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ANDRÉS SANTOS*

Departamento de Fı́sica, Universidad de Extremadura, E-06071 Badajoz, Spain

(Received 12 July 2006; in final form 19 August 2006)

The internal energy of hard spheres (HS) is the same as that of an ideal gas, so that the energy
route to thermodynamics becomes useless. This problem can be avoided by taking an
interaction potential that reduces to that of the HS in certain limits. In this paper, the
square-shoulder (SS) potential characterized by hard-core diameter �0, soft-core diameter
� > �0 and shoulder height � is considered. The SS potential becomes that of the HS if
(i) � ! 0, or (ii) � ! 1, or (iii) �0 ! � or (iv) �0 ! 0 and � ! 1. The energy-route equation
of state for the HS fluid is obtained in terms of the radial distribution function for the SS fluid
by taking limits (i) and (ii). This equation of state is shown to exhibit, in general, an artificial
dependence on the diameter ratio �0=�. If, furthermore, the limit �0=� ! 1 is taken, the
resulting equation of state for HS coincides with that obtained through the virial route.
The necessary and sufficient condition to obtain thermodynamic consistency between both
routes for arbitrary �0=� is derived.
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1. Introduction

As is well known, there are several routes to obtain the
thermodynamic quantities of a fluid in equilibrium in
terms of the pair interaction potential �(r) and the radial
distribution function g(r) [1–3]. The most frequently
used are the virial route,
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the compressibility route,
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and the energy route,
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In equations (1)–(3), p is the pressure, � the number
density, � � 1=kBT the inverse temperature, Z the
compressibility factor, � the (dimensionless) isothermal
compressibility, u the internal energy per particle and
yðrÞ � exp½��ðrÞ�gðrÞ is the cavity (or background)
function.

The three thermodynamic quantities Z, � and u are
connected by thermodynamic relations, namely
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Thus, the compressibility factor, and hence the equation
of state (EoS), can be obtained from y(r) (or, equiva-
lently, g(r)) either directly from equation (1), or from
equations (2) and (4), or from equations (3) and (5).
Given an interaction potential �(r), if the exact cavity
function y(r) is known for any thermodynamic state
ð�,�Þ, the three routes yield, of course, the same EoS.
On the other hand, if an approximate function y(r)
is used, a different result is, in general, obtained from
each route, a problem known as the thermodynamic
inconsistency of the approximation.

Some liquid state theories contain one or more
adjustable state-dependent parameters which are tuned*Email: andres@unex.es
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to achieve thermodynamic consistency between several
routes, usually the compressibility and the virial routes.
Examples include, among other approaches, the
modified hypernetted-chain closure [4], the Rogers–
Young closure [5], the Zerah–Hansen closure [6], the
self-consistent Ornstein–Zernike approximation [7],
the hierarchical reference theory [8], Lee’s theory based
on the zero-separation theorems [9], the generalized
mean spherical approximation [10] and the
rational-function approximation [11].
On the other hand, standard theories do not have

fitting parameters and are thus, in general, thermo-
dynamically inconsistent. An interesting result, however,
is that the hypernetted-chain (HNC) integral equation
provides thermodynamically consistent results through
the virial and energy routes, regardless of the potential
�(r) [12]. A similar result has recently been reported [13]
in the case of the mean spherical approximation (MSA)
applied to soft potentials, such as the Gaussian core
model �ðrÞ ¼ � exp½�ðr=�Þ2�. Therefore, a certain close
relationship between the energy and virial routes seems
to exist, at least for some approximate theories and/or
some interaction models. This is further supported by
a recent proof of the equivalence of both routes
when taking a hard-sphere (HS) limit from the
square-shoulder (SS) model, regardless of the approx-
imate theory used to describe the structural properties of
the fluid [14].
For a HS liquid, the second term on the right-hand

side of equation (3) vanishes, so that the internal energy
per particle is the same as that of an ideal gas, i.e.
it reduces to the kinetic contribution 3=2� and is
independent of density. Moreover, the compressibility
factor Z of a HS liquid is independent of temperature.
As a consequence, thermodynamic relation (5) is
trivially satisfied as 0 ¼ 0 and it is, in principle,
impossible to obtain the EoS of the HS fluid through
the energy route. This lack of definition of the energy
route of a HS fluid can be avoided by considering a
suitable interaction potential that reduces to that of the
HS in certain limits. The simplest choice for such a
potential is perhaps the SS function

�SSðrÞ ¼

1, r < �0,

�, �0 < r < �,

0, r > �,

8><
>: ð6Þ

where � is a positive constant that measures the height
of the square shoulder, while the width is given by the
difference � � �0. The potential (6) has been studied
by several authors in different contexts [15]. For the
purpose of this paper, it is chosen here because it reduces
to the HS interaction potential in several special cases.

First, in the limit of zero shoulder height, � ! 0 (or,
equivalently, in the limit of infinite temperature),
the potential (6) becomes that of a HS of diameter �0.
In the opposite limit of infinite shoulder height, � ! 1

(or, equivalently, in the limit of zero temperature),
one also obtains the HS interaction, but this time that
corresponding to diameter �. These two limits are
important because one of them is needed as a boundary
condition when integrating the internal energy over
temperature to obtain Z from equation (5).
Interestingly, the HS potential of diameter � is also
recovered in the limit of zero shoulder width, �0 ! �, at
finite � (finite temperature). In the opposite limit �0 ! 0,
the hard-core part of the interaction has a vanishing
influence and the SS potential becomes that of so-called
penetrable spheres (PS). The PS fluid has been studied
extensively [16] as an example of bounded potentials
describing the effective two-body interaction in some
colloidal systems [17]. These special limits of the
SS potential are shown in figure 1. It is worth recalling
that the square-well (SW) potential is described by
equation (6), except that � is negative in that case.
From the SW potential, one can still obtain the HS
potential of diameter �0 in the limit j�j ! 0 (or,
equivalently, in the limit T ! 1, which then provides
the boundary condition for the energy route to the EoS)
and the HS potential of diameter � in the limit �0 ! �,
but neither of the other two cases (�0 ! 0 and j�j ! 1)
depicted in figure 1.

As stated above, starting from the EoS for SS
particles obtained via the energy route, it can be
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Figure 1. The graph in the center represents the square-
shoulder (SS) interaction potential. It reduces to the
hard-sphere (HS) potential of hard-core diameter �0 in
the limit � ! 0 and to the HS potential of diameter � in the
limit � ! 1 as well as in the limit �0 ! �. The penetrable-
sphere (PS) interaction model is obtained in the limit �0 ! 0.
The limit � ! 1 taken in the PS potential again leads to the
HS model.
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proven [14] that when one first takes the limit � ! 1

and then the limit �0 ! �, the resulting EoS for HS
always coincides with that obtained via the virial
route. However, there is no a priori reason to expect
that this equivalence still holds when the HS limit is
taken following a different path. The aim of this
paper is to clarify this issue and show, by taking
a couple of alternative paths, that the energy-route
EoS indeed depends on the path followed from
SS to HS.
The paper is organized as follows. The virial and

energy routes to the thermodynamic properties of SS
fluids are presented in section 2. The HS limits along
different paths are worked out in section 3. The results
are summarized and discussed in section 4. Finally, the
paper closes with the conclusions.

2. Virial and energy routes to the equation of state of

square-shoulder fluids

Let us consider a fluid of particles interacting via the
pairwise SS potential given by equation (6). Therefore,

e���SSðrÞ ¼

0, r < �0,
e���, �0 < r < �,
1, r > �:

8<
: ð7Þ

We take the ‘outer’ diameter � as fixed and define the
relative value � � �0=� of the ‘inner’ diameter �0.
This quantity 0 � � � 1 parameterizes a family of
independent SS potentials. Given a value of �, the
thermodynamic state is determined by the density and
the temperature. In dimensionless units, we can measure
the density by the parameter � � ðp=6Þ��3 [18] and the
temperature using �� � �� ¼ �=kBT ¼ 1=T�. Moreover,
without loss of generality, henceforth the distances will
be understood to be measured in units of �. For the SS
interaction (6), the virial and energy equations,
equations (1) and (3), become

Zv
SSð�,�

�;�Þ ¼ 1þ4�½�3e���ySSðr¼ �j�,��;�Þ

þ ð1� e��� ÞySSðr¼ 1j�,��;�Þ�, ð8Þ

uSSð�,�
�;�Þ ¼ �

3

2��
þ12�e���

Z 1

�

drr2ySSðrj�,�
�;�Þ

� �
, ð9Þ

respectively. The notation in equations (8) and (9) makes
explicit the dependence of the SS quantities on �, �� and
�. In addition, the superscript ‘v’ in equation (8) is
introduced to emphasize that it corresponds to the virial
route. Making use of equation (5), the energy

equation (9) yields the following expression for the
compressibility factor:

Ze
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where use has already been made of the mapping
SS ! HS in the infinite-temperature limit �� ! 0.
The superscript ‘e’ refers to ZSS as well as to ZHS,
since both sides of equation (10) must agree in the
limit �� ! 0.

The virial series expansions for the cavity
function and the compressibility factor of the SS fluid
are defined as

ySSðrj�,�
�; �Þ ¼ 1þ

X1
n¼1

ySSn ðrj�; �Þ�n, ð11Þ

ZSSð�,�
�; �Þ ¼ 1þ

X1
n¼1

bSSnþ1ð�; �Þ�
n: ð12Þ

Inserting expansion (12) into equations (8) and (10), one
obtains the following expressions for the virial-route
and energy-route virial coefficients in the SS model:

bSS, vn ð��;�Þ ¼ 4 �3e���ySSn�2ð�j�
�;�Þ

�
þð1� e��� ÞySSn�2ð1j�

�;�Þ
�
,

n � 2, ð13Þ

bSS, en ð��; �Þ ¼ bHS, e
n �3ðn�1Þ

þ 12ðn� 1Þ
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dr r2ySSn�2 ðrj�
�
1; �Þ,

n � 2: ð14Þ

3. Hard-sphere limits

Given an (approximate) cavity function ySSðrj�,�
�
1; �Þ,

the compressibility factor obtained from equation (10)
differs in general from that given by equation (8).
The question is, does that difference persist in the HS
limit? To address this point, we need to specify the path
followed to obtain the HS limit.

Figure 2 presents the relevant three-dimensional
parameter space for SS fluids. The plane �0=� ¼ � ¼ 0
represents the PS two-dimensional parameter space.
Planes kBT=� ¼ 1=�� ¼ 0 and �0=� ¼ � ¼ 1 correspond
to a HS of diameter �, the dimensionless properties of
which depend only on the reduced density � ¼ ðp=6Þ��3

and should be independent of � (on the plane
kBT=� ¼ 0) and of temperature (on the plane
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�0=� ¼ 1). Point P represents a SS liquid with a given
value of � and at a given thermodynamic state ð�,��).
From this, one can follow several paths by changing �
and/or �� to reach a HS liquid at the same density �.
Here we are concerned with paths A (i.e. �� ! 1),
AþA0 (�� ! 1 followed by � ! 1), Bþ B0 (� ! 0
followed by �� ! 1) and C (� ! 1).

3.1. Path AQA0

Let us take the zero temperature limit, �� ! 1, on both
sides of equation (10). The result is

Ze
HSð�Þ�Ze

HSð��
3Þ

¼ 12�
@
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Z 1
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Z 1
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drr2ySSðrj�,�
�;�Þ:

ð15Þ

This is actually the result obtained through path A,
which will be analysed below. Before proceeding with
the subsequent step A0, let us rewrite equation (15) in
an equivalent form. First, note that Ze

HSð��
3Þ can be

expanded around �:

Ze
HSð��

3Þ ¼ Ze
HSð�Þ þ

X1
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As a consequence, equation (15) yields
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where use has been made of the consistency condition
ZHSð0Þ ¼ 1. Now taking the limit � ! 1 (path A0) on
both sides of equation (17), and using the physical
condition

lim
�!1

ySSðrj�,�
�; �Þ ¼ yHSðrj�Þ, ð18Þ

we finally obtain

Ze
HSð�Þ ¼ 1þ 4�yHSð1j�Þ: ð19Þ

This is nothing but the virial EoS, equation (8), particu-
larized to HS. This proves that no matter what approxi-
mation is used to obtain ySSðrj�,�

�; �Þ, the energy EoS
coincides with the virial one when the HS limit is reached
from the SS fluid following the double path AþA0.
The proof presented in [14] is slightly more general since
it applies to mixtures and to any dimensionality.

The equivalence between the energy and virial routes
when the path AþA0 is followed can also be proven at
the level of the virial coefficients. We first take the limit
�� ! 1 on both sides of equation (14) (path A) with the
result

bHS,e
n ¼

12ðn�1Þ

1��3ðn�1Þ

Z 1

0

d��e���
Z 1

�

drr2ySSn�2ðrj�
�;�Þ, n� 2:

ð20Þ

Next, the limit � ! 1 (path A0) yields

bHS, e
n ¼ bHS, v

n ¼ 4yHS
n�2ð1Þ, n � 2: ð21Þ

3.2. Path BQB0

Let us now consider the path Bþ B0 in figure 2, which
is very different from path AþA0 considered above.
We will restrict ourselves to the fourth virial coefficient
since this is enough to check that the virial and energy
routes do not now coincide in the HS limit. We start by
taking the PS limit � ! 0 (path B) on both sides of
equations (13) and (14),

bPS, vn ð��Þ ¼ 4ð1� e��� ÞyPSn�2ð1j�
�Þ, n � 2, ð22Þ

bPS,en ð��Þ ¼ 12ðn�1Þ

Z ��

0

d��
1e

���
1

Z 1

0

drr2yPSn�2ðrj�
�
1Þ,

n� 2: ð23Þ
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Figure 2. Parameter space for SS fluids. The plane �0=� ¼ 0
represents the PS fluids, while planes kBT=� ¼ 0 and �0=� ¼ 1
correspond to HS fluids. Starting from a given SS fluid
(represented by point P), it is possible to go to the HS
fluid at the same density by following different paths.
In particular, paths A, AþA0, Bþ B0 and C are considered
in the text.
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The exact function yPS2 ðrj��Þ for the PS model, as well as
the corresponding expressions in the Percus–Yevick
(PY) and HNC approximations, have recently been
obtained [19]. In particular, the PY result is

yPS�PY
2 ðrj��Þ ¼

ð1� e��� Þ
3

35r
½ðr� 1Þ4

� ðr3 þ 4r2 � 53r� 162Þð4e��� � 1Þ

��ð1� rÞ þ 2ðr� 2Þ2

� ðr5 þ 4r4 � 51r3 � 10r2 þ 479r� 81Þ

� ð1� e��� Þ�ðr� 2Þ � ðr� 3Þ4

� ðr3 þ 12r2 þ 27r� 6Þ�ð3� rÞ�, ð24Þ

where �(x) is the Heaviside step function. Inserting
equation (24) into equations (22) and (23), one obtains

bPS�PY, v
4 ð��Þ ¼

16

35
ð1� e��� Þ

4
ð35� 171e��� Þ, ð25Þ

bPS�PY, e
4 ð��Þ ¼

2

175
ð1� e��� Þ

4
ð907� 6347e��� Þ, ð26Þ

respectively. As expected, the virial and energy routes
to the fourth virial coefficient of the PS fluid differ
in the PY approximation. This difference persists in the
HS zero-temperature limit �� ! 1 (path B0), namely

bHS�PY, v
4 ¼ 16, bHS�PY, e

4 ¼
1814

175
’ 10:37: ð27Þ

However, bHNC�PY, v
4 ð��Þ ¼ bHNC�PY, e

4 ð��Þ [19], in agree-
ment with a general property of the HNC approxima-
tion [12]. Figure 3 shows the temperature dependence of
the exact fourth virial coefficient of the PS fluid, as well
as the results obtained from the PY and HNC
approximations via the virial, compressibility and
energy routes [19].

3.3. Path A

Equations (19) and (21) show that the virial and energy
routes are always equivalent when the HS limit is taken
through the double path AþA0. On the other hand,
equation (27) shows that this equivalence is generally
broken when the chosen path is Bþ B0. While in the
path AþA0 one ends with � ¼ 1, in the path Bþ B0 the
first step is � ! 0. Therefore, it might reasonably be
expected that if one goes directly from SS to HS through
path A (see figure 2), the resulting energy-route EoS
for HS artificially depends on �. To illustrate this, let us

consider the following toy approximation for the
function ySS2 ðrj��; �Þ:

ySS�toy
2 ðrj��; �Þ ¼ yPS�PY

2 ðrj��Þ þ yHS�PY
2 ðr=�Þ�6

�
yPS�PY
2 ðrj��ÞyHS�PY

2 ðr=�Þ�6

yHS�PY
2 ðrÞ

,
ð28Þ

where yPS�PY
2 ðrj��Þ is given by equation (24) and

yHS�PY
2 ðrÞ ¼ lim��!1 yPS�PY

2 ðrj��Þ. The toy approxima-
tion (28) reduces to the PY result in the four limits
indicated in figure 1, namely

lim
��!0

ySS�toy
2 ðrj��; �Þ ¼ yHS�PY

2 ðr=�Þ�6, ð29Þ

lim
��!1

ySS�toy
2 ðrj��; �Þ ¼ lim

�!1
ySS�toy
2 ðrj��; �Þ

¼ yHS�PY
2 ðrÞ, ð30Þ

lim
�!0

ySS�toy
2 ðrj��; �Þ ¼ yPS�PY

2 ðrj��Þ: ð31Þ

From that point of view, ySS�toy
2 ðrj��; �Þ can be seen as a

simplified version of the true ySS�PY
2 ðrj��; �Þ provided by

the PY approximation. In any case, the point here is not
how accurate or how close to the PY function the toy
approximation (28) is, but to illustrate the sensitivity of
the energy route to the fixed value of �.

According to equation (20), the energy-route fourth
virial coefficient when path A is followed becomes

bHS�toy, e
4 ¼

36

1� �9

Z 1

�

dr r2
Z 1

0

d��e���ySS�toy
2 ðrj��; �Þ:

ð32Þ
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Figure 3. Temperature dependence of the fourth virial
coefficient for the PS fluid. The curves correspond to the
exact result (————), the virial and energy routes in the
HNC approximation (– – –), the compressibility route in
the HNC approximation (- - - -), the virial route in the PY
approximation (– � � –), the compressibility route in the
PY approximation (– � – � –) and the energy route in the PY
approximation (� � � � � �).
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The integration over �� is straightforward, while in the
integration over r one needs to distinguish the cases
0 � � � 1=3, 1=3 � � � 1=2 and 1=2 � � � 1. The arti-
ficial dependence of bHS�toy, e

4 on � is shown in figure 4.
The extreme points of the curve agree with the results
obtained previously, i.e. bHS�PY, e

4 ¼ bHS�PY, v
4 ¼ 16 along

the path AþA0, but bHS�PY, e
4 ¼ 1814=175 6¼ bHS�PY, v

4

along the path Bþ B0. It cannot be ascertained at this
point whether the non-monotonic behaviour in figure 4
is an artifact of the toy approximation (28) or a feature
also shared by the PY approximation. In any case, the
important issue here is that the equivalence between
the energy and virial routes is only reached, in general,
if � ! 1.

3.4. Path C

As figure 2 illustrates, the HS fluid can also be reached
from the PS fluid by keeping the temperature constant
but shrinking the shoulder (path C). However, this does
not provide any information concerning the energy-
route EoS of the HS system. Taking the limit � ! 1 on
both sides of equation (10), one simply obtains
Ze

HSð�Þ ¼ Ze
HSð�Þ. In any case, an interesting equation

is obtained by first differentiating with respect to � and
then taking the limit � ! 1. The result is

@Ze
SSð�,�

�; �Þ

@�

����
�¼1

¼ 3�
@

@�
Ze

HSð�Þ � ð1� e��� ÞZv
HSð�Þ

� �
:

ð33Þ

4. Summary and discussion

The aim of this paper has been to investigate the
possibility of circumventing the ill-defined energy route
to thermodynamics for HS fluids by first considering SS
fluids and then taking adequate limits. The SS interac-
tion potential is particularly appropriate because it is
simple and yet reduces to the HS model in several
independent limits (see figure 1). The high-temperature
limit (T� ! 1 or, equivalently, � ! 0) is important
since it provides the necessary boundary condition to
obtain the compressibility factor by integrating the
internal energy over temperature (see equations (5), (10)
and (14)).

Imagine that an approximate cavity function
ySSðrj�,�

�; �Þ for the SS liquid is known (either
analytically or numerically). Then, equations (10) and/
or (14) can be used to assign a meaning to the energy-
route compressibility factor for HS, Ze

HSð�Þ, or to the
associated virial coefficients, bHS, e

n . In order to do so, the
limit of vanishing shoulder width at finite temperature
(path C in figure 2) is useless. On the other hand, well-
defined results are obtained by taking the zero-tempera-
ture limit �� ! 1 (path A), as shown by equations (15)
and (20). Although the above limit is taken at fixed
width �, the final result should, on physical
grounds, be independent of �. However, the approx-
imate nature of ySSðrj�,�

�; �Þ gives rise, in general,
to an inconsistent dependence of Ze

HSð�Þ on �,
as illustrated by figure 4 in the case of the toy
approximation (28).

The artificial dependence of Ze
HSð�Þ on � suggests

further taking the limit � ! 1 as the most ‘sensible’ path
to go from SS to HS (path AþA0). In this way, the HS
fluid is reached twice, first by decreasing the temperature
(or, equivalently, increasing the shoulder height,
� ! 1) and then by shrinking the shoulder width.
As proven here and in [14], the resulting EoS coincides
exactly with that obtained directly from the virial route,
i.e. Ze

HSð�Þ ¼ Zv
HSð�Þ, no matter which approximate

theory is used.
As stated above, the anomalous � dependence of

Ze
HSð�Þ when path A is followed has been illustrated

by considering a simple toy approximation,
equation (28), and thus it might be conjectured that
such a dependence would disappear when a more
‘respected’ theory is taken into account. However,
this is not the case, at least for the PY theory. When
the zero-temperature limit �� ! 1 is taken at
� ¼ 0 (i.e. from the PS model, path Bþ B0), the
resulting value of the fourth virial coefficient
(bHS�PY, e

4 ’ 10:37) strongly differs from the value
obtained in the opposite limit � ! 1
(bHS�PY, e

4 ¼ bHS�PY, v
4 ¼ 16).

1.00.80.60.40.20.0
0

4

8

12

20

16
b 4H

S

σ′/σ
Figure 4. Plot of the HS fourth virial coefficient as a
function of � � �0=�. This coefficient is obtained by starting
from the energy-route coefficient for the SS fluid in approx-
imation (28) and then taking the zero-temperature limit
(path A).
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Of course, all the routes to thermodynamics self-
consistently agree if the exact function ySSðrj�,�

�; �Þ is
considered. Moreover, the HNC theory is known to
yield consistent thermodynamic properties via the
energy and virial routes for any interaction potential [12].
This is explicitly verified in the case of the fourth virial
coefficient for PS fluids [19], as shown in figure 3.
Therefore, a plot (similar to that of figure 4) of the
fourth virial coefficient obtained from path A would
show the constant value bHS�HNC, e

4 ¼ bHS�HNC, v
4 ¼ 28:5.

The interesting question is, what is the necessary and
sufficient condition to obtain thermodynamic properties
independent of � when going from SS to HS
through path A? To address this question, define the
quantity

FSSð�; �Þ � 12�

Z 1

0

d��e���
Z 1

�

dr r2ySSðrj�,�
�; �Þ: ð34Þ

Then, either from equation (15) or from equation (9)
using the thermodynamic relation u ¼ @ð�fÞ=@�, where
f is the free energy per particle, one obtains

FSSð�; �Þ ¼ ’eHSð�Þ � ’eHSð��
3Þ, ð35Þ

where ’ � �fex, fex being the excess free energy per
particle. Therefore, the sought necessary and sufficient
condition is that the quantity FSSð�; �Þ must be equal to
a function that only depends on � plus a function that
only depends on �0 � ��3. The fact that both functions
are actually the same, except for a sign, is a consequence
of the trivial property FSSð�; 1Þ ¼ 0. In differential form,
condition (35) becomes

@

@�
�
@

@�
FSSð�; �Þ ¼ 3�

@

@�

@

@�
FSSð�; �Þ: ð36Þ

If this condition is fulfilled, then equation (35) implies
that ’eHSð�Þ ¼ FSSð�; 0Þ. The independence of ’eHSð�Þ
from � implies that the energy and virial routes become
equivalent, as discussed above. This can easily be
checked from equation (35) by differentiating both
sides with respect to � and then setting � ¼ 1. Taking
into account the thermodynamic relation Z ¼ � @ð�f Þ=
@�, one then obtains Ze

HSð�Þ � 1 ¼ Zv
HSð�Þ � 1 ¼

4�yHSð1j�Þ.

5. Conclusion

The question posed in the title of the paper is only
meaningful if the energy route is understood by starting
from an interaction potential �(r) which encompasses
the HS model in certain limits. Since, according to
equation (5), obtaining the compressibility factor from

the internal energy requires an integration over tem-
perature, it is necessary that the potential �(r) becomes
equivalent to that of HS (or negligible) in the limit
T ! 1. Next, in order to obtain a non-trivial result,
�(r) must also become indistinguishable from HS in an
independent limit, for instance T ! 0. The results
presented in this paper by taking �ðrÞ ¼ �SSðrÞ suggest
that, in general, either the energy-route EoS for HS
fluids is identical to the virial-route EoS or the former is
not unique, but depends on the path followed to reach
the HS fluid.

A final comment is in order. When considering the
energy route in the case of SW fluids, it is usual to
fix the boundary condition at T ! 1 by freely
choosing a convenient form for ZHSð�Þ, such as the
Carnahan–Starling EoS [3]. However, this must be
done with caution since the resulting EoS would
become inconsistent when making the change � $ ��,
in which case �SWðrÞ $ �SSðrÞ. From that point of
view, it would be more consistent to take the virial
form Zv

HSð�Þ corresponding to the approximation
(PY, HNC, MSA, etc.) being used to describe the
SW fluid.
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