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We have obtained by Monte Carlo NVT simulations the constant-volume excess heat capacity 
of square-well fluids for several temperatures, densities and potential widths. Heat capacity is a 
thermodynamic property much more sensitive to the accuracy of a theory than other 
thermodynamic quantities, such as the compressibility factor. This is illustrated by comparing 
the reported simulation data for the heat capacity with the theoretical predictions given by the 
Barker-Henderson perturbation theory as well as with those given by a non-perturbative 
theoretical model based on Baxter's solution of the Percus-Yevick integral equation for sticky 
hard spheres. Both theories give accurate predictions for the equation of state. By contrast, it 
is found that the Barker-Henderson theory strongly underestimates the excess heat capacity 
for low to moderate temperatures, whereas a much better agreement between theory and 
simulation is achieved with the non-perturbative theoretical model, particularly for small well 
widths, although the accuracy of the latter worsens for high densities and low temperatures, as 
the well width increases. 

1. Introduction 
Thermodynamic and structural properties of square- 

well (SW) fluids have been profusely studied both from 
theory and from computer simulation [l-381. From the 
theoretical side, the first few virial coefficients have been 
obtained [l, 2, 371 and the radial distribution function 
has been evaluated from numerical solutions of integral 
equation theories, such as Percus-Yevick [&8, 30, 381, 
Yvon-Born-Green [14], HNC [lo], MSA [16, 301, 
Rogers-Young [28], ORPA [28], and HRT [35]. 
Simpler analytical approximations have also been 
proposed [ l l ,  12, 19-22, 341. The thermodynamic 
properties have been derived from the theoretical 
structure functions as well as from perturbation theory 
[3, 4, 9, 13, 23, 271. Access to the 'experimental' 
properties of SW fluids has been made possible via 
molecular dynamics and Monte Carlo simulations [5, 
10, 13, 1618, 26, 36, 381. Special attention has been 
given to the determination of the critical point of SW 
fluids [&8, 13, 18, 23, 25, 26, 29, 33-35, 381, both from 
the theoretical and simulational viewpoints. The main 
reason for this wide interest lies in the fact that a SW 
fluid is perhaps the simplest one whose particles have 
attractive as well as repulsive interactions. In general, 
theories are easier to apply to SW fluids than to other 
fluids with more realistic potentials. In addition, the SW 
potential seems to be particularly sensitive to the 
performance of a theory. Therefore, this kind of fluid 
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is an excellent testing-ground for many theories of 
fluids and so the study of SW fluids can be considered 
as a first step towards our understanding of the 
properties of fluids with more sophisticated interactions. 
There is an additional reason explaining the recent 
revival of interest in SW fluids. The SW potential 
possesses, besides the diameter of the hard core and the 
depth of the well, an additional parameter measuring 
the width of the well. This makes the SW potential 
with a small width especially suited to model the 
effective interactions among colloidal particles [ 16, 28, 
30, 31, 381. In this context, the glass transition [30, 311 
and a solid-to-solid isostructural transition [24] have 
been studied for narrow SW systems. 

Despite the extensive number of studies devoted to the 
SW fluid, relatively little attention has been paid to 
several thermodynamic properties. This is the case for 
the heat capacity. To the best of our knowledge, [5,  101 
only a few simulation data of this property for SW fluids 
are available. Theoretical calculations of the same 
quantity are equally scarce [lo]. In the present paper 
we have carried out Monte Carlo (MC) simulations 
of the constant-volume excess heat capacity CF of SW 
fluids for several values of the potential width and, 
for each of them, for several densities and temperatures. 
Moreover, in order. to clarify the sensitivity of this 
property with regard to the accuracy of a theory, the 
simulation data are compared with the results obtained 
from the Barker-Henderson (BH) [39, 401 perturbation 
theory and with those derived from the theoretical model 
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proposed by Yuste and Santos [22], recently simplified by 
Acedo and Santos [34]. 

The paper is organized as follows. In the next section, 
we summarize the theoretical foundations of the MC 
procedure used and we describe the simulations 
performed and the results obtained. In section 3, we 
present an outline of the above-mentioned theories. 
Finally, in the last section the theoretical results are 
compared with simulation data and discussed. 

2. Monte Carlo simulations 
In an SW fluid, particles interact by means of a 

potential of the form 

00, if r sa, 

0, if r > ha, 
-E, if a c r s h a ,  (1) 

where h is the potential width in units of the particle 
diameter a and c is the potential depth. 

Constant-volume averaged excess heat capacity 
per particle in an SW fluid can be expressed in the 
form [5]: 

where N is the number of particles, k is the Boltzmann 
constant, T* = kT/c  is the reduced temperature and M 
is the number of pairs of interacting particles, that is, the 
number of pairs of particles whose centres lie separated 
by a reduced distance r* = r/a 5 A. 

The averages involved in equation (2) can be 
calculated by MC simulations in the NVT ensemble. 
Therefore, we have proceeded to calculate by means of 
MC NVT the constant-volume averaged excess heat 
capacity per particle for SW fluids with well widths A. 
ranging from 1.1 to 1.5. For each value of A, CF has 
been evaluated for several densities along isotherms. To 
this end, a system consisting of 512 particles placed in a 
cubic box with periodic boundary conditions was used. 
Particles were initially placed in a regular configuration 
and then the system was allowed to equilibrate for 
2 x lo4 cycles, each of them consisting of an attempted 
move per particle, the fist  lo4 cycles at a very high 
temperature, and the remaining ones at the desired 
temperature. The calculation of CF was performed by 
averaging over the next 5 x lo5 cycles, performing 
partial averages every lo4 cycles with the aim of 
estimating the statistical error from the standard 
deviation. The use of such a huge number of cycles in 
the calculations was motivated by the need to ensure 
that the values of CF converged to a constant value, 
apart from statistical fluctuations. In fact, we realized 

that for low values of the number of cycles used in the 
calculations, the values of CF increase with the number 
of cycles used. 

The results are shown in table 1 .  We have considered 
four isotherms for h = 1.1,1.2,1.3 and three isotherms 
for 1 = 1.5. The lowest temperature in each case is larger 
than the estimated critical temperature [13, 18, 23, 25, 
26,33-351: Tf: 2: 0.5,0.6,0.8,1.2 for h = 1 . 1 ,  1.2,1.3,1.5, 
respectively. 

Table 1. MC simulation data for CF/Nk. The numbers in 
parentheses indicate the statistical uncertainty in the last 
decimal places. 

T* = 0.7 T* = 1.0 T* = 1.5 T* = 2.0 T* = 2.5 P* 

I =  1.1 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 =  1.2 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I =  1.3 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 = 1.5 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.527(3) 
0.94(1) 
1.25(2) 
1.40(2) 
1.5 l(3) 
1.50(3) 
1.42(3) 
1.38(2) 
1.15(3) 

3.1 1 ( 1 7) 

3.68(22) 

3 .O 1 (1 4) 

1.35(5) 

0.1731(8) 0.0580(2) 
0.319(1) 0.1 109(3) 0.0556(2) 
0.431(3) 0.1588(8) 
0.525(5) 0.1979(9) 0.1033(4) 
0.603(7) 0.230(1) 
0.630(7) 0.252(2) 0.1361(7) 
0.612(7) 0.261(3) 
0.595(6) 0.256(3) 0.142( 1) 
0.534(7) 0.241(4) 

0.367(2) 
0.62 l(7) 
0.77(1) 
0.83(1) 
0.82(1) 
0.743(9) 
0.657(8) 
0.530(8) 
0.463(6) 

0.1 155(3) 0.0559( 1) 
0.1988(6) 0.0979(3) 
0.2568(9) 0.1288(6) 
0.282(2) 0.1463(6) 
0.295(2) 0.1528(6) 
0.282(3) 0.1459(8) 
0.253(2) 0.1351(7) 
0.222(2) 0.1209(9) 
0.195(2) 0.1 1 1 (1) 

0.1846(6) 0.0864(2) 0.0504(1) 
1.17(1) 0.303(2) 0.1423(7) 0.0834(3) 

0.359(4) 0.1720( 5 )  0.10 16(4) 
1.35(2) 0.363(2) 0.178(1) 0.1060(6) 

0.340(3) 0.1688(8) 0.1019(7) 
0.90(2) 0.289(3) 0.151(1) 0.0918(3) 

0.251(2) 0.1350(9) 0.0838(5) 
0.512(8) 0.226(2) 0.126(1) 0.0807(6) 

0.219(2) 0.122(1) 0.078(1) 

0.426( 3) 
0.705(5) 
0.719(9) 
0.563(5) 
0.401(6) 
0.295(2) 
0.270(2) 
0.235(3) 
0.188(2) 

0.1724(4) 0.0952(3) 
0.263(2) 0.1426(8) 
0.277(2) 0.1495(7) 
0.239(2) 0.1339(8) 
0.190(2) 0.1 142(6) 
0.161(1) 0.1027(5) 
0.1513(6) 0.0977(6) 
0.136(1) 0.0894(9) 
0.109(2) 0.0716(6) 
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3. Theory 
3.1. Barker-Henderson perturbation theory 

In the second-order BH perturbation theory [39, 401, 
the free energy is expressed in the form 

where FO is the free energy of the hard-sphere (HS) 
reference system and Fl and F2 are the first- and second- 
order perturbative terms, respectively. According to this 
theory, the constant-volume excess heat capacity per 
particle is given by 

(4) 

where 

NkT = -npkT ($)o Lm[u;(r)l2go(r)r'dr (5 )  

in the so-called macroscopic compressibility approxima- 
tion, whereas 

in the so-called local compressibility approximation. In 
equations ( 5 )  and (6), p = N / V  is the number density, 
uT(r) = uI(r)/c is the perturbative contribution to the 
potential function, which in an SW potential is 
uT(r) = -1 for D < r < ha, P is the pressure and go(r) 
is the radial distribution function (rdf) of the hard- 
sphere reference fluid. 

In recent years, several analytical and very accurate 
expressions for the rdf go(r) of the HS fluid have been 
proposed [41-43]. They can be used to determine F2 in 
expressions (5)  and (6). Regarding (ap/aP),, which 
appears explicitly in expression ( 5 )  and implicitly in (6), 
it can be obtained from the well-known Carnahan- 
Starling [44] equation of state 

p 0 v  1 + I ] + q 2 - I ] 3  zo=--= 
NkT (1 - v ) ~  ' 

where I] = (n/6)pa3 is the packing fraction. 

(7) 

3.2. Yuste-Acedo-San tos model 
The internal energy can be obtained from the rdf g(r) 

through the energy equation 

(8) 
3 
2 U = - NkT + 2nNp 

whence 

In the special case of the SW potential (l), equations 
(8) and (9) become 

(10) 
3 
2 

U = - N k T  - 12Nq 

respectively. The rdf g(r*) of the SW fluid depends on 
the packing fraction I ] ,  the reduced temperature T* and, 
parametrically, on the well width a. In principle, one has 
to resort to numerical solutions of integral equation 
theories. On the other hand, particularly suitable for the 
purpose of obtaining the heat capacity is the heuristic 
model proposed by Yuste and Santos [22] and recently 
simplified by Acedo and Santos [34], which is analytical 
and fairly accurate. Henceforth we will refer to this 
model as the YusteAcedo-Santos (YAS) model. It is 
based on expressing the Laplace transform G(t) of 
r*g(r*) in the form 

F(t)  exP(-t> 
1 + lZqF(t)exp(-t) 

G(t) = t 

where the auxiliary function F(t) is assumed to have the 
form [22, 341 

The coefficients K l ,  K2, S1, S2 and S3 are explicit 
functions of V ,  T* and A determined from consistency 
conditions. We refer the interested reader to [22, 341 for 
further details. The YAS model (13) reduces to the exact 
solutions of the Percus-Yevick (PY) equation in the 
limit of hard spheres (A + 1 or T* + 00) [45, 461, as 
well as in the limit of sticky hard spheres (A + 1 and 
T* + 0 with T* - - 1 / ln(A - 1)) [47]. From that point 
of view, the approximation (1 3) can be seen as a simple 
extension to finite widths of Baxter's solution of the PY 
equation for sticky hard spheres. 
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Upon Laplace inversion of equation (12), the final 
expression of the rdf reads 

00 

g(r*) = r*-' x(-12q)"-'fn(r* - n)@(r* - n), (14) 
n= 1 

where the functions fn(r*) are the inverse Laplace 
transforms of t[F(t)]" and @(r*) is Heaviside's step 
function. Therefore, to determine the rdf for r* < n + 1 
only the first n terms in the summation (14) are needed. 
In particular, for the values of A. 5 2 considered in this 
paper, one has 

x exp[zi(r* - l)], 1 < r* I A, (15) 

where Zi (i = 1,2,3) are the three roots of the cubic 
equation 1 + Slt + s2 t2  + S3t3 = 0. Inserting equation 
(15) into equation (ll),  we finally get 

x [z;' - 1 +(A -z;')exp[zi(h - l)]]. (16) 

The heat capacity can also be obtained from the YAS 
rdf by following the virial and compressibility routes to 
the equation of state. The reason for the choice of the 
energy route (8) is two-fold. First, it is obviously the 
most direct route to determine the heat capacity. 
Second, we have checked that the other routes yield 
results that present larger deviations from the simulation 
data. This latter observation is consistent with the case 
of the PY theory for sticky hard spheres [48] and for SW 
fluids [7, 81. 

4. Results and discussion 
Results obtained for CF from the second-order BH 

perturbation theory within the local compressibility 
approximation as well as within the macroscopic 
compressibility approximation are compared in figures 
1-4 with the simulation data of table 1. We can see that 
although the local compressibility approximation pro- 
vides a better agreement with simulation data, both 
approximations are .rather poor at low temperatures. 
This might be due either to the insufficient accuracy of 
both the local compressibility and the macroscopic 
compressibility approximations or to the fact that 
higher-order terms, beyond the second one, in the 
expansion of the Helmholtz free energy in power series 
of the inverse of the reduced temperature, have a non- 
negligible contribution to the heat capacity. In order to 

0.0 0.2 0.4 0.6 0.8 1.0 
P' 

Figure 1 .  Constant-volume excess heat capacity for an SW 
fluid with A = 1.1 as a function of the reduced density p*.  
Circles: simulation data from table 1 for T' = 0.7, 
T* = 1.0 and T' = 1.5, respectively, from top to bottom. 
Squares: values obtained from equation (4) using the 
simulation data of F2 reported in [49]. Continuous curve: 
YAS model. Dashed curve: BH perturbation theory in the 
local compressibility approximation. Dotted curve: BH 
perturbation theory in the macroscopic compressibility 
approximation. 

0.8 1 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

P' 
Figure 2. As in figure 1 for A = 1.2, except that the 

temperatures are T* = 1.0, T* = 1.5 and T* = 2.0, 
respectively, from top to bottom. 

determine which of these two possibilities is the right 
one, we can use for FZ in equation (4) simulation data, 
thus avoiding theoretical approximations. These simula- 
tions were performed by Barker and Henderson [50] 
who reported the results in terms of a function 
depending on 45 parameters for each density. These 
parameters were determined from a least-squares fitting 
of their simulation data. Since the use of that fitting is 
somewhat tedious, we have preferred to use directly 
simulation data for F2, which are available for several 
densities and well widths [49], to determine CF from 
equation (4). As one can see in figures 1-4, results thus 
obtained are much closer to the theoretical results 
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0.4 I I I I I I 

Y 
z 

W. 
0' 

0.2 

0.1 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

P' 
Figure 3. As in figure 1 for A. = 1.3, except that the 

temperatures are T* = 1.50, T* = 2.0 and T* = 2.5, 
respectively, from top to bottom. 

Y z 
0 

W i >  

I / \ o  
I 
I 

1 

0.0 0.2 0.4 0.6 0.8 1.0 
P' 

Figure 4. As in figure 1 for h = 1.5, except that the 
temperatures are T* = 1.50, T" = 2.0 and T* = 2.5, 
respectively, from top to bottom. 

derived from the BH second-order perturbation theory 
than to the values of CF obtained from direct 
simulations, except in the high density limit. This 
means that the main reason of the failure of the BH 
perturbation theory in predicting the heat capacity of 
SW fluids arises in the truncation of the perturbative 
series at the level of the second-order term, the higher- 
order terms having a non-negligible contribution. This is 
in contrast to the situation for the equation of state [39, 
511, which is accurately given by the second-order BH 
perturbation theory even at relatively low temperatures 
for wide ranges of densities and potential wells. The 
reason is that, as pointed out before, the constant- 
volume excess heat capacity is a thermodynamic 
property particularly sensitive to the performance of a 
theory and therefore the influence of higher-order terms, 
which is small in the equation of state, may be important 
in the heat capacity. This is particularly true for low 
values of the potential width, since the lower the 

potential width, the slower the convergence of the BH 
perturbation theory at low temperatures [ 151. 

A much better agreement is obtained with YAS theory, 
equation (1 6), at low to moderate densities, as shown in 
the same figures. This theory, in contrast to the BH 
theory, provides a better agreement with the simulation 
data of CF as the potential width decreases. This is con- 
sistent with the fact that, as mentioned before, the YAS 
model is an extension to A > 1 of the PY solution for 
sticky hard spheres and hence it is expected to be as 
accurate as the PY theory at least for small A - 1. The 
structural properties predicted by the YAS model for the 
SW fluid also exhibit good agreement with simulation 
data for low values of - 1 whereas the accuracy worsens 
as A increases [22,34]. Figures 1 4  show that, given a well 
width A, the YAS values of CF are more accurate as the 
temperature increases and/or the density decreases. 

In conclusion, we have performed Monte Carlo 
simulations of the constant-volume excess heat capacity 
of SW fluids of variable width for a wide range of 
densities and at several characteristic temperatures. This 
thermodynamic quantity vanishes for hard spheres and 
so it represents an important measure of the influence of 
attractive forces on the state of the fluid. Moreover, the 
heat capacity seems to provide a rather stringent test to 
assess the accuracy of theoretical approaches. In this 
paper we have compared the simulation data with the 
BH perturbation theory [39, 401 and with a non- 
perturbative theory developed by Yuste, Acedo, and 
Santos [22,34]. While the former theory presents a poor 
performance, which can be attributed to the truncation 
of the perturbative series to second order rather than the 
inaccuracy of the theory itself, the non-perturbative 
theory does a fairly good job, especially for narrow 
wells, except at low temperatures and high densities. 
Although a potential well of A = 1.5 is appropriate for 
many simple fluids, SW fluids with lower values of A 
may be of interest because the properties of certain 
colloidal suspensions are well reproduced by considering 
SW interactions with narrow potential widths. 
Therefore, as several theories for SW fluids have 
achieved a considerable accuracy for the equation of 
state and the pair correlation function of SW fluids, the 
constant volume excess heat capacity seems to be a 
suitable thermodynamic property to discriminate 
between them. In this context, we expect that our 
simulation data can stimulate other studies on the heat 
capacity of SW fluids of variable width and can be used 
to check the reliability of other approximations. 
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