A LT ~0.010670281 ...
Bs 5 d+11
22 2y 22,2 ), (7.88)
B2 2’2

where k(a,b) = Bx(a,b)[ (a+ b)/I (a)l (b) is the regularizedincomplete beta
function [see (7.67)]. The explicit expressionsBafandBs/B3 for d < 12 can be
found in Fig. 7.4. We note thd&s/B3 is a rational number ifl = odd, while it is an
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D Bs/B3 Bs/B3 Br/BS Bs/Bj By/Bj Bio/B3

2 0.33355604(1)*  0.1988425(42) 0.1148728(43)  0.0649930(34) 0.0362193(35)  0.0199537(80)
3 0.110252(1)* 0.03888198(91) 0.01302354(91)  0.0041832(11) 0.0013094(13)  0.0004035(15)
4 0.0357041(17)  0.0077359(16) 0.0014303(19)  0.0002888(18) 0.0000441(22)  0.0000113(31)
5 0.0129551(13)  0.0009815(14)  0.0004162(19) —0.0001120(20) 0.0000747(26) —0.0000492(48)
6 0.0075231(11) —0.0017385(13)  0.0013066(18) —0.0008950(30) 0.0006673(45) —0.000525(16)
7 0.0070724(10)  —0.0035121(11)  0.0025386(16) —0.0019937(28) 0.0016869(41) —0.001514(14)
8 0.00743092(93) —0.0045164(11)  0.0034149(15) —0.0028624(26) 0.0025969(38) —0.002511(13)

Fig. 7.6 Fifth to tenth virial coefficient fod-dimensional hard spheres. The numbers in parenthe-
ses indicate the statistical error in the last significagitsli Source: [52].

irrational number (since it includeg3/m) if d = even. The influence of the parity
of d is also present in the exact evaluationBaf which has been carried out sepa-
rately ford = even [50] andd = odd [49]. The results fod < 12 are shown in Fig.
7.5. We see the, /B3 is always an irrational number that includg8/mand /i

if d = even, while itincludes/2/mand cos(1/3)/mif d = odd. Interestingly, the
fourth virial coefficient becomes negative fibe> 8.

The Monte Carlo numerical values of the virial coefficieBtsB1o up tod = 8
[52, 53] are displayed in Fig. 7.6. WhiBs, B7, andBg remain positive (at least if
d < 8), B, Bg, andB;p become negative il > 6,d > 5, andd > 5, respectively.
While the known first ten and twelve virial coefficients aresipive if d = 4 and
d = 3 [54], respectively, the behavior observed whielr 5 shows that this does
not need to be necessarily the case for all the virial coefiisi. It is then legitimate
to speculate that, for three-dimensional hard-spheresysta certain high-order
coefficientBy (perhaps withk = even) might become negative, alternating in sign
thereafter. This scenario would be consistent with a saxgyl of the equation of
state on the (density) negative real axis that would detegrttie radius of conver-
gence of the virial series [52, 53, 56].

7.6.3 Simple Approximations

In terms of the packing fraction, the virial series (7.2) becomes
Z=1+29""+ban?+ban3+---, be=B/(vgo!)* 1. (7.89)

Although incomplete, the knowledge of the first few viriakdficients is practically
the only access to exact information about the equationadé sif the hard-sphere
fluid. If the packing fractiom is low enough, the virial expansion truncated after
a given order is an accurate representation of the exactiegud state. However,
this tool is not practical at moderate or high valuegjoin those cases, instead of
truncating the series, it is far more convenient to constan@pproximantwhich,
while keeping a number of exact virial coefficients, incla@# of orders in density
[57]. The most popular class is made by Padé approximaBis\fere the com-
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Fig. 7.7 Close-packing

configuration in a system of

hard disks. The fraction of

the total area occupied by the

disks isnep = @T Source:
http://en.wikipedia.org/wiki/Packingroblem.

pressibility factorZ is approximated by the ratio of two polynomials. Obviously,
as the number of retained exact virial coefficients increasedoes the complex-
ity of the approximant. Here, however, we will deal with siempbut yet accurate,
approximations.

Hard disks (d = 2)

In the two-dimensional case, the virial series truncatéer d@fie third virial coeffi-
cientis

Z=1+2n+hban’+---, nzgnaz, (7.90)
where 4 o5
b34<§\@n) =3128 -~ . (7.91)
Henderson’s approximation [59] consists of
1+n?%/8 25 ,

As we see, it retains the exact second virial coefficient anatianal-number ap-
proximation of the third virial coefficient. On the other liar{7.92) assumes that
the pressure is finite for any < 1, whereas by geometrical reasons the maximum
conceivable packing fraction is the close-packing vajge= @T ~ (0.907 (see Fig.
7.7).

Another simple approximation [60, 61] exploits the secomidhcoefficientb, =
2 only but imposes a pole gt,. Thus, the constraints are
1+2 e 1
aul il R S (7.93)

o, I —MNcp-

A simple approximation satisfying those requirements is
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Fig. 7.8 Comparison between
computer-simulation values
of the equation of state of a
hard-disk fluid [62] and the
theoretical approximations
(7.92) (label H) and (7.94)
(label SHY).

p/nk, T

00 02 04 06 08

Table 7.2 The second row shows the round-off integer of the known firgtite reduced virial
coefficientsby of a three-dimensional hard-sphere fluid. The third row gjitee values obtained
from the formulak? + k — 2. Finally, the deviatiom\by of the latter values from the true values of
by are shown in the fourth row.

k 2 3 4 5 6 7 8 9 10 11 12

Round-off 4 10 18 28 40 53 69 86 106  128(5) 111(30)
K+k—2 4 10 18 28 40 54 70 88 108 130 154

Aby 0 0 -036-022018 066 15 22 22(4) 2(5 43(30)
1
z— (7.94)
1-2n+ 25-tp2
Nép

Figure 7.8 compares the predictions of (7.92) and (7.94ihageomputer simu-
lations [62]. Despite their simplicity, both approximat®exhibit an excellent per-
formance, even at packing fractions where the pressureastden times higher
than the ideal-gas one.

Hard spheres @ = 3)

In the three-dimensional casg= (71/6)na® and the second and third reduced virial
coefficients are integer numbels: = 4 andbz = 10. The fourth virial coefficient,
however, is a transcendental number (see Fig. 7.11), namelyl8.36476838- -.

If we round off this coefficientlfy ~ 18), we realize thalb, — bz = (bs — by) + 2.
Interestingly, by continuing the rounding-off process tklationshiy — b, =
(bk_1 —bx_2) + 2 extends up t& = 6, as shown in Table 7.2.
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Fig. 7.9 Compressibility N Si T lati " T v
factor for three-dimensional 16+ 1mulation /
hard spheres, as obtained ——CS 7
from computer simulations
[64] and from the Carnahan— 1k 7 5
Starling equation of state 'Eo/
(7.96). ~ e
% 2
R 27
B g
4+ ©
r"'/r/ E /
O [ N 1 N 1
0.0 0.2 0.4 0.6
n

In the late sixties only the first six virial coefficients wexecurately known and
thus Carnahan and Starling [63] proposed to extrapolatethgonshipgy, — by 1 =
(bk_1 —bx_2) + 2 to anyk > 2, what is equivalent to the approximation

by = K> +k—2. (7.95)

By summing the virial series within that approximation ytlabtained the famous
Carnahan-Starling (CS) equation of state:

Zes= (1_—); . (7.96)

The corresponding isothermal susceptibility is

0(n2e9)] (1 n)*
on 1+4n+4n2—4n3+n*’

Xcs= [ (7.97)

Figure 7.9 shows that, despite its simplicity, the Carnaisdarling equation ex-
hibits an excellent performance over the whole fluid stabtgan and even in the
metastable fluid regiom(> 0.492 [65]), where the crystal is the stable phase. This
is remarkable because, as shown in Table 7.2, the appragimat= k% +k — 2
fails to capture the rounding-off of the virial coefficiebt for k > 7, the devia-
tion Aby tending to increase witk. The explanation might partially lie in the fact
that the Carnahan-Starling recipe underestimatesdbs but this is compensated
by an overestimate of the higher virial coefficients. Apadanfi that, and analo-
gously to Henderson'’s equation (7.92), the Carnahan-&jatjuation (7.96) pro-
vides finite values even for packing fractions higher tham dtose-packing value
Nep = T1v/2/6 =~ 0.7405.
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Fig. 8.1 Left panel: Leonard p—
Salomon Ornstein (1880—

1941). Right panel: Frits

Zernike (1888-1966).

Fig. 8.2 Sketch of the mean-
ing of the Ornstein—Zernike
relation (8.1).
1 2 1 2

TOTAL: hy» direct: c12

8 Ornstein—Zernike Relation and Approximate Integral
Equation Theories

Similarly to what was said above in connection with the forwigal expansion
(7.2) of the equation of state, the virial representatia6ZY of the radial distribu-
tion function is only practical in the low-density regima,Wwhich case the expan-
sion can be truncated after a certain low order. On the othed hat moderate or
high densities this strategy is not useful and in that casehitter to resort to ap-
proximations that include all the orders of density, in agglto what was done in
the hard-sphere equation-of-state case with (7.92), Y,7&8% (7.96). In order to
construct those approximations, a crucial quantity isdinect correlation function

c(r).

8.1 Direct Correlation Function

We recall that the total correlation function is defined byl 8. This function owes
its name to the fact that it measures the degree of spatieglation between two
particles separated a distarrcgue not only to theidirectinteraction but alsandi-
rectly through other intermediate or “messenger” particles. ¢, e range ofi(r)
is usually much larger than that of the poteng#t) itself, as illustrated by Figs.
4.2 and 6.4. In fluids with a gas-liquid phase transitiofr) decays algebraically
at thecritical point, so that the integraJ dr h(r) diverges and so does the isother-
mal compressibilitykt [see (5.1)], a phenomenon known @#ical opalescence
[18, 22].

It is then important to disentangle froh(r) its direct and indirect contribu-
tions. This aim was addressed in 1914 by the Dutch physicis& Ornstein and
F. Zernike (see Fig. 8.1). They defined tthieect correlation functiorc(r) by the
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integral relation

h(ri2) = c(ri2) +n/df30(r13)h(r32) : (8.1)

The idea behind the Ornstein—Zernike (OZ) relation (8.%kitched in Fig. 8.2: the
total correlation functiotn;, between particles 1 and 2 can be decomposed into the
direct correlation functiomm;» plus the indirect part, the latter being mediated by a
messenger particle 3 that is directly correlated to 1 arallyotorrelated to 2.

Thanks to the convolution structure of the indirect parg @rnstein—-Zernike
relation (8.1) becomes(k) = ¢(k) + nc(k)h(k) in Fourier space or, equivalently,

~ (k) h(k)

Thus, the compressibility route to the equation of statg)(&an be rewritten as

X = nkeTkT = (8.3)

1-n¢(0) |

Therefore, even ifi(0) — o (at the critical point)§(0) — n—! = finite, thus showing
thatc(r) is much shorter ranged théu(r), as expected.

It is important to bear in mind that the Ornstein—Zernikeatieln (8.1)defines
c(r). Therefore, it isnot a closed equation. However, if @pproximate closuref
the forme(r) = .7 [h(r)] is assumed, one can obtaiclased integral equatian

h(r) = Z[h(r)] + n/dr’y[h(r')]h(n ). (8.4)
In contrast to a truncated density expansion, a closurep$ieapto all orders in
density.

Before addressing thdosure problentet us first derivdormally exactrelations
betweerc(r), h(r), and some other functions.

8.2 Classification of Diagrams
We recall from (7.62) (see also Fig. 7.2) that

vz =140 +”§(2f_f wal ]+ 1] +§I>+....

(8.5)
We now introduce the following classification openstars:
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e “Chains” (or nodal diagrams), %(r): Subset ofopendiagrams having
at least onenode A node is a field particle which must beecessarily
traversed when going from one root to the other one.

The first few terms in the expansion6fri,) are

%(rlz):nA +%2(2T_T +4M)+m. (8.6)

e Open “parallel” diagrams (or open “bundles”), Z?(r): Subset ofopen
diagrams with no nodes, such that there are at lgasttotally indepen-
dent (“parallel”) paths to go from one root to the other onlee Existence
of parallel paths means that if the roots (together withrtbends) were
removed, the resulting diagram would fall into two or moreqas.

The functionZ?(r) is of second order in density:

2
P(r1o) = % m NI (8.7)

e “Bridge” (or “elementary”) diagrams, Z(r): Subset ofopendiagrams
with no nodes, such that there dot exist two totally independent ways to
go from one root to the other one.

Analogously toZ(r), the bridge functio(r) is of ordem?:

2
B(r1) = % ﬁ foen 8.8)

Figure 8.3 shows the classification to ordérSince the three classes exhaust all
the open stars, we can write

V() =1+6()+ 2(1) + A1) |. (8.9)

As for the total correlation function, the diagrams conttibg to it are
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Fig. 8.3 First few chain, open

parallel, and bridge diagrams, ~ Coeffidentof »

>

Adapted from Table 8.3.1 of ) )
[18]. Coefficient of %n’ 2 + 4 + +
Coefficient of %n’ 6 + 6 +12 +12
P(r)
+ 6 +12 +12 + 6
B(r)

+
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h(ri2) = (1+ 0—0 )y(ryg) — 1
= 0—0 +n c/\oJrA +n—22 2f_f+4%+l:f
+l§f +2l:l +4lZl +IZT +% +
© K

= Zo% z openandclosedstars with 2 roots ank field points. (8.10)
& K

It is not worth classifying the closed diagrams. Insteadytjoin the open bundles
to create an augmented class:

e “Parallel” diagrams (or “bundles”), 22*(r): All closeddiagrams plus
theopenbundles.

The first few ones are

P (r1p) = 00 +nA +n—22 m +2l:l +4lZl
+lZTi +m TR (8.11)
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Obviously,

(hn) =)+ 2" () +2(0)]. (8.12)

Why this classification? There are two main reasons. Figggnagoarallel dia-
grams (?) factorize into products of chaing’) and bridge diagramsZ). For in-

stance,
2

IT-(A)-

As a consequence, it can be proved that

1 1
P =S(C+ B+ 5(C+ P+

=& (146 +B)=|C+B=In(1+C+P2+2)|. (8.14)

Making use of (8.14) in (8.9), we obtainyn= ¢ + % or, equivalently,

[Ing(r) = —Bo(r) +€ (1) + A(r)|. (8.15)

The second important reason for the classification of opas $$ that, as we are
about to see, the chain®’) do notcontribute to the direct correlation functiofr).
Let us first rewrite (8.10) as

R VAR VA IO S ER A
K] 221 g) 616)

where thechainsare marked in blue. Next, the Ornstein—Zernike relatioth)(8r
(8.2) can be iterated to yield

c=h—nhxh+n*hxhxh—nhxhxhxh+--- (8.17)

where the asterisk denotes a convolution integral. Therdiag representing those
convolutions are always chains. For instance,

h*h:/drgh(rlg)h(rgz): C/\O +2n(i_f +M ) 4o, (8.18)

h*h*h:/dr3/dr4h(r13)h(r34)h(r42): T._f e (8.19)
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Inserting (8.16), (8.18), and (8.19) into (8.17), one alxai

c(r1z) = 0—0 +nA +”—22(l:f +l§i +2g +4zl
A lg) 020

Thus, as anticipated, all chain diagrams cancel out! Thiissurprising after all
since the chains are the open diagrams that more easily catréiehed out”, thus
allowing particles 1 and 2 to be be correlated via interntediarticles, even if the
distance12 is much larger than the interaction range. Note, howevat ttte direct
correlation function is not limited to closed diagrams blspancludes the open
diagrams with no nodes. Therefore,

‘c(r) =271+ B(r) ‘ (8.21)

From (8.9), (8.12), (8.15), and (8.21) we can extract therchanction in three
alternative ways:

¢(r)=ePg(r)—1—- 2(r)— A(r) (8.22)
¢(r)=Ing(r) +Bo(r) — A(r), (8.23)
€(r)=h(r)—c(r). (8.24)

Combination of (8.22) and (8.24) yields

o(r) = g(r) [1-eﬁw(r>} + 20+ () |. (8.25)

Similarly, combining (8.23) and (8.24) one gets

|c(r) =g(r) —1—Ing(r) — Bo(r) + (1) |. (8.26)

8.3 Approximate Closures

Equations (8.25) and (8.26) are formally exact, but theynarteclosed since they
have the structure(r) = .Z[h(r), 2(r) + %(r)] andc(r) = .Z[h(r), B(r)], respec-
tively.

In most of the cases, a closwi@) = .7 [h(r)] [see (8.4)] is ard hocapproxima-
tion whose usefulness must be judgegosteriori The two prototype closures are
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the hypernetted-chain (HNC) closure [66, 67] and the Perdertck (PY) closure
[68].

8.3.1 HNC and Percus—Yevick Integral Equations

The HNC closure consists of settitg(r) = 0 in (8.26):

‘c(r) :g(r)—l—lng(r)—B(p(r)‘ (HNC). (8.27)

Similarly, the Percus—Yevick closure is obtained by sgtti#(r) + #(r) = 0 in
(8.25), what results in

c(r) =g(r) [1—e/3"’<r)} (PY). (8.28)

By inserting the above closures into the Ornstein—Zerrekation (8.1) we obtain
the HNC and Percus—Yevick integral equations, respegtivel

HNC = In [g(r)eﬁq’(”} = —n/dr’ {In [g(r’)eﬁ“’(”} —h(r’)} h(fr —r'|), (8.29)

PY = g(r)ef?) —1= —n/dr’ {g(r’)eﬁ"’“/) —1- h(r’)} h(r —r').  (8.30)

Interestingly, if one formally assumes thét) = g(r)ef?(") ~ 1 and applies the lin-
earization property Ilﬁg(r)e[’“’(r)} — g(r)eP?() — 1, then the HNC integral equation
(8.29) becomes the Percus—Yevick integral equation (8@0)he other hand, the
Percus—Yevick theory stands by itself, evey(if) is not close to 1.

A few comments are in order. First, the density expansiomg@fc(r) and
yunc(r) can be obtained from the closed integral equation by i@matt turns out
that not only the bridge diagrams disappear, but alsmechain and open par-
allel diagrams are not retained either. This is because ¢lgéeat of (r) at the
level of (8.26) propagates to other non-bridge diagraméatevel of (8.9). For
instance, while (8.14) is an identity, we cannot negleit) on both sides, i.e.,
€ #In(l+ % + 2). A similar comment applies tbpy(r) andypy(r), in which
case some chain diagrams disappear along with all the baddeopen parallel
diagrams. This is illustrated by comparison between Figisa8d 8.4.

Another interesting feature is that all the diagrams negtkin the density expan-
sion ofyync(r) are neglected in the density expansiorygf(r) as well. However,
the latter neglects extra diagrams which are retaineg4py(r). Thus, one could
think that the HNC equation ialwaysa better approximation than the Percus—
Yevick equation. On the other hand, this is not necessanity dase, especially
for hard-sphere-like systems. In those cases the diagragisated in the Percus—
Yevick equation may cancel each other to a reasonable desgréieat adding more
diagrams (as HNC does) may actually worsen the result. Fbamce, the combi-
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Fig. 8.4 The colored dia- »
grams are those neglected by ~Coefficentof n /\,
the HNC and the Percus— : I__I
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nation of the two diagrams neglected by the Percus—Yevipkagmation to first

order in density is
O
= 8.31
LI+IN-T. e

where the dotted line on the right-hand side meang-aond between the field
particles 3 and 4, i.e., a factorf1f(rs4) = e #9("34)_In the hard-sphere case the
three diagrams in (8.31) vanishrif, > 20 since in that case it is impossible that
either particle 3 or particle 4 can be separated from bothd12za distance smaller
thanao. If ri2 < 20, the only configurations which contribute to the diagramlon t
right-hand side of (8.31) are those wheige < 0, r)3 < 0, ri4 < 0, androg < 0
but r34 > 0. It is obvious that those configurations represent a smatlierme than
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the ones contributing to any of the two diagrams on the lafiehside of (8.31),
especially ifr12 > g. In fact, as can be seen from (7.71) and (7.72), the rightthan
side of (8.31) vanishesif> 1/30 in the three-dimensional case. The three diagrams
in (8.31) are plotted in Fig. 8.5 in the range<dr/o < 2.

Being approximate, thg(r) obtained from either the Percus—Yevick or the HNC
theory isnot thermodynamically consistent, i.e., virial routelemical-potential
routecompressibility route-gnergy route. However, it can be proved that the virial
and energy routes are equivalent in the HNC approximatioarig interaction po-
tential [2, 69].

What makes the Percus—Yevick integral equation partiukgepealing is that
it admits a non-triviaexactsolution for three-dimensional hard-sphere liquids [70,
71, 72], sticky hard spheres [39], additive hard-spheraungs [73], additive sticky-
hard-sphere mixtures [74, 75], and their generalizatioms+ odd dimensions [76,
77,78, 79].

8.3.2 A Few Other Closures

Apart from the classical Percus—Yevick and HNC approxioregj many other
ones have been proposed in the literature [2, 22]. Most ahths formulated
as closing the formallyexactrelation (8.26) with ampproximationof the form

PB(r) = Zy(r)], where

[v() =h(r)—c(r)| (8.32)

is theindirect correlation function. In particular,

HNC = #A(r) =0,
PY = A(r)=In[1+y(r)]—y(r)—1. (8.33)

In several cases the closure containgdjustableparameter fitted to guarantee the
thermodynamic consistency between two routes (usualigiand compressibility).
A few examples are

e \erlet (modified) [80]

1 P _ 4
A ==3 1+aiy(r)’ a=z: (8.34)

e Martynov—Sarkisov [81]
Br)=+/1+2y(r)—y(r)—1, (8.35)
e Rogers—Young [82]

exp[(1—e *)y(r)] -
I—ea

A(r) :In{1+ 1}—y(r), a,=0.160, (8.36)
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e Ballone—Pastore—Galli-Gazzillo [83]

B(r) = [1+agy(n)]Y®—y(r) -1, ag=". (8.37)

8.3.3 Linearized Debye—Hiickel and Mean Spherical Approxnations

We end this section with two more simple approximate theofést, the linearized
Debye—Hiickel (LDH) theory consists of retaining only timear chain diagrams in
the expansion of(r) [see (8.5)]:

w(r) Ey(r)flzno—o—o+n20—o—o—o+n3o—o—o—o—o+--- . (8.38)

This apparently crude approximation is justified in the cafskong-rangeinterac-

tions (like Coulomb’s) since the linear chains are the mostrdent diagrams but

their sum gives a convergent result [22]. The approximai®a8) is also valid for

boundedpotentials in the high-temperature limit [84]. For thoseemtials|f(r)|

can be made arbitrarily small by increasing the temperatndehus, at any order in

density, the linear chains (having the least number of boagsthe dominant ones.
In Fourier space, (8.38) becomes

~ 2
LDH = W(k) = n [?(k)rm? [F(k)r+n3 [?(k)r+m = % . (8.39)

The conventional Debye—Huckel theory is obtained frorBgBby assuming that (i)
Iny(r) ~w(r) and (i) f(r) ~ —B¢(r). In that case (7.64) yieldl3{ (k) ~ B(k) —

W(k) ~ Bo(K)/[1+nBe(K).

Another approximation closely related to the linearizedype-Huckel theory
(8.39) is the mean spherical approximation (MSA). First, stert from the iden-
tity h(r) = f(r)y(r) +y(r) — 1. Next, in the same spirit as the assumption (i)
above, we assumg(r)y(r) ~ y(r), so thath(k) ~ f(k) +W(k). Insertion of (8.39)
yields h(k) ~ f(k)/[1— nf(K)]. According to the Ornstein-Zernike relation (8.2),

the above approximation is equivalentdk) = f (k). Going back to real space,
c(r) = f(r). Finally, repeating the assumption (ii) above, we get

MSA = ¢(r) = —Bo(r) = h(k) = 11?17%' (8.40)

It must be noted that in the mean spherical approximationdttext correlation
function is independent of density but differs from its @mtr zero-density limit
c(r) — f(r) [see (8.20)].

The mean spherical approximation (8.40) has usually bepheapto bounded
and soft potentials [85]. For potentials with a hard core ato plus an attractive
tail for r > g, the mean spherical approximation (8.40) is replaced bydthele
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Fig. 9.1 Scheme of the re- - (M Y2 3. ...
lationship between the func- y(r) +13(min + yalmin” + ()" +
tions y(r) and the virial

coefficientsBy.

Thermodynamic routes

]

Z = =1+ Ban + Bsn? + Ban® + Bsn® + - -
nkBT
condition
ry=0, r<o,
9(r) (8.41)
c(r)=—Bo(r), r>o.

This version of the mean spherical approximation is exasdlyable for Yukawa
fluids [86, 87].

9 Some Thermodynamic Consistency Relations in Approximate
Theories

As sketched in Fig. 5.3, an approximagg) does not guarantee thermodynamic
consistency among the different routes. However, thera & cases where either
a partial consistency or a certain relationship may exist.

9.1 AreB{™Y and B *° Related?

As summarized in Fig. 9.1, the knowledge of the coefficigrts) in the density
expansion of the cavity function allows one to obtain théaVicoefficientsBy. In
general, unless the functiopg(r) are exact, the virial coefficienB will depend
on the thermodynamic route followed. Here, we will focus ba tompressibility
route [see (5.1)] and the virial route [see (5.13)], dergpthe corresponding virial
coefficients bnyf) andBl((‘”, respectively.

As shown before [see (7.75)], the virial route yields

w 17 of
Bf() = E/dr W(r)r# . (9.1)

As for the compressibility route, from (5.1) one has
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X =1+ n/dr (IR0 + 1y(r) - 1)
= 14 XoN+ Xan?+ xan®+--- (9.2)

where
Xz:/drf(r), xk:/dr [(F()+1w(r), k=>3. (9.3)

Then, taking into account that= [d (nZ)/dn] %, we obtain

1 1 1
By = X2 BY = ~3 (xs—x2) . BY = -2 (Xa—2X2X3+ X3) - (9.4)

9.1.1 HNC and Percus—Yevick Theories

Let us now particularize to the HNC and Percus—Yevick tmmrSince/épY)(r) =
yéHNC)(r) — Y (r) (see Fig. 8.4), it follows that

BéPY,v) _ ngY’C) _ Bé}HNC,v) _ Bé}HNC,c) Bgexaco . (9.5)

on the other handf™ " (r) # yi™ (1) # y;¥@ () (see again Fig. 8.4). Therefore,
it can be expected that

BEle’V) ?é BgPY,c) ?é BgHNQV) ?é BgHNC’C) ?é Bgexace ' (9.6)
However, interestingly enougBﬁPY’c) andBE,rHNC’V) turn out to be closely related.

More specifically, our aim is to prove that [88]

g(HNCY) _ 3B(PY,c) 9.7)

4 *24

for any potentialp(r) and dimensionality.

9.1.2 A“Flexible” Function y4(r)

The exact function,(r) is given by (7.61). As shown by Fig. 8.4, the HNC approxi-
mation neglects the last diagram and the Percus—Yevicloappation neglects the
two last diagrams. In order to account for all of these palis#ls, let us construct
the function

V=3 (2U +4M +Allj +A2l§f) .99
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The casegA1,A2) = (1,1), (1,0), and (0,0) correspond to the exact, HNC, and
Percus—Yevick functions, respectively.
Inserting (9.8) into (9.1), one has

ng:%(zm +4TZI “1@ +/\2E ) (9.9)

where a dashed line denotes a fac@f (r)/dr. By integrating by parts, the follow-
ing properties can be proved [88]:

I1--211.
TZI +% =—37f| : (9.11)

p d
LS:\I =3 . 9.12)
Consequently,

<v>__§l:I _§lZI A2 "1_*1£I
BY = —3 - 8% 2= (9.13)

In the case of the compressibility route, (9.3) yields

X2=0—9 , X3=C/\ +.& ; (9.14)
B 2+A1I:I 14 4+)\1+/\2lzl &E
Xa= t— +2 t— +5 )

(9.15)

where in (9.15) use has been made of the property

IZI = IZI ZV*llZI . (9.16)
XeX3 = M +14 . X3 = T_I ; (9.17)

and using (9.4), we finally obtain

(c)772+)\1l:I 74+)\1+/\2 7&&
B4 = 3 — 5 E 8 . (9.18)

Noting that
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Fig. 9.2 The diagonal (la- T i T i T
beled c) and vertical (labeled 1.0+ Exget]
v) lines represent the classes

of approximationsA\; = Az

and A; = 1, respectively.

The dashed tie lines connect

the pairs of approximations

whose respective values of e

B\ andB{” are related by
(9.19).

o
(9]
T

0.0

Comparison between (9.13) and (9.18) shows that

. 3A 3 .
BSV) (Wlth A1 =1andA; = m) = Z_i_—ABiC) (Wlth AM=Ar= )\) . (919)

In the case of the exagh(r) we haveA = 1 in both sides of (9.19) and therefore

B{P@M) — B{®%%) a5 expected. On the other hand, the chaiee0 makes the left-
and right-hand sides correspond to the HNC and Percus-keyiproximations,
respectively, and then (9.19) reduces to the sought re&sult. (

More in general, (9.19) implies that for any approximatiénhe classA; = A,
there exists a specific approximation of the clags= 1, such that the compress-
ibility and virial values, respectively, d, are proportional to each other. The con-
nection between both classes is schematically illustratdedg. 9.2. Interestingly,
the largest deviation of the proportionality factor from dcars in the case of the
Percus—Yevick and HNC pair. The proof of (9.19) can be easilgnded to mixtures

[88].

9.2 Energy and Virial Routes in the Linearized Debyetiekel
Theory and in the Mean Spherical Approximation

As said in Sect. 8, the energy and virial routes are equivaiehe HNC approxima-
tion. Now we will see that the same property holds in the lirresl Debye—Huickel
approximation (8.39) [89] and in the mean spherical appnation (8.40) [90].
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9.2.1 Linearized Debye—Hiickel Theory

We start by recalling the energy and pressure routes (5d=at3), respectively.
In terms ofw(r) =y(r) — 1, they are given by

U = <El\>| :72/dr 1+ w(r)] d;g) , (9.20)
EBT_HZ—Z/dr [L+w(r)]r-OF(r) . (9.21)

The consistency condition between both routes is provigatd Maxwell rela-
tion
nauex B g
on 9B’
Given the mathematical identity

—/dr (r) ddBUd ] (9.23)

the consistency condition (9.22) becomes

2 [n/drw(r)af () } Lo [/drw } . (024

Since the linearized Debye—Huickel approximation (8.88tmulated in Fourier
space, it is convenient to express the spatial integral8.24j as wavevector inte-

[ /dk ] 438 {/dk (k)}}. (9.25)

We now make use of the mathematical identity

(9.22)

%{W(k)ﬂk{kf(k)}}f 0‘3’—1(3")1‘(k)+mk- kW(k)%Bk)]
+k - %g‘)mkf(k)agém Dva/(k)] (9.26)
to rewrite (9.25) as
l / dk W (K ] / dkk - lagé)mk?(k)—dgék)mkw(k)l

+/dk‘g’—BF(k) . (9.27)
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It must be emphasized that no approximations have beeredarut so far. There-
fore, any w(k) satisfying the condition (9.27) gives thermodynamicaltiysistent
results via the energy and virial routes.

Let us suppose @osurerelation of the form

W(k) =n1z (nF(k)) . Z(2) = arbitrary. (9.28)

This implies the relations

% W (k)] = .7’ (n?(k)) fk) , (9.29)
%g‘) — (n?(k)) %g‘) , (9.30)
O (K) = 2/ (nF(k)) O f (K) - (9.31)

Itis then straightforward to check that the energy-vir@isistency condition (9.27)
is identically satisfied.

As a corollary, the linearized Debye—Hiuickel approxima(i®.39) belongs to the
scaling class (9.28) with the particular choi€gz) = 72/(1 — z), what closes the
proof.

9.2.2 Mean Spherical Approximation
The proof in the case on the mean spherical approximatiet®)8ollows along

similar lines [90]. Now, instead of (9.20) and (9.21), wersfeom the energy and
virial routes written in the forms (5.4) and (5.12), namely

U — g/dr [1+h(r)]a[ﬁd7(g(r)] : (9.32)
Zzlfz—r(]j/dr [L+h(n)]r-O[Be(r)] . (9.33)

We observe that (9.20) and (9.21) become (9.32) and (9.83pectively, with
the formal changesi(r) — h(r) and f(r) — —B(r). Since all the steps lead-
ing from (9.22) to (9.27) are purely technical, it is cleaatthve obtain a consis-
tency condition analogous to (9.27), except for the forrhaingesv(k) — h(k) and
f(k) — —Be(k). Consequently, that consistency condition is automayisatisfied
by closures of the form

Ak =n"17 (_nﬁa(k)) . Z(2) = arbitrary. (9.34)

As shown in (8.40), the mean spherical approximation beddadhat class of clo-
sures with the particular choicg(z) = z/(1—2).
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¢ o© c
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Fig. 9.3 Left panel: Square-shoulder potential. Right panel: Rab&t-sphere potential

9.3 Energy Route in Hard-Sphere Liquids

We saw in (5.34) that the energy routeuselesgor hard spheres. In fact, the con-
sistency condition (9.22) isivially satisfied since

ex
Jduiis

0Zus
on =0,

B

The last equality expresses the fact that the hard-sphearpressibility factor

0. (9.35)

Zus(n) =1+ 2% tnyus(o;n) (9.36)

is independent of temperature. Thus, there is no posgibiliextracting thermody-
namic information fromugs.

However, a physical meaning can be allocated to the energte rfor hard
spheresifirstitis applied to a non-hard-sphere system that includesare:-sphere
system as a special case dhdnthe hard-sphere limit is taken.

9.3.1 A*“Core-Softened” Potential. The Square-Shoulder lteraction

Let us take the square-shoulder (SS) potential

o, r<ao,
@es(r)=<¢e, o<r<o, (9.37)
0, r>0

as a convenient choice of a non-hard-sphere potential (ge8.B, left panel). The

square-shoulder potential is the simplest example of asoftened potential, i.e., a
potential with a two-length scale repulsive part exhilgtansoftening region where
the slope changes dramatically [91].
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The square-shoulder potential has the interesting prpmérteducing to the
hard-sphere potential in three independent limits:

Bligmo(pss(r) = @us(r) (diametera’) (9.38)
Blim @ss(r) = @us(r) (diametero) , (9.39)
lim ¢ss(r) = ghs(r) (diametero’ = o) . (9.40)

It also reduces to the so-called penetrable-sphere (P8hialt(see Fig. 9.3, right
panel) in the limito’ — 0:

lim_@ss(r) = ¢es(r) . (9.41)

9.3.2 Equation of State from the Energy Route

Suppose amapproximatecavity functionyss(r;n, 3) is known (for instance, as the
solution to an integral equation) for the square-shouldét flThen, the energy route
(5.6) gives

g
ug(n,B) = d2d*1vdn£e’38/ drrd=1ysg(r;n, B) . (9.42)
O—/

Then, the energy-route equation of state is obtained froB2j%s

B
Zss(n.B) = Zrs(no’) +n - [ dpugiin. )

B [0
= Zus(nd'®) + d2d*1vdne%n/ dp'e P 5/ drr9tysg(r;n, B'),
0 o’
(9.43)
where in the first step we have fixed the integration constaitiid® physical condi-
tion (9.38), while in the second step we have used (9.42).

As a second step, we now, take the lifit — o on both sides of (9.43), apply
(9.39), and divide both sides mg? — no'd. The resultis

ZHg(nad) 7ZHs(nO"d) . d2d‘1vd£i
ngd —ng’d ~ gd— g on

0o g
n [ dpete [ drrtiysdrinp).
0 o’
(9.44)
Finally, we take the limio” — o. The left-hand side of (9.44) becomes

. ZHs(nO'd) — ZHs(nO'/d) d 7] d
lim =0 "—Zus(no”) . 9.45
o'—o nod — ng’d on HS( ) ( )

Moreover, the spatial integral on the right-hand side of4®reduces to
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Fig. 9.4 Scheme of the steps m mate) | £ Integration

. roximate
followed to derive (9.36) Theory forss |~ ugk(n, B) 27 Zgs(n, B) — Zus(n')
starting from (9.42). fluids

w
1

Zus(n) = Virial route| o' =0 Zus(n) — Zus(n')

g
im — g [ drr 9 hyedrin ) = Syus(oing®) . (2.46)
o—ogd—g? Jo d
where the third limit (9.40) has been used. Taking into ant@.45) and (9.46) in
(9.44), one gets

%ZHS(nad) = 2d’1vd%nadyHg(a; no9) . (9.47)
Integration over density and application of the ideal-gastdary conditioZys(0) =
1 yields (9.36), which is not but the virial equation of stalée generalization to
mixtures follows essentially the same steps [92].

In summary, the ill definition of the energy route to the edpradf state of hard
spheres can be avoided by first considering a square-shidlulideand then taking
the limit of a vanishing shoulder width. The resulting edomatof state coincides
exactly with the one obtained through the virial rolem that point of viewthe
energy and virial routes to the equation of state of harceepfiuids can be consid-
ered as equivalent. Figure 9.4 presents a scheme of theyaneitg— virial route
path.

It must be emphasized that the application of the three dirf8t38)—(9.40) is
essentiato derive (9.36) from (9.42) [93]. For instance, if the limgit— 0 (instead
of 0’ — o) is taken in (9.44), the result is

00 o
Zns(no%) =1+ d2d‘lnvde%n/0 dﬁe““/0 drr9lypg(r;n,B),  (9.48)

where the changgss — yps is a consequence of (9.41). Equation (9.48) is an al-
ternative recipe to obtain the hard-sphere equation of $tatm the energy route
applied to penetrable spheres. In general, it gives a régidtent from (9.36) when

an approximatgps is used. For instance, in the Percus—Yevick approximaton f
three dimensional systems, (9.36) gives a (reduced) fourith coefficientb, = 16,
while (9.48) givesd, = 1814/175~ 10.37 [93].
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10 Exact Solution of the Percus—Yevick Equation for Hard
Spheres ... and Beyond

As said in Sect. 8, one of the milestones of the statisticadtmnical theory of
liquids in equilibrium was the exact analytical solutiortloé Percus—Yevick integral
equation (8.30) for three-dimensional hard spheres [187Y072].

The statement of the problem is as follows. Particularipeti+ 3, the Ornstein—
Zernike relation (8.1) can be written as

hr) = () + 2 /w dr'r'e(r’) / e (10.1)

B rJo [r—r’| , .
where bipolar coordinates have been used. In the hardesphee, one necessarily
hasg(r) = 0 for r < g. Moreover, the Percus—Yevick closure (8.28) implies that
c(r) =0 forr > g. Thus, the mathematical problem consists in solving (18ub}
ject to the boundary conditions

{g(r) = 8, r < o (exact hard-core condition) (10.2)

c(r)=0, r > o (Percus—Yevick approximation for hard spheres)

The solution relies on the use of Laplace transforms, asesigd by the structure
of (10.1), and stringent analytical propertiesotire function®f complex variable.

Here, however, we will follow an alternative method [3, 98, 96] that does not
make explicit use of (10.2) and lends itself to extensiortsganeralizations.

10.1 An Alternative Approach. The Rational-Function
Approximation

The main steps we will follow are the following ones:

(I) Introduce the Laplace transfor@®(s) of rg(r).
(I) Define an auxiliary functiori (s) directly related ta5(s).
(I Find the exact properties d%(s) for smalls and for larges.
(IV) Propose a rational-functioapproximation(RFA) for F (s) satisfying the
previous exact properties.

As will be seen, thesimplestapproximation (i.e., the one with the least number
of parameters) yields the Percus—Yevick solution. Funtfeee, the next-order ap-
proximation contains two free parameters which can be oeted by prescribing
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a given equation of state and thermodynamic consistenayeeet the virial and
compressibility routes.

The same approach can be extended to mixtures, to othezdedgstems with
piece-wise constant potentials, and to higher dimensiemivithd = odd.

We now proceed with the four steps described above.

() Introduction of G(s)

Let us introduce the Laplace transformrgfr):
G(s) = Z[rg(r)](s) = / dr e'rg(r) . (10.3)
0

The choice ofg(r) instead ofg(r) as the function to be Laplace transformed is
suggested by the structure of (10.1) and also by the lin&(sj to the Fourier
transformh(k) of h(r) = g(r) — 1 and hence to the structure functitk) =
1+ nh(k):

ﬁ(k)z—zn[W] =-2n[@} . (10.9)

s=ik s=ik

whereH (s) = G(s) —s 2 is the Laplace transform oh(r). Had we define@(s)

as the Laplace transform gfr), (10.4) would have involved the derivati®(s),
what would be far less convenient.

In the more general case df= odd> 3, it can be seen that the right choice for
G(s) is [78]

G(s) — / dr e 5'61g_32(sT)rg(r) | (10.5)
0
where

X2k

are the so-calledeverse Bessel polynomigl87]. In this more general case,
(10.4) becomes

Rty = (-zme-0/z RO EES ] gmuevz BOZGE)
| (10.7)

whereH (s) = G(s) — (d — 2)!'s~2is defined as in (10.5), except for the replace-
mentg(r) — h(r).
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(I1) Definition of F(s)

Henceforth we return to the three-dimensional cake @) and, for simplicity,
we takeo = 1 as the length unit. Taking (7.62) and (7.68) into accolnetftard-
sphere radial distribution function to first order in depnsst

r
gr) =@ —1) [1+e(2f 1) (r - 2)2 (é +2) n +} . (10.8)
To that order, the Laplace transformrgfr) is given by

s1G(s) = [Fo(s) + Fu(9)n] &S — 120 [Fo(s) e + -+, (10.9)

where

5
Fo(s)=s2+s2, Fi(s) = Es-2 —2s 365 4+125°+12s7%. (10.10)

The exact form (10.9) 0B(s) to ordern suggestshe definitionof an auxiliary
functionF (s) through

sT1G(s) = F(s)e °—12n[F(s))?e >+ (12)?[F(s)]’e
F(s)e s

" 1t12nF(se s (10.11)
Equivalently,
B s1G(s)
Of course[(s) depends om. To first order,
F(s)=Fo(s)+Fu(sin+--- . (10.13)

In analogy with the one-dimensional case [see (6.47)], ib@duction ofF(s)
allows one to expreggr) as a succession shells(l<r <2,2<r<3,...)in
a natural way. First, according to (10.11),

G(s) = /Z (—12n)ts[F(s)]e "5, (10.14)
=1
Then, Laplace inversion term by term gives
1c z 1
F,Z =12n)"""Y(r—0)Oo(r—1), (10.15)

where
W(r) =gt [s[F (s)]ﬂ (r) . (10.16)
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(1) Exact Properties of F(s) for Small sand Large s

In order to derive the exact behavior @fs) for larges, and in view of (10.15),
we need to start from the behaviorgffr) forr > 1:

g(r)=0(r—-1) g(1+)+g’(1+)(r—1)+%g”(1+)(r—1)2+~~ . (10.17)

In Laplace space,
£°G(s) =g(17) + [g(17) + g (17)]s 1+ 0(s7?). (10.18)

Therefore, according to (10.12),

lim SF(s) = g(1") = finite|. (10.19)

Thus, we see thdt(s) must necessarily behave &1 for larges.
Now we turn to the smalé-behavior. Let us expand the Laplace transform of
rh(r) in powers ofs:

H(s) =HO +HWVs+... (10.20)

where - -
H<°>E/ dreh(r) | H<1>E_/ drr2h(r) . (10.21)
0 0

In particularH® is directly related to the isothermal compressibility [§84.)]:
X =1+nh(0)=1—24nHW . (10.22)

Sincex must be finite, and recalling thek(s) = G(s) — s2, we find
$G(s) =1+ 0xs+HOL + HYS L g(s) . (10.23)

Therefore, from (10.12) the smallbehavior ofF (s) is found to be

e s
— — _12 =
FO G
= 12N +0xs+0xP+1x+0xs*—HOL _HOS 1 g(s).

(10.24)

Thus, just the conditioly = finite univocally fixes the firstivecoefficients in the
power series expansion Bf(s). More specifically,

1+s+§+ Li2ng, 110/24

“Ta >+ 1o o +0()].  (10.25)

F(s) =
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(IV) Construction of the Approximation

Thus far, all the results are formally exact. To summarize have defined the
Laplace transforn®(s) in (10.3) and the auxiliary functioR(s) in (10.12). This
latter function must comply with the two basic requireméats19) and (10.25).
A simple way of satisfying both conditions is by means af#onal-function

form: -
Polynomial ins of degreek

= 1 .2
Polynomial ins of degreek + 2 (10.26)

F(s)

with 2k+ 3 > 5= k > 1. The simplestrational-function approximation corre-
sponds tk = 1:

1 1+LWs
F(s)=—— 10.27
(s) 120 1+ SYs+ S+ 5383 | ( )

where the coefficients are determined from (10.25). They are
1+n/2
(-
L Tion (10.28)
3 n 11-n 1 (1-n)?
Hp__=2>_ 4 2_ - —— T )

s 21+2n’ s 21+2n° s 12n 1+2n ° (10.29)

10.2 Structural Properties

OnceF(s) and hences(s) have been completely determined by the approxima-
tion (10.27), it is easy to go back to real space and obtairtdinesponding(r).
Three alternative ways are possible. First, one can inuertanically the Laplace
transformG(s) by means of efficient algorithms [98]. A second method cassis
obtainingﬁ(k) from (10.4) and then performing a numerical Fourier invamnsiThe
third method is purely analytical and is based on (10.15)X&0dL6). From a practi-
cal point of view, one is interested in determinigig) up to a certain distanagax
sinceg(r) — 1 for large distances. In that case, the summation in (1@46)be
truncated for > rmax. In obtaining¥(r) from (10.16) and (10.27) one only needs
the roots of the cubic equationt1SYs+ S?s? + S®s® and to apply the residue
theorem. This latter method is the one employed in [99]

As for the structure function, application of (4.17) and.@)0ields the explicit
expression
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Fig. 10.1 Radial distribution function (left panel) and direct cdatéon function (right panel) of a
three-dimensional hard-sphere fluid, as obtained from ¢heuB—Yevick approximation. at several
values of the packing fraction = (11/6)no® = 0.05, 01, 0.2, 0.3, 0.4, and 05, in increasing order
of complexity.

1 72n%2(24+n)? _, 2881%(1+2n)? 12n(2+n)

i k—6_ |: k—2
sl @ T @y oK Ty
TN%2-4n—Tn%), 4 288171+ 2n>2k_e]
(1-n)* (1-n)*
_[24n(1-5n-5n%) ., 2887%(1+2n)2 _
+smk[ r’((l—Z)?* n°) 3%k 5] (10.30)

To complete the description of the structural propertiesnshing from the ap-
proximation (10.27), let us consider the direct correlafinction. Its Fourier trans-
form can be obtained fro(k) via the Ornstein—Zernike relation (8.2). The inverse
Fourier transform can be performed analytically with theute

(1-n)* (1-n)* 2(1-n)*
0, r>1.

_(+2n)? | en(1+n/2)?.  n(+20) 3 1
c(r)—{ - ' o= h (10.31)

We observe that(r) = 0 forr > 1. But this is thesignatureof the Percus—Yevick
approximation for hard spheres [see (10.2)]. This showtiiesimplestrealization
(10.27) of the rational-function approximation (10.2@nsiout to coincide with the
exact Percus-Yevick solution.

Figure 10.1 displays the Percus—Yevick functigi9 andc(r) at several densi-
ties. The corresponding structure factor curves wereelatt Fig. 4.3.
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10.3 Equation of State

OnceG(s) is fully determined, one can obtain the equation of stateeXymected,
the result depends on the thermodynamic route employeddsart with the virial
route. According to (9.36), the virial route in the threeadnsional case is

zV) =144ng(17). (10.32)
The contact value is obtained from (10.19) as

1 LY 14n/2

+ _ - = _
01 = 5 55 Tonp (10.33)
Thus,
v _ 1+2n+3n2
Iy = ———F— 10.34
Y (1-n)? (10:34)

In the case of the compressibility route, (10.22) shows wenheedH V. This
quantity is evaluated from the coefficientsfin the Taylor expansion of¢F (s),
as shown in (10.24). The result is

_ 8-2n+4n?-n?

@ _
H 2417 272 (10.35)
Insertion into (10.22) yields
(1-n)*
=" 10.36
The associated compressibility factor is obtained upaegirsition as
(0 _ 1/” dn’ _1+n+n?
7250 =— = . 10.37
N xedn) T -np? (037

Finally, we consider the chemical-potential equation afestin the three-dimensional

one-component case, (5.42) gives
1
BL™ = —In(1—n)+24n /1 d00102.001(05y) - (10.38)
2

We see that the contact value (10.33) is not enough to comypiiteNe need to
“borrow” the solute-solvent contact valgg: (0;;) from the Percus—Yevick solution
for mixtures [73]:

1 3 n 1
+\ 2 _
go1(0gy) = 17 + 2A=n)2 <2 001) . (10.39)
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Table 10.1 First eleven (reduced) virial coefficientg as obtained exactly and from several equa-
tions of state related to the Percus—Yevick theory.

k  exact z8 oz W A A Z(ke2)

2 4 4 4 4 4 4 4

3 10 10 10 10 10 10 10

4 1836476 16 19 67-1675 18 18l 181 14518125
5 2822453) 22 31 19238 28 52 =2812 587

6 3981519) 28 46 31 40 40 il ~402

7 533444) 34 64 268383 54 376 . 537 54

8 68542) 40 85 %ﬁ =456 70 27 _ 6925 %" ~697
9 85819 46 109 53 88 86.6 2~872

10 1058(4) 52 136 3§2 604 108 Zgg“ 10576 % = 1066
11 1285) 58 166 P~678 130 P~1267 11%~1278

This expression is exactdfy; = % [30] and reducesto (10.33)dk = 1. Performing
the integration in (10.38) one finds

74+n/2

-0y (10.40)

Busy=—-In(1—n)+n—+—>-x

The excess free energf* consistent with (10.40) is obtained taking into account
the thermodynamic relation (2.9), i.¢1$* = 0(F®/V)/dn, as

BFF?¢ 1 /f] / e 9 ”I ’7

e _—/d X(n)="—"In(1—- 51 10.41
N nJo n'Busy(n’) n (1-n)+ 2 “n ( )
Then, the equation of state is derived from the thermodyoastation (2.9), i.e.,
Z=1+nd(BF®/N)/dn. Theresultis

Inl—n) _1-31n/16
W — 9 -8
Py n (1-n)?

(10.42)

Surprisingly, while the virial and compressibility equats of state (10.34) and
(10.37), respectively, are known since 1963 [71], the clafxpotential equation
of state (10.42) has remained hidden until recently [30].

The reduced virial coefficientk [see (7.89)] predicted by the three equations of
state (10.34), (10.37), and (10.42) are

2 _ 2 _

b|((PY7V) _2(3k—4) b|((PY7C) _ 3k —3k+2 7 b|((PY7u> _ 15ks — 31k + 18'
2

(10.43)

Those virial coefficients are compared with the exact vaJ6és 53, 54] in Table
10.1. We observe that (10.37) overestimates the known ciefts, while (10.34)
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Fig. 10.2 Plot of T T T T T T —
Zcs(n) — Zvp (n) (circles), i
Z(Heb(n) = Zyp () (tri- 000k ;o
angles), andZ#¢2 () — i = /1
Zyp (n) (squares). AN N "
N~ y
.\ \A\.\.\.—.’.l./
G AN
2.0.01F “ |
N \
G e ZZy, o \A\A
N ) . A
A2, N T
-0.02H g e Teee® A
—Z _ZMD N
" 1 " 1 " 1 X
0.1 0.2 03 0.4 0.5

and (10.42) underestimate them, the chemical-potentigérbeing slightly more
accurate than the virial one.

Interestingly, the Carnahan-Starling equation of stae (3.95) and (7.96)] can
be recovered as anterpolationbetween the Percus—Yevick virial and compress-
ibility equations: )

1
Zes= :—gzé,V@ + :—gzé,CY) . (10.44)

As shown by Fig. 7.9Z¢s is an excellent equation of state. On the other hand, since
Zé,’? is more reliable tharZé,\?,, one may wonder whether a similar interpolation

formula, this time betweezé,ﬁ‘,) andZé,“?(, ie.,

zH = Az + (1-1)Z8), (10.45)

might be even more accurate. From an analysis of the viriefficients one can
check that the optimal value of the interpolation paramistéra: 0.4. In particular,

the two choices 5 .
A=Sozmel) oy = L z(ue2) 10.4
5 ’ 18 (10.46)

are analyzed in Table 10.1 at the level of the virial coeffitsewhere

pHeD _ 9k3 + 21k? — 56k + 36 pHe2) _ 11k3 + 24k2 — 65k 4- 42
g 10k rok 12 '

A better performance than that of the Carnahan-Starlinfficieats is clearly ob-
served (except in the caseshgfandby).

The good quality oZ(#¢1) andz(#%2) | even better than that @s, is confirmed
by Fig. 10.2, where the deviations of those three compriisgiactors from molec-

(10.47)
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ular dynamics simulation value&yip) [64] are plotted as functions of the packing

fraction.
It is worth mentioning that (10.33), (10.34), (10.36), @0, (10.40), (10.41),
and (10.42) are extended to additive hard-sphere mixtsrf&la 73]

3 N 0a0yM;

+\ _
9or08) = T T ST n T o M (10.48)
(v) 1 3’7 M1M2 3'72 Mg
SV _ N n Y2 10.49
PY¥71-n " (1-n)?2 M3  (1-n)2M} ( )
_ 1 6n  MiMo 9> M3
L 5
_ . + iy 10.50
XY == n? T @-nP Mz | @1-n) M2 (10:59)
(©) 1 3’7 MlMZ 3’12 M%
2 _ N n Vo 10.51
PY"1-n (1-n)2 Mz (1-n)3M2 ( )
3n My 3n (MM, 3 n M3\ o?
P 3_n M)\ oy
Bupy. n(l—n)+ 1-n M30V+1—l7 ( M3 ~ 21-nM3) M
n n MM\ a2
1 —_ .
+1n( ™ )Ms’ (1052
Fex 31 MiMz . 3n2 M3

BRY _ 1o M3
N R VR FR AV
3v3 {69r]+2n2 In(lr])]

2M2 | (1-n)? o n

(10.53)

zé,‘?: 1 N 3n Mle+ 3n? M3 om3 1—§n+ln(1—r))
1-n (1-n)2 M3 (1-n)MZ M2 |(1-n)? n ’
(10.54)
where
Mq = Zxaag . (10.55)
a

10.4 Beyond the Percus—Yevick Solution

Once we have obtained the exact solution of the Percus—/@viegral equation
for hard spheres as the simplest application of the ratifuraition approximation
methodology, let us go beyond it either by improving the agpnation or by con-
sidering other interaction models.
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10.4.1 Next-Order Approximation for Hard-Sphere Fluids

In the spirit of the rational-function approximation (16)2the next-order approxi-
mation is obtained wittkk =2, i.e.,

D2
F(s) = ——— ) (10.56)
12n 1+ SVs+ S22 + S3s3 494
From the exact series expansion (10.25) one can obtain
@_ @, 120 115 qe
L LPY+1+2n 5L S (10.57)
1) <+ 4)
J=sh 4 1+2n[ _g } (10.58)
2)_ 2 12n |[1- 4r] 4
Sé’Y+1+2n T @ 54 (10.59)
s Tior 12n 24 = § (10.60)

whereL(F,l\z, l> andSS are given by (10.28) and (10.29).

So far, the two coefﬁuenls( andS¥ remain free. They can be fixed by im-
posing any desired contact valgél™) (or compressibility factoZ) and the cor-
responding consistent isothermal susceptibjiity: [d(nZ)/dn] L. First, the exact
condition (10.19) fixes the ratio® /S, so that

L@ = _3(z—-1)S% . (10.61)

Next, the expansion (10.24) allows us to identif{*) and, by means of (10.22),
relatey, L®, andS¥. Using (10.61), one gets a quadratic equationd8r [95],
whose physical solution is

— z-1
SOl N R : <X 1) , (10.62)
36n(Z-3) z— 78 \Xpv

wherezé,‘g andyxpy are given by (10.34) and (10.36), respectively.

Figure 10.3 compares computer simulations resultg(of at n = 0.471 [64]
with the predictions obtained from the Percus—Yevick soiu{10.27) and from
the next-order rational-function approximation (10.96)the latter,Z and x have
been chosen as given by the Carnahan—Starling equatiomatef[see (7.96) and
(7.97)]. We observe that both theories describe quite welltehavior ofy(r) but
the Percus—Yevick approximation underestimates the cowadue and then decays
by crossing the simulation data. Both features are sat@fc corrected by the
rational-function approximation.
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Fig. 10.3 Radial distribution functiory(r) of a hard-sphere fluid at a packing fractipn= 0.471
as obtained by molecular dynamics simulations [64] and ftbenPercus—Yevick and rational-
function approximation approaches.

It is interesting to note that the rational-function appnoation (10.56) coin-
cides with the solution of the so-called generalized mgadrescal approximation
(GMSA) [86, 100, 101], where the direct correlation funatiir) outside the hard
core ¢ > 1), which vanishes in the Percus—Yevick theory, is assuroduktgiven
by a Yukawa form. The rational-function approximation neethhowever, is math-
ematically much more economical and open to applicatiositer systems.

10.5 Non-Hard-Sphere Systems

The rational-function approximation methodology has bagplied to systems dif-
ferent from one-component three-dimensional hard sph&hesse systems can be
classified into two categories: (i) systems amenable to attesolution of the
Percus—Yevick equation and (ii) systems non-amenable &xaat solution of the
Percus—Yevick equation. The first class includes stickyl Ispheres (see Fig. 6.3,
right panel) [39], additive hard-sphere mixtures [73], iéidd sticky-hard-sphere
mixtures [74, 75], and hard hyperspheres [76, 77]. In thas<lof systems, the
rational-function approximation method recovers the BegrYevick solution as
the simplestpossible approach, just as in the hard-sphere case [s&/J[LOrhe
next-order approach allows one to make contact with engligquations of state,
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thus improving the predictions. The interested reader @arsut the references
[78, 79, 96, 102, 103, 104, 105, 106, 107] for further details

The application of the rational-function approximatiorsistems of the second
class includes the penetrable-sphere model (see Fig.i§t#,panel) [108, 109],
the penetrable-square-well model [110], the square-vedtitial (see Fig. 6.3, left
panel) [111, 112, 113], the square-shoulder potentialkg&eed.3, left panel) [114],
piece-wise constant potentials with more than one step [ll1f, nonadditive hard-
sphere mixtures [117, 118], and Janus particles with caim&d orientations [119].
In those cases, tr@mplestrational-function approximation is already quite accu-
rate, generally improving on the (numerical) solution of ®ercus—Yevick equa-
tion.

11 Concluding Remark

These lecture notes are already too long, so let this autiariede just by saying
that he will feel fully satisfied if the notes are useful to soof the students who
attended the 5th Warsaw School of Statistical Physics, nwesof the readers who
have had the patience to read them, or to some instructorsnigid find something
profitable for their own courses.
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