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The three-dimensional HNC equation for a truncated Lennard—Jones
potential is numerically solved. We have found that the direct correlation
function asymptotically behaves as r~ % exp (—2#/&), & being the correlation
length. The contribution coming from this behaviour has been incorporated
into the computation of the isothermal compressibility x;. The results seem
to indicate that the HNC equation does not have real solutions inside a
certain region in the temperature-density plane, whose boundary line has
been fitted to power laws. When approaching this boundary, k1 and ¢ tend to
finite values. So, a true critical point, where x; and ¢ would diverge, is not
present.

1. INTRODUCTION

The question about the predictions of the classical integral equations in the
liquid—vapour critical region has stimulated a great deal of studies in the last few
years. For three-dimensional systems, both the mean spherical approximation and
the Percus—Yevick equation predict the existence of a critical point, i.e. a state
where the isothermal compressibility k1 and the correlation length & diverge. In
the mean spherical approximation, the critical exponents take the so-called spher-
ical model values, at least for a potential with an attractive Yukawa tail [1]. In the
case of the Percus—Yevick equation, the critical exponents take the classical values
[2-4], but analytical [2] as well as numerical [3] studies show that the scaling
function for the equation of state is not classical when the interaction potential is
short-ranged. Some consequences of this are an asymmetry of the critical iso-
therm around the critical point, and the absence of the vapour-phase branch of
the spinodal line. These anomalous features may disappear in the long-ranged
interaction limit [4].

The critical behaviour of the Yvon-Born—-Green (YBG) equation is, up to
now, the best known one. Both analytical [5] and very careful numerical [6]
studies indicate that this approximation does not predict a true critical point for
spatial dimensionalities d < 4, although there does exist a ‘ quasicritical’ region
where the isothermal compressibility and the correlation length are large but
finite. For d > 4 there exists a critical point and the behaviour around it is fully
classical.
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Concerning the remaining important integral equation, the hypernetted chain
(HNC) equation, much less is known. The HNC approximation is given by the
following relation between the net correlation function 4(r) and the direct correla-
tion function ¢(7)

c@)y=n(ry —In [1 + A(r)] — u(r)/ks T, 1)

where u(r) is the interaction potential, kg is the Boltzmann constant, and T is the
temperature. The equation (1) implies the asymptotic behaviour

e(r) = 3[A(r)]* — u(r)/ky T. ()
Thus, just at the critical point, the HNC direct correlation function behaves as

co(r) ~ [h(N)]* ~ r= 27270, ()

where we have written h,(r) ~ v~ 2% which defines the critical exponent 7. A

generalization of an analysis due to Green [7] shows that, if

c(r) ~ [h (DT, 4
then
e—1
n=2-d— 5)

for d < d, = 2(s + 1)/(¢ — 1), whilst 5 takes the classical value zero if d > d. The
HNC equation leads to ¢ = 2 and, then, for a three-dimensional fluid [7] n =1,
so that, at criticality, the net correlation function A(r) decays as r~2, and the direct
correlation function ¢(r) as r ~*.

Let us notice that in Green’s analysis the existence of a critical point, where
the correlation length & becomes infinite and 4(r) decays following a power law, is
implicitly assumed. But, as far as we know, there is no general proof of the
existence of such a criticality. In addition, the available numerical results for the
three-dimensional case are rather inconclusive. According to Watts [8], the iso-
thermal compressibility remains finite, so that there is not a true critical point. On
the other hand, Guerrero et al. [9] have suggested that k1 does diverge, but with
a value of the corresponding critical exponent y much less than unity. More
recently, Foiles and Ashcroft [10] were not able to fit their k; data to any power
or logarithmic divergence law. In the above numerical calculations, the analysis of
the spatial correlations in the critical region is, in our opinion, quite poor. More-
over, they take ¢(r) = 0 from a given distance. Equation (2) suggests that this may
be a too drastic approximation, even for truncated potentials, especially at the
critical point. The isothermal compressibility in the critical region is expected to
be sensitive to the details of the spatial correlations.

Here we present the results of a numerical solution of the HNC equation for a
truncated Lennard-Jones (LJ) potential. We have found that the net correlation
function decays following the Ornstein—Zernike (OZ) form, and this has been
used for the computation of k.

There is a region in the temperature-density plane inside which our iterative
method fails to converge. We have analysed whether the boundary of this region
could be understood as a spinodal line. According to our results, the answer is
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negative. When one approaches any branch of the line, the values of x; and & do
not seem to tend to infinity, but they remain finite.

So, the OZ decay for the net correlation function and the boundness of both
kr and & suggest that, analogously to the YBG equation, the HNC equation does
not predict a true critical point for a three-dimensional fluid, at least for truncated
potentials.

The plan of this paper is the following. In §2 we describe the numerical
algorithm and study the asymptotic behaviour of k(r) and ¢(r). In §3 the locus of
points where convergence fails is analysed and the behaviour of k1 and ¢ in the
outside region close to the locus is studied. Emphasis is put on the relation with
previous works. We must point out that our calculations can be improved in
several ways, as discussed along the text. In this sense, they can only be con-
sidered as a preliminary study.

2. NUMERICAL ALGORITHM

The compressibility equation of state for three dimensions reads

r=phgTr =14+ 4np j drr’h(r) (6 a)

(o}

© -1
= |:1 — 4nmp j drrzc(r)] , (68)
o

where p is the number density. In the last step of (6) we have taken into account
the definition of the direct correlation function ¢(r) given by the (OZ) relation:

h(k) = (k) + pé(R)A(R), (7)

with the tilde denoting a Fourier transform. This relation has to be closed with an
approximate equation relating A(r) and ¢(r). In the HNC approximation the
closure is given by (1). We have considered a truncated L] potential defined by

u(r) =42 —+"9, r<s5,
=0, r>5,

®)

where usual units of energy and length have been chosen.

As it is well known, it is convenient to introduce the auxiliary function
H(r) = h(r) — c(¥). In terms of H(r) and c(r), the HNC equation and the OZ
relation become

c(ry=exp [—u(r)/ky T + H(r)] — H(r) — 1 9
and
o _ PIERT?
Ay =2, (10)

respectively. The Fourier transform ¢(k) is numerically evaluated as

N
k) = 7“ Z Arr; sin (kr)e(r). (11)
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Here Ar = R/N, R being a sufficiently large cut-off distance, and r, =7 Ar, 1 =1,
..., N. Analogously,

H(@) =

1 X . ~
o Y Akk; sin (k;r)H(k)), (12)
i=1

where Ak = n/R and k; = j Ak. Now, let us suppose that certain asymptotic forms
e(r) = ¢,(r) and A(r) = h,(r) are reached for r greater than a certain Ry = Ny Ar <
R. Then, the susceptibility ¥ is computed as

No 0
=1+ 47'cp[ Y Arrth(r) + J drrzha(r)] (13 a)
i=1 Ro
No © -1
= {1 — 47zp|: Y Arrie(r) + J drrzca(r)]} . (13b)
i=1 Ro

The numerical method employed to solve the HNC equation is iterative. We
start from a guess function H™(7) and (9) gives the corresponding function ¢(r).
Once #k) has been obtained via (11), one gets H(k) from (10). Finally, the
inversion formula (12) allows to obtain the output function H°*'(r). The process is
continued until the following convergence conditions are simultaneously satisfied:

N 1/2

{Nkl Y ri[H™(r) — Hi"(ri)]z} <1073, (14)
i=1
max {r,| H™'(r) — H"(r})|} <107, (15)
B N Hin(r.) 23172 B
1 ) 3

{N i; [m H"“‘(ri):| } <1073, (16)
masx | In gmf(’r)) <1073, 17)
|1 — ™% <1073 (18)

The last three conditions arise from the fact that we are interested in the behav-
iour of the correlation length and the isothermal compressibility. They have
shown up to be much more stringent than the first two ones. As input function at
the first iteration for a given state we have used the solution found for a ther-
modynamic state close to it.

Notice that we do not introduce the asymptotic forms ¢ (r) and %, (r) into the
fourier transforms (11) and (12). In this sense, our method is not fully self-
consistent. The numerical algorithm described here is similar to the ones pre-
viously considered by other authors [8-10]. The main difference is that the
asymptotic spatial correlations are taken into account when numerically comput-
ing the susceptibility y. This might be especially relevant in the possible critical
region, where y is expected to be very sensitive to the spatial correlations. The
problem now is that we do not know #A,(r) nor ¢, (r). On the basis of Green’s
analysis [7], one could expect that k,(r) ~ 72 exp (—7r/&), where the correlation
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Figure 1. Plot of In [#A(r)] from the numerical method described in the text, for several
values of the cut-off distance R and the number of points N considered in the
interval (0, R). The thermodynamical conditions are T = 1-358 and p = 0-152.

length & becomes infinite at the critical point. Nevertheless, our results do not fit
to this law, but to the OZ form

_exp (—7/{)
h(r) = 4 ————=.

(19a)

This can be seen from figure 1, where In [#A(#)] is plotted at 7= 1-358 and
p = 0-152 for several values of R and N. First, we comment on the unphysical
abrupt decay of A(¥) when 7 approaches R. This decay is similar to the one
observed in numerical solutions of the Percus—Yevick equation [11] and is a
consequence of the method. The inversion formula (12) makes H(7) to vanish at
r =R, as k;R = jn. So, H(r) artificially tends to zero when r tends to R and so
does A(7). The truncation of the potential at » = 5 provokes a slight discontinuity
"57) — h(5") ~ —u(5)/kg T, which is not distinguishable on figure 1. The most
important feature in this figure is the linear region observed for » 2 5. Since there
is no reason to expect this linear behaviour to disappear if R— 00, R/N— 0, we
can conclude that the asymptotic form of /(r) in the HNC approximation is given
by (19 q).

In order to make (19 a) compatible with Green analysis [7], we see two pos-
sibilities : either the relation (19 a) is only valid for r > £ [12], in such a way that,
just at the critical point (where £ — 00), it is replaced by &,(r) ~ ¥ 2, or ¢ remains
finite and there does not exist a true critical point. As we will see, we understand
our results as supporting the latter possibility. The situation is similar to the one
found in the YBG equation for three-dimensional fluids [5, 6]. Nevertheless, a
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Figure 2. Plot of In [#%¢(r)] for the same cases as in figure 1.

more accurate approach should require to introduce the asymptotic forms (19 a)
and (19 b) analytically into the fourier transforms performed along the numerical
solution, and not only in the compressibility integral.

Let us now consider the asymptotic behaviour of the direct correlation func-
tion. Figure 2 shows In [#%¢(r)] for the same cases as in figure 1. The artificial
decay in the region 7 < R is observed again, and the discontinuity ¢(57)
—¢(5%) >~ —u(5)/kg T is here much more apparent than in figure 1. The linear
region extending from 7 ~ 5 confirms the law

A* exp (=271/8)

car) = 3[h(N]? = 5 2 (190)
r
So, the integrals appearing in (13 a, b) are, respectively,
J drr’h,(r) = AL exp (—Ro/E)(R, + &), ' (204)
Ro
2] AZ
J drrie(r) = T £ exp (—2Ry/&). (205)
Ro

Notice that the use of the asymptotic forms (19) eliminates the influence of the
unphysical decay near R on the calculation of y. All we need to know is the
(discretized) values of the correlation function for r < R, and the fitting par-
ameters A and & obtained from the linear regions.

In the numerical calculations presented in this paper we have taken R = 20,
N =500, and R, = 5. The linear fits have been carried out using the 125 points
between » = R, and r = 2R,. The statistical correlation coefficient has always
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been greater than 0-99997, the fitting for the function ¢(r) being slightly better
than the one for the function A(r). The relative differences between the fitting
parameters obtained from H(7) and those from ¢(r) have been less than 0-9 per
cent for A and less than 0-4 per cent for . The relative difference between the
susceptibility as obtained from (13 a) and (20 a) and the one from (13 ) and (20 5)
has been no greater than 6 per cent. For the sake of consistency, as A(r) does not
enter into the numerical method, all the values of y and £ shown in the next
section have been obtained from the function ¢(7).

According to the results presented in the next section, ¢ remains finite, which
makes the value of ¥ computed from (13 b) not to differ appreciably from the one
obtained by numerical integration over the full range of R. For instance, at
T = 1-3952 and p = 0-2873, the relative difference between both values is about 2
per cent. However, it must be noticed that the smallness of this difference is a
consequence of the absence of a true critical point. Otherwise, the correction
(20 b) would play a quite important role.

3. REsuLTs

When applying the numerical method described in the previous section, we
observed that, as one approaches some points in the 7-p plane, the rate of con-
vergence of the iterative process becomes very slow. As a matter of fact, the
numerical method fails to converge when approaching a dome shaped region in
the T-p plane.

In figure 3 we have plotted the points defining the boundary of the region of
convergence. The arrows indicate the path followed when approaching the points
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Figure 3. Temperature-density graph showing the points in which the iterative method
seems to diverge, when approaching along the paths indicated by arrows. The apex
defines a ‘ critical’ point (p_, T).
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Figure 4. Plot of In [T, — T, (p)] vs In |p — p.| for the same points as in figure 3. T,(p)
stands for the temperature at which the isochore p crosses the limiting line of the
nonconvergence region. Dots refer to isochores p > p_ and circles to p < p,. The
straight lines are linear fits.

in our calculations. The line drawn is a fit to be discussed below. The apex of the
nonconvergence region determines a ‘critical’ point (p,, T.). For T > T, the
HNC equation has a solution for any density, while for T < T, there is a density
interval p{"(T) < p < p{*X(T) in which we have not been able to find a solution.
When 7T tends to T, from below, p{ " (T) and p{*(T) tend to p,. From figure 3 it
follows that the ‘critical’ point is given by

p. = 0-2715 + 0-0005, (21)
T, = 139686 + 0-00002. (22)

To analyse the shape of the limiting line, let us assume a power law of the
form

|68 UT) — po| = By (T, — TY%, (23 a)
or, equivalently,
1 U+
£

where the exponents B, play a role similar to the critical exponent fi governing
the shape of the coexistence curve. In figure 4, In [T, — T (p)] is plotted vs
In|p — p.|. The points fit very well to two straight lines, one for p < p, and
another one for p > p_, leading to values of the coefficients

B, ~0-5721, (24)
B, ~ 06209, (25)
B_ ~ 0-4285, (26)
B_ ~0-2703. 27)

When fitting the case p > p. we have omitted the lowest point, which corre-
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Figure 5. Behaviour of the susceptibility y when approaching the limiting line along
several isochores. The log-log plot has been taken in order to look for a possible
power-law divergence.

sponds to p = 0-273, because in this case the value of | p — p_| is too close to the
own uncertainty of p.. The line in figure 3 corresponds to the laws (23) with the
values (24)—(27}.

So, we see that the limiting line is strongly asymmetrical with respect to the
isochore p = p,. Notice that f, + f_ ~ 1-0006. As a matter of fact, f, ~ 4/7 ~
0:5714 and f_ ~ 3/7 ~ 0-4286. In the classical theories one has f, = f_ =f =
1/2. It would be very interesting to check the above results by means of analytical
studies.

In previous numerical solutions [8-10] the shape of the locus of singularities
has not been studied. Foiles and Ashcroft [10] only give two points of the spino-
dal line, their values showing a certain asymmetry. Guerrero et al. [9] estimate
B = 0-53 £ 0-05 by extrapolating their results for p > p.. However, their figure 1
can be used to define a limiting line of convergence, given by the points where the
solid curves break. In this way, we have obtained a graph similar to our figure 4,
allowing us to estimate f, ~0-60, B, ~0-54, f_ ~ 0-38 and B_ ~ 0-28. These
values are quite close to ours in (24)—(27).

The relevant physical question now is whether the limiting line is a spinodal
line, i.e. a line on which the susceptibility y and the correlation length & become
infinite. In that case, the apex of the line would be a true critical point. However,
we will see that our results do not support this possibility.

In figure 5, we show In y vs In [T — T (p)] for several isochores close to the
‘critical” one. The values of T,(p) were obtained from (23 b). If y diverged follow-
ing a power law, the graph should show straight lines. But no linear region is
observed. The same was already noticed by Foiles and Ashcroft [10]. Our points
seem to show that, when approaching the limiting line, y(p, T) tends to a finite
value x(p). We have observed the same kind of behaviour for the correlation
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Figure 6. Reciprocal susceptibility ! vs [T — T,(p)]'/? along the same isochores as in
figure 5.

length &. The situation is similar to the one found in the Percus—Yevick equation
for some short-ranged potentials [2] when p < p.. In this case one gets

e, D = 2 ' p) + CP)T ~ Tu(p)]2. (28)

Although there is no reason to expect this law to hold for the HNC equation, we
have plotted ¥y~ vs [T — T(p)]*? in figure 6 for the same isochores as in figure
5. The points fit quite well to straight lines with a typical value for C of the order
of 0-5. But, rather than checking (28), we are interested in showing the absence of
a true critical point. If one extrapolates to T = T,(p), one clearly observes that y
goes to a finite value y,, which seems to monotonically increase with the density.
In figure 7 we present the results for the correlation length.

Our conclusions are in agreement with the numerical results of other authors.
From the points shown in figure 3 of [10] we have checked that the law (28) is
satisfactorily verified for p = 0-274 with T (p) = 1-4045, leading to the values
%o 1 = 0-057 and C ~ 0-21. Also, the fact that y,(p) is an increasing function of p
can be observed from figure 1 of [9]. Nevertheless, we must emphasize that our
point of view is not the same as in those works. We claim that the numerical
values cannot be extrapolated to get a divergent susceptibility, as a limiting line of
convergence is reached in which y is bounded.

So, the approximate numerical solution of the HNC equation for a truncated
Lennard-Jones potential presented in this paper does not seem to present a true
critical point for three-dimensional systems. It is our conjecture that the same
holds for any short-ranged potential, as it seems to be the case for the YBG
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Figure 7. Reciprocal correlation length ™! vs [T — T(p)]"/? along the same isochores as
in figure 5.

equation. In this context, it would be interesting to see whether the analysis
developed by Fisher and Fishman [5] could be extended to include the HNC
equation. If that were the case, there would be a borderline dimensionally d.,,
such that for d > d. the critical behaviour would be classical. For d < d., it is
our guess that there is no true criticality. The result (5) leads us to expect that
d. = 6. Of course, more accurate numerical studies are also needed. On one
hand, it is necessary to carry out the calculations by introducing the asymptotic
behaviour of A(r) and ¢(r) in a self-consistent way. Also, it is necessary to explore
whether the results are a consequence of the Picard method by trying more
elaborate numerical techniques. In particular, it would be interesting to know
whether or not solutions exist inside the region bounded by the limiting line.
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