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Using the method of molecular dynamics, we have analysed the relaxation 
towards equilibrium of an inhomogeneous and isolated system whose con- 
stituent particles interact through a Lennard-Jones potential. The initial 
velocity distribution is of the type leading to the overpopulation effect 
observed by Tjon. The initial particle number density is uniform but there is 
a kinetic energy gradient. It has been observed that the tendency to homo° 
geneization of the kinetic energy induces the presence of a gradient in density, 
in such a way that successive inhomogeneities show up in both quantities, 
till equilibrium is finally reached. Furthermore, we observe an over- 
population effect for low and high speeds, analogous to the one reported in a 
previous work. The time scale characterizing the relaxation of the velocity 
distribution function is much smaller than that of the tendency of the system 
towards homogeneity. 

1. INTRODUCTION 
Tjon [1], in 1979, numerically solved the Boltzmann equation for a two- 

dimensional system with maxwellian interactions. Taking some special initial 
conditions, he found an overpopulation effect at high speeds for homogeneous 
and isotropic systems. Later, Alexanian and Hauge [2] suggested a criterion 
to discern the initial conditions giving rise to the effect discussed by Tjon. 

Recent molecular dynamics studies [3] seem to indicate the existence of 
a Tjon effect in real systems. Furthermore,  an overpopulation effect in the 
region of low speeds have been observed, at approximately the same values of 
time at which the Tjon effect shows up. 

The  system simulated in [3] was spatially homogeneous, just like the systems 
studied theoretically with the Boltzmann equation [4]. Our aim in this paper is 
to study the relaxation towards equilibrium of an inhomogeneous system, 
starting from an initial distribution of velocities of the type leading to the Tjon 
effect. In this way, we intend to study the mutual influence between the 
tendency of the system towards homogeneity and the relaxation of the velocity 
distribution function. 

We present the results of a molecular dynamics simulation of an isolated and 
inhomogeneous system whose particles interact with a Lennard-Jones potential. 
Initially, there are only two speeds in the system : a fraction of particles moves 
with speed v~ and the rest with vp. The  initial velocity distribution is isotropic. 
The initial inhomogeneity is generated by distributing spatially the particles 
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with either one speed or the other, in such a way that the initial kinetic energy has 
a linear gradient along a given direction but the particle number density 
is uniform. 

2 .  I N I T I A L  C O N D I T I O N S  

We consider a system of N =  864 particles with periodic boundary conditions 
in the three directions. We take 2l= 12 layers of equal thickness. Layers j  and 
2 l - j  are considered as totally equivalent because of our boundary conditions. 
From now on, both layers will be labelled by the same common index j. For 
instance, the index j = 6  refers to the two central layers of the twelve layers 
considered in the system. 

The initial velocity distribution corresponding to the j th  layer is isotropic 
and has the form considered in [3], namely 

N fj(v ; 0 )= - - / [ c iS (v -v~)+(1 -c~)8 (v -vB) ] ,  (2.1) 

where 
cj vp2-2Ki(O)/m (2.2) 

7)fl 2 - -  V~ 2 

Kj(t) indicates the kinetic energy per particle at time t in the j th  layer, and m is 
the mass of each particle. The normalization of the distribution (2.1) is 

oo N 
! avfj(v ; 0 ) = 7 ,  (2.3) 

! dv½mv 2 fj(v ; 0) = Kj(0). (2.4) 

We take (kBTo/m) 1t~ as velocity unit, k B being the Boltzmann constant and 
~-k B T o is the initial kinetic energy per particle of the whole system. 

We are interested in the simulation of a system with an initial linear gradient 
in the kinetic energy per particle. In our case 

1 Kj(0)=~-+~ (j_~_l) (2.5) 
m 

where ), characterizes the strength of the gradient. We have taken into account 
that, in terms of reduced units, 

l--1 E K~(O)/m=~. 
j=l,l 

Actually, the initial kinetic energy is not a continuous function of the position 
due to the splitting of the system in layers. Substitution of (2.5) into (2.2) yields 

cj = vp~ - 3 + ~(1 + l -  2j) (2.6) 
7)fl 2 - -  V~ 2 

According to (2.1), cj represents the probability, in the j th layer, of finding a 
particle with speed v:. Therefore, 0~<cj~< 1. Inserting this condition in 
(2.6), we find that 

min ( 3 - v ,  2, v ~ -  3) 
~, ~< (2.7) 

l - 1  
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In our simulation, the particles are initially distributed in a f.c.c, structure. 
We generate the velocity distribution (2.1) with the cis given by (2.6) by assigning 
three random numbers to each particle. One of them determines the speed of 
the particle (v~ or v~) and the other two its direction [3]. We have studied the 
cases corresponding to the following pairs of values (v~, vB) : (1, 2), (1, 3), (1, 4), 
and (1, 5). In all our experiments, the number density is p=0"60a-a ,  the 
parameter T0=3.00 E/kB, and the time step chosen for the integration of the 
equations of motion is h = 0.032 (me~/48E) 1,3, e and a being the parameters of the 
Lennard-Jones potential. We assign to y the maximum value allowed by 
expression (2.7) in each case. 

Some comments about the way of generating the initial state of the system are 
needed. It is clear that different sets of random numbers lead to different 
initial velocities of the particles (i.e. different microstates). Actually, one should 
consider a sufficiently large number of initial microstates and average the results 
over them. Nevertheless, this is beyond our present computational possibilities. 
We have only considered several microstates corresponding to one of the studied 
macrostates, i.e., corresponding to the same initial distribution of velocities. 
The results are analogous to the ones of figure 1 in [3]. Therefore, they are not 
reproduced here. The velocity distribution shows dispersions which can he 
estimated as between 5 and 20 per cent, depending upon the region of speeds 
considered. In any case, we expect that when using a coarse grained description, 
the results obtained with a microstate are significant to characterize the evolution 
of the macrostate. 

We have considered an initial configuration of the f.c.c, type and one could 
wonder whether this fact affects the time evolution of the system. Analysis of 
the results shows that the system has totally forgotten its initial structure for 
times t >20 h. We shall see that the destruction of the initial structure is 
related precisely to an abrupt transformation of kinetic energy into potential 
energy. For both reasons, the results for very short times are not significant. 
In any case, one of the main goals of the present paper is to study the influence 
of the initial inhomogeneities on the effect of overpopulation, and, in the study 
of the homogeneous case of [3], it was also admitted that the particles were 
initially distributed according to a f.c.c, lattice. 

3. RESULTS 
Since the simulated system is considered to be isolated, its total energy must 

remain constant. In figure 1, we have plotted the kinetic energy per particle 
K(t) and the total energy per particle E(t) for the whole system, as functions of 
time for the pair v~ = 1, vg = 3. The total energy does indeed remain practically 
constant. The kinetic energy decreases initially, due to the initial spatial locali- 
zation of the particles, until it reaches a final value about which it oscillates [5]. 

Let us recall that the initial density of the system is homogeneous (in the 
sense that there are the same number of particles Nil= 144 in each layer), but 
the kinetic energy per particle has a linear gradient. The system is isolated and 
therefore it must evolve in time towards a spatially homogeneous equilibrium 
state. Thus, we are going to study the time evolution of the kinetic energ~ per 
particle Ki(t ) and of the number of particles ni(t) in each layer. These quanti- 
ties are plotted for the pair (v~, vp)=(1, 2) in figure 2 and for (v~, vp) =(1, 5) in 
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Figure 4. Ratios gj(t)/K(t) (triangles) and ni(t)/(N/l) (squares) for each l a y e r j  in the 'case 
(1, 3) at different times. Notice that the scale is different for each quantity.  
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to the case (1, 4), the scale of R is logarithmic. Thus, the points corresponding to 
a null population cannot be plotted. This is indicated by the broken lines. 
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figure 3. For the sake of clarity in the graph and trying to smooth the fluctua- 
tions we have grouped the layers in couples. Namely, we consider together the 
kinetic energy per particle and the number of particles of layers 1-2, 3-4 and 5-6. 

In both figures, it is observed that Ks(t ) relaxes towards homogeneity in a 
first stage (up to t ~ 200 h). But, during this stage, an increasing density gradient 
(in absolute value) is generated. That is, the temperatures of the different layers 
tend to equal at the expense of a depopulation of the initially hottest layers. At 
the next stage (up to t~400  h) the opposite effect takes place: the tendency 
towards homogeneity in the number of particles induces the presence of a new 
temperature gradient of the same sign as the initial one. We therefore observe 
a competition between the density and the temperature in the relaxation towards 
equilibrium, giving rise to successive inhomogeneities. There is a time lapse 
between the density and temperature inhomogeneities and both get smaller and 
smaller until a final equilibrium state is reached. Due to the reduced number of 
particles, the possible remaining inhomogeneities are blurred by the fluctuations 
for times t>800h .  Comparing figures 2 and 3, we observe that the initial 
conditions have little influence on the amplitude of the inhomogeneities and its 
temporal evolution. 

We find that the same essential aspects of figures 2 and 3 are present in the 
other cases considered. For instance, in figure 4 we graph Ks(t)/K(t ) and 
nj(t)/(N/l) for some characteristic times in the case (1, 3). 

After analysilag the relaxation to equilibrium of the density and the kinetic 
energy per particle, let us study some aspects of the relaxation of the velocity 
distribution function. We introduce the function [3] 

~b(vl, Va ; t) (2.8) 
R(vl, v, ; t )=  9~eq(vz, v2) ' 

where ~(vt, v 2 ; t) represents the number of particles in the system with speeds 
ranging from v~ to v 2 at time t, and 9~eq(vl, v2) represents that number at 
equilibrium. 

In figure 5, we represent the evolution of R for speeds lower than v~ and for 
speeds higher than vp in the cases (1, 2) and (1, 4). Comparison with the results 
of [3], shows that the presence of the inhomogeneity does not appreciably alter 
the effect of overpopulation. Nevertheless, it seems that the effect is slightly 
more intense and lasting a longer time in the spatially inhomogeneous systems. 
Let us notice that the criterion of Hauge and Alexanian [2] seems still to be valid. 
Since the overpopulation effect was discussed with detail in [3], we shall not 
discuss this matter further.- 

It should be noted that the time scale on which the velocity distribution 
function varies is much smaller than the time scale characterizing the evolution 
of spatial inhomogeneities. 
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