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The three-dimensional HNC equation for a truncated Lennard-Jones 
potential is numerically solved. We have found that the direct correlation 
function asymptotically behaves as r-2 exp (--2r/~), ~ being the correlation 
length. The contribution coming from this behaviour has been incorporated 
into the computation of the isothermal compressibility Ir T . The results seem 
to indicate that the HNC equation does not have real solutions inside a 
certain region in the temperature-density plane, whose boundary line has 
been fitted to power laws. When approaching this boundary, tr and ~ tend to 
finite values. So, a true critical point, where a: T and ~ would diverge, is not 
present. 

1. INTRODUCTION 

The question about the predictions of the classical integral equations in the 
l iquid-vapour critical region has stimulated a great deal of studies in the last few 
years. For three-dimensional systems, both the mean spherical approximation and 
the Percus-Yevick equation predict the existence of a critical point, i.e. a state 
where the isothermal compressibility ~T and the correlation length ~ diverge. In 
the mean spherical approximation, the critical exponents take the so-called spher- 
ical model values, at least for a potential with an attractive Yukawa tail [1]. In the 
case of the Percus-Yevick equation, the critical exponents take the classical values 
[2-4],  but analytical [2] as well as numerical [3] studies show that the scaling 
function for the equation of state is not classical when the interaction potential is 
short-ranged. Some consequences of this are an asymmetry of the critical iso- 
therm around the critical point, and the absence of the vapour-phase branch of 
the spinodal line. These anomalous features may disappear in the long-ranged 
interaction limit [4]. 

The critical behaviour of the Yvon-Born-Green  (YBG) equation is, up to 
now, the best known one. Both analytical [5] and very careful numerical [-6] 
studies indicate that this approximation does not predict a true critical point for 
spatial dimensionalities d ~ 4, although there does exist a 'quasicri t ical '  region 
where the isothermal compressibility and the correlation length are large but 
finite. For d > 4 there exists a critical point and the behaviour around it is fully 
classical. 
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Concerning the remaining important integral equation, the hypernetted chain 
(HNC) equation, much less is known. The H N C  approximation is given by the 
following relation between the net correlation function h(r)  and the direct correla- 
tion function c(r) 

c(r) = h(r)  --  In [1 + h(r)] - u ( r ) / k  B T ,  (1) 

where u(r)  is the interaction potential, kB is the Boltzmann constant, and T is the 
temperature. The equation (1) implies the asymptotic behaviour 

c(r) ~ �89 2 - u ( r ) / k  B T .  (2) 

Thus,  just at the critical point, the H N C  direct correlation function behaves as 

ce(r ) "~ [he(r)] 2 ~ r -  2(a- 2 +,), (3) 

where we have written hc(r ) ,,~ r -ca-  2+~), which defines the critical exponent t/. A 
generalization of an analysis due to Green [7] shows that, if 

cc(r) .,~ [h~(r)] ~, (4) 

then 

t /=  2 -- d e -  1 (5) 
e + l  

for d ~< d> = 2(e + 1)/(e -- 1), whilst t/takes the classical value zero i fd  > d>. The  
H N C  equation leads to e = 2 and, then, for a three-dimensional fluid [7] 1/= 1, 
so that, at criticality, the net correlation function h(r)  decays as r -2, and the direct 
correlation function c(r) as r-4.  

Let us notice that in Green's  analysis the existence of a critical point, where 
the correlation length ~ becomes infinite and h(r)  decays following a power law, is 
implicitly assumed. But, as far as we know, there is no general proof of the 
existence of such a criticality. In addition, the available numerical results for the 
three-dimensional case are rather inconclusive. According to Watts [8], the iso- 
thermal compressibility remains finite, so that there is not a true critical point. On 
the other hand, Guerrero et al.  [9] have suggested that x T does diverge, but with 
a value of the corresponding critical exponent ? much less than unity. More 
recently, Foiles and Ashcroft [10] were not able to fit their ~:T data to any power 
or logarithmic divergence law. In the above numerical calculations, the analysis of 
the spatial correlations in the critical region is, in our opinion, quite poor. More- 
over, they take c(r) = 0 from a given distance. Equation (2) suggests that this may 
be a too drastic approximation, even for truncated potentials, especially at the 
critical point. The  isothermal compressibility in the critical region is expected to 
be sensitive to the details of the spatial correlations. 

Here we present the results of a numerical solution of the H N C  equation for a 
truncated Lennard-Jones  (LJ) potential. We have found that the net correlation 
function decays following the Ornstein-Zernike (OZ) form, and this has been 
used for the computation of/s 

There  is a region in the temperature-density plane inside which our iterative 
method fails to converge. We have analysed whether the boundary of this region 
could be understood as a spinodal line. According to our results, the answer is 
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negative. When one approaches any branch of the line, the values of ~T and ~ do 
not seem to tend to infinity, but they remain finite. 

So, the OZ decay for the net correlation function and the boundness of both 
~:T and ~ suggest that, analogously to the YBG equation, the H N C  equation does 
not predict a true critical point for a three-dimensional fluid, at least for truncated 
potentials. 

The plan of this paper is the following. In w we describe the numerical 
algorithm and study the asymptotic behaviour of h(r) and c(r). In w 3 the locus of 
points where convergence fails is analysed and the behaviour of tc T and ~ in the 
outside region close to the locus is studied. Emphasis is put on the relation with 
previous works. We must  point out that our calculations can be improved in 
several ways, as discussed along the text. In this sense, they can only be con- 
sidered as a preliminary study. 

2. NUMERICAL ALGORITHM 

The compressibility equation of state for three dimensions reads 

Z =- PkB T~T = 1 + 4rip drrEh(r) 

= [ 1 - 4 n P f o ~ d r r 2 c ( r ) ]  - ' ,  

(6 a) 

(6 b) 

where p is the number  density. In the last step of (6)we have taken into account 
the definition of the direct correlation function c(r) given by the (OZ) relation : 

h(k) = ~(k) + p~(k)l~(k), (7) 

with the tilde denoting a Fourier transform. This relation has to be closed with an 
approximate equation relating h(r) and c(r). In the H N C  approximation the 
closure is given by (1). We have considered a truncated LJ potential defined by 

u(r) = 4(r - l z  - -  r-6),  r ~ 5, 
(8) 

= 0 ,  r > 5 ,  

where usual units of energy and length have been chosen. 
As it is well known, it is convenient to introduce the auxiliary function 

H(r)  = h ( r ) -  c(r). In terms of H(r)  and c(r), the H N C  equation and the OZ 
relation become 

c(r) = exp [--u(r) /k B T + H(r)] - H(r)  - 1 

and 

n(k)  = P[~(k)]2 
1 - -  p ~ ( k ) '  

respectively. The Fourier transform ~(k) is numerically evaluated as 

~(k) = --~ Arr i sin (kr~)c(rl). 
i=1 

(9) 

(10) 

(11) 
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Here  Ar = R / N ,  R being a sufficiently large cut -off  distance, and r i = i Ar,  i = 1, 
. . . ,  N.  Analogously ,  

1 N 
= ~=1 Akk j  sin ( k j r ) I I ( k j ) ,  (12) 

H(r)  4rcz r J= 

where  Ak = rc/R and kj = j Ak. Now,  let us suppose  that  certain asymptot ic  forms 
c(r) = Co(r ) and k(r) = ha(r) are reached for r greater  than a certain Ro = No Ar < 
R. T h e n ,  the susceptibil i ty X is c o m p u t e d  as 

Z = 1 + 4rcp Arr~h(ri) + drr2ho(r) (13 a) 
i o 

= 1 -- 4 T ~ p  Arr~c(ri) + drr2ca(r . (13 b) 
i o 

T h e  numerica l  me thod  employed  to solve the H N C  equat ion is iterative. We  
start f rom a guess funct ion /-/in(r) and (9) gives the cor respond ing  funct ion c(r). 
Once  ~(k) has been obta ined via (11), one gets /-l(k) f rom (10). Finally,  the 
inversion formula  (12) allows to obtain the ou tpu t  funct ion  H~ T h e  process is 
con t inued  until  the fol lowing convergence  condi t ions  are s imul taneously  satisfied : 

{N_I~ 1 }1/2 r2i[H~ -- Hin(rl)] 2 < 10 -3, 
. =  

(14) 

(15) max {r i I H~ Hin(ri) I } < 10 -3, 
i 

N-' i=lE l n ~ _ ]  j < 1 0  -3 , (16) 

max I ln Hi"(ri) i H~ < 10 3, (17) 

[1 -z~ I < 10 -3 (18) 

T h e  last three condi t ions  arise f rom the fact that  we are interested in the behav-  
iour of  the correlat ion length and the isothermal  compressibi l i ty .  T h e y  have 
shown up to be m u c h  more  s t r ingent  than the first two ones. As input  funct ion at 
the first i teration for a given state we have used the solution found  for a ther-  
m o d y n a m i c  state close to it. 

Not ice  that  we do not  in t roduce  the asympto t ic  forms c,(r ) and ko(r ) into the 
fourier  t ransforms (11) and (12). In  this sense, our  me thod  is not  fully self- 
consistent .  T h e  numer ica l  a lgor i thm descr ibed here is similar to the ones pre-  
viously considered by  other  authors  [8 -10] .  T h e  main  difference is that  the 
asymptot ic  spatial correlat ions are taken into account  when  numer ica l ly  compu t -  
ing the susceptibi l i ty Z. Th i s  migh t  be especially relevant in the possible critical 
region, where  Z is expected to be very  sensitive to the spatial correlations.  T h e  
p rob lem now is that  we do not  know ko(r) nor  co(r ). On the basis of  Green ' s  
analysis [7],  one could expect that  ho(r ) ~ r - 2  exp (--r /~) ,  where the correlat ion 
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Figure 1. Plot of In [rh(r)] from the numerical method described in the text, for several 
values of the cut-off distance R and the number of points N considered in the 
interval (0, R). The thermodynamical conditions are T = 1.358 and p = 0-152. 

l ength  ~ becomes  inf ini te  at the  cr i t ica l  poin t .  Never the les s ,  ou r  resul t s  do no t  fit 
to this  law, b u t  to the  O Z  fo rm 

exp ( - - r / ~ )  
ha(r ) = A (19a)  

T h i s  can be  seen f rom figure 1, whe re  In [rh(r)] is p lo t t ed  at T =  1'358 and 
p = 0-152 for several  va lues  of  R and N.  F i r s t ,  we c o m m e n t  on the unphys i c a l  
a b r u p t  decay  of  h(r) when  r app roaches  R. T h i s  decay  is s imi la r  to the  one 
o b s e r v e d  in numer i ca l  so lu t ions  of  the  P e r c u s - Y e v i c k  equa t ion  [11] and is a 
consequence  of  the  m e t h o d .  T h e  invers ion  f o r m u l a  (12) makes  H(r) to van ish  at 
r = R, as k j R  = jrc. So, H(r) ar t i f ic ia l ly  t ends  to zero  when  r t ends  to R and  so 
does  h(r). T h e  t runca t ion  of  the  po ten t i a l  at r = 5 p rovokes  a s l ight  d i s c on t i nu i t y  
h ( 5 - )  - h ( 5  +) "~ --u(5)/kB T, which  is not  d i s t i ngu i sha b l e  on f igure 1. T h e  mos t  
i m p o r t a n t  fea ture  in this  f igure is the  l inear  reg ion  o b s e r v e d  for  r ~> 5. S ince  there  
is no reason to expec t  this  l inear  b e h a v i o u r  to d i s a p p e a r  if R-+ 0% R/N---~ O, we 
can conc lude  tha t  the  a s y m p t o t i c  f o rm  of  h(r) in the  H N C  a p p r o x i m a t i o n  is g iven  
b y  (19 a). 

In  o r d e r  to make  (19 a) c o m p a t i b l e  wi th  G r e e n  analys is  [7] ,  we see two pos-  
s ib i l i t ies :  e i ther  the  re la t ion  (19a)  is on ly  val id  for  r >> ~ [12] ,  in such  a way  that ,  
j u s t  at the  cr i t ica l  p o i n t  (where  ~---~ or), it  is r ep laced  b y  ha(r) ~ r -z,  or ~ r e ma ins  
finite and  the re  does  no t  exis t  a t rue  cr i t ica l  poin t .  As  we will  see, we u n d e r s t a n d  
our  resul t s  as s u p p o r t i n g  the  la t te r  poss ib i l i ty .  T h e  s i tua t ion  is s imi la r  to the  one 
f o u n d  in the  Y B G  equa t ion  for t h r e e - d i m e n s i o n a l  f luids [5, 6]. Never the le s s ,  a 
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Figure 2. Plot of In [r2c(r)] for the same cases as in figure 1. 

m o r e  accura te  a p p r o a c h  shou ld  r equ i r e  to i n t r o d u c e  the a s y m p t o t i c  fo rms  (19a)  
and  (19 b) ana ly t ica l ly  into the  four ie r  t r a n s f o r m s  p e r f o r m e d  a long the  n u m e r i c a l  
so lu t ion ,  and  no t  on ly  in the  c o m p r e s s i b i l i t y  in tegra l .  

L e t  us now cons ide r  the  a s y m p t o t i c  b e h a v i o u r  of  the  d i rec t  co r re la t ion  func-  
t ion.  F i g u r e  2 shows In [r2c(r)l for  the  same cases as in f igure 1. T h e  art if icial  
decay  in the  reg ion  r < R is o b s e r v e d  again,  and  the  d i s c o n t i n u i t y  c ( 5 - )  
--c(5 +) ~-- --u(5)/kB T is here  m u c h  more  a p p a r e n t  than  in f igure 1. T h e  l inear  

region e x t e n d i n g  f rom r ~- 5 conf i rms  the  law 

A 2 exp ( - 2 r / ~ )  
ca(r) = � 8 9  2 r 2 (19b)  

So, the  in tegra ls  a p p e a r i n g  in (13 a,  b) are, r espec t ive ly ,  

f S  drr2ha(r) = A~ exp ( - -Ro/~) (R  o + ~), (20a )  
o 

o drr2ca(r) = ~ ~ exp ( - -2Ro /~) .  (20 b) 

No t i ce  tha t  the  use of  the  a s y m p t o t i c  fo rms  (19) e l imina tes  the  inf luence  of  the  
unphys i ca l  decay  near  R on the ca lcu la t ion  of  Z. Al l  we need  to know is the  
(d i sc re t ized)  va lues  of  the  co r re la t ion  func t ion  for r < R o and  the  f i t t ing pa r -  
ame te r s  -4 and  ~ o b t a i n e d  f rom the  l inear  reg ions .  

In  the  n u m e r i c a l  ca lcu la t ions  p r e s e n t e d  in this  p a p e r  we have taken R = 20, 
N = 500, and  R 0 = 5. T h e  l inear  fits have been  ca r r i ed  out  us ing  the  125 po in t s  
be tween  r = R 0 and  r = 2R 0. T h e  s ta t is t ical  co r re la t ion  coeff ic ient  has  a lways  
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been greater than 0"99997, the fitting for the function c(r) being slightly better 
than the one for the function h(r). The relative differences between the fitting 
parameters obtained from H(r) and those from c(r) have been less than 0"9 per 
cent for A and less than 0"4 per cent for ~. The  relative difference between the 
susceptibility as obtained from (13 a) and (20 a) and the one from (13 b) and (20 b) 
has been no greater than 6 per cent. For the sake of consistency, as h(r) does not 
enter into the numerical method, all the values of Z and ~ shown in the next 
section have been obtained from the function c(r). 

According to the results presented in the next section, ~ remains finite, which 
makes the value of Z computed from (13 b) not to differ appreciably from the one 
obtained by numerical integration over the full range of R. For instance, at 
T = 1"3952 and p = 0"2873, the relative difference between both values is about 2 
per cent. However,  it must be noticed that the smallness of this difference is a 
consequence of the absence of a true critical point. Otherwise, the correction 
(20 b) would play a quite important role. 

3. RESULTS 

When applying the numerical method described in the previous section, we 
observed that, as one approaches some points in the T-p plane, the rate of con- 
vergence of the iterative process becomes very slow. As a matter of fact, the 
numerical method fails to converge when approaching a dome shaped region in 
the T-p plane. 

In figure 3 we have plotted the points defining the boundary of the region of 
convergence. The arrows indicate the path followed when approaching the points 
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Figure 3. Temperature-density graph showing the points in which the iterative method 
seems to diverge, when approaching along the paths indicated by arrows. The apex 
defines a ' critical' point (Pc, To). 
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Figure 4. Plot of In [T  c -- Ts(p) ] vs In I P - Pc[ for the same points as in figure 3. Ts(p) 
stands for the temperature at which the isochore p crosses the limiting line of the 
nonconvergence region. Dots refer to isochores p > Pc and circles to p < Pc. The 
straight lines are linear fits. 

in our  calculat ions.  T h e  line d rawn  is a fit to be discussed below. T h e  apex of the 
nonconve rgence  region de te rmines  a ' c r i t i c a l '  po in t  (pc, Tr For  T > To, the 
H N C  equat ion  has a solut ion for any densi ty ,  while for T < To, there is a densi ty  
interval  p~-)(T) < p < p~+)(T) in which  we have not  been  able to find a solut ion.  
W h e n  T tends  to T c f rom below, p~-)(T) and  p~+)(T) t end  to Pc. F r o m  figure 3 it 
follows that  the ' c r i t i ca l '  po in t  is given by  

Pc = 0"2715 _+ 0"0005, (21) 

T c = 1'39686 + 0"00002. (22) 

T o  analyse the shape of the l imi t ing  line, let us assume a power  law of the 
form 

1P~+)(73 - Pcl ~ B• -- 7") ~+-, (23a)  

or, equivalent ly ,  

T c -  T s ( p ) ~ { - ~ + [ p - p c ] }  lip• (23b) 

where the exponen t s  fl_+ play a role s imilar  to the critical exponen t  fl govern ing  
the shape of the coexistence curve.  In  figure 4, In [ T  c - Ts(p)] is plot ted vs 
In [p - Pc[. T h e  poin ts  fit very well to two straight  lines, one for p < Pc and  
another  one for p > Pc, leading to values of the coefficients 

fl+ -~ 0"5721, (24) 

B+ ~- 0"6209, (25) 

fl_ --~ 0.4285, (26) 

B_  ~- 0.2703. (27) 

W h e n  fit t ing the case p > Pc we have omi t t ed  the lowest point ,  which  corre- 
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sponds  to p = 0"273, because  in th is  case the  va lue  of  [p - pc [ is too close to the  
own u n c e r t a i n t y  of  Pc- T h e  l ine in f igure 3 c o r r e s p o n d s  to the  laws (23) wi th  the  
values  (24)-(27) .  

So, we see tha t  the  l imi t ing  l ine is s t rong ly  a s y m m e t r i c a l  wi th  respec t  to the  
i sochore  p = Pc. No t i ce  tha t  fl+ + fl_ ~ 1"0006. As a m a t t e r  of  fact, fl+ "" 4/7 - 
0"5714 and  fl_ - 3/7 - 0-4286. In  the  classical  theor ies  one has  fl+ = fl_ = fl = 
1/2. I t  wou ld  be  very  in t e re s t ing  to check the  above  resul t s  b y  means  of  ana ly t ica l  
s tudies .  

In  p r ev ious  n u m e r i c a l  so lu t ions  [ 8 - 1 0 ]  the  shape  of  the  locus  of  s ingu la r i t i e s  
has not  been  s tud ied .  Fo i l es  and  A s h c r o f t  [1(3] on ly  give two po in t s  of  the  sp ino-  
dal  l ine,  the i r  va lues  showing  a cer ta in  a s y m m e t r y .  G u e r r e r o  et al. [9]  e s t ima te  
fl = 0-53 + 0"05 by  ex t r apo l a t i ng  the i r  resu l t s  for  p > Pc" H o w e v e r ,  the i r  f igure 1 
can be used  to def ine a l imi t ing  l ine of  convergence ,  g iven  b y  the po in t s  whe re  the  
sol id  curves  break.  In  th is  way, we have  o b t a i n e d  a g raph  s imi l a r  to ou r  f igure  4, 
a l lowing  us to es t imate  fl+ -~ 0"60, B+ ---0"54, f l _ - ~  0-38 and B _  -~ 0"28. T h e s e  
values  are qu i t e  close to ours  in (24)-(27) .  

T h e  re levan t  phys ica l  ques t ion  now is w h e t h e r  the  l imi t ing  l ine is a sp inoda l  
line, i.e. a l ine on wh ich  the suscep t ib i l i t y  Z and  the  co r re la t ion  length  ~ b e c o m e  
infinite.  In  tha t  case, the  apex of  the  l ine w o u l d  be  a t rue  cr i t ica l  poin t .  H o w e v e r ,  
we wilt see tha t  our  resu l t s  do not  s u p p o r t  th is  poss ib i l i ty .  

In  f igure 5, we show In Z vs In [ T - -  Ts(p) ] for  severa l  i sochores  close to the  
' c r i t i c a l '  one.  T h e  values  of  Ts(p) were  o b t a i n e d  f rom (23 b). I f  Z d ive rged  fo l low-  
ing a p o w e r  law, the  g r a p h  shou ld  show s t ra igh t  l ines.  But  no l inear  reg ion  is 
obse rved .  T h e  same was a l r eady  no t i ced  by  Fo i l es  and  Ashc ro f t  [10].  O u r  po in t s  
seem to show that ,  when  a p p r o a c h i n g  the l imi t ing  l ine,  Z(P, T) t ends  to a finite 
value  Xs(P). W e  have o b s e r v e d  the  same k ind  of  b e h a v i o u r  for the  co r re la t ion  
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Figure 6. 
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figure 5. 

l eng th  ~. T h e  s i tua t ion  is s imi la r  to  the  one  f o u n d  in the  P e r c u s - Y e v i c k  equa t ion  
for some s h o r t - r a n g e d  po ten t i a l s  [2]  when  p < Pc. In  th is  case one gets  

)~-l(p,  T) ~ Z~-l(p) + C ( p ) [ T -  Ts(p)] 1/2. (28) 

A l t h o u g h  the re  is no reason to expec t  this  law to ho ld  for  the  H N C  equa t ion ,  we 
have p lo t t ed  Z -1 vs  [ T -  T~(p)] 1/2 in f igure  6 for  the  same  i sochores  as in f igure  
5. T h e  po in t s  fit qu i te  wel l  to s t ra igh t  l ines wi th  a typ ica l  va lue  for C of  the  o r d e r  
of  0"5. But ,  r a the r  than  check ing  (28), we are in t e res t ed  in showing  the  absence  of  
a t rue  cr i t ica l  poin t .  I f  one ex t rapo la t e s  to T = Ts(p) , one c lear ly  obse rves  tha t  Z 
goes to a finite value  Zs, wh ich  seems to m o n o t o n i c a l l y  increase  wi th  the  dens i ty .  
In  f igure 7 we p r e sen t  the  resul t s  for the  co r re la t ion  length .  

O u r  conc lus ions  are  in a g r e e m e n t  wi th  the  n u m e r i c a l  resu l t s  of  o the r  au thors .  
F r o m  the  po in t s  shown in f igure 3 of  [10]  we have  checked  tha t  the  law (28) is 
sa t i s fac tor i ly  ver i f ied for  p = 0"274 wi th  Ts(p)= 1.4045, l ead ing  to the  values  
Z~-1 ~ 0-057 and  C ~ 0-21. Also,  the  fact  tha t  Z~(P) is an inc reas ing  func t ion  of  p 
can be  o b s e r v e d  f rom figure 1 of  [9] .  Never the le s s ,  we m u s t  emphas i ze  tha t  ou r  
p o i n t  of  view is no t  the  same as in those  works .  W e  c la im tha t  the  n u m e r i c a l  
values  canno t  be  ex t r apo l a t ed  to get  a d ive rgen t  suscep t ib i l i ty ,  as a l imi t ing  l ine of  
convergence  is r eached  in wh ich  Z is b o u n d e d .  

So, the  a p p r o x i m a t e  n u m e r i c a l  so lu t ion  of  the  H N C  equa t ion  for  a t r u n c a t e d  
L e n n a r d - J o n e s  po ten t i a l  p r e s e n t e d  in this  p a p e r  does  no t  s eem to p re sen t  a t rue  
cr i t ica l  p o i n t  for  t h r e e - d i m e n s i o n a l  sys tems .  I t  is our  con jec tu re  tha t  the  same 
ho lds  for any  s h o r t - r a n g e d  po ten t i a l ,  as it  s eems  to be the  case for the  Y B G  
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Figure 7. 
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equation.  In  this context ,  it would  be interest ing to see whe ther  the analysis 
developed by  Fisher  and F i shman  [-5] could be extended to include the H N C  
equation.  I f  that  were the case, there would  be a border l ine  dimensional ly  d>, 
such that  for d > d> the critical behaviour  would  be classical. For  d ~< d>, it is 
our  guess that  there is no t rue criticality. T h e  result  (5) leads us to expect  that  
d> = 6. Of  course,  more  accurate numerica l  studies are also needed.  On  one 
hand,  it is necessary to carry  out  the calculations by  in t roduc ing  the asymptot ic  
behaviour  of  h(r) and c(r) in a self-consistent  way. Also, it is necessary to explore 
whether  the results are a consequence  of  the Picard me thod  by  t ry ing more  
elaborate numerica l  techniques.  In  particular,  it would  be interest ing to know 
whether  or  not  solutions exist inside the region b o u n d e d  by  the l imiting line. 
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