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Starting from the exact solution of the mean spherical approximation for 
the hard core Yukawwa potential, the limit of adhesive hard spheres (i.e. an 
infinitely strong attractive well with a depth related to the range, which goes 
to zero, by a power law) is analysed. It is shown that only one choice of the 
scaling power leads to a model with nontrivial interactions. A critical point is 
obtained which has spherical model values of the critical exponents, indicat- 
ing that a singular role is not played by the adhesive-hard-sphere limit. 

1. INTRODUCTION 

In the last few years, a great deal of work has been devoted to the description 
of the critical region as predicted by integral equations for fluids. In most of the 
cases, this study has required the use of numerical methods, and it seems [1] that 
methods much more powerful than those currently available are needed in order 
to get reliable information very near the critical point. For this reason, few defini- 
tive numerical results have been established so far. It is then natural to take 
advantage of the existence of exact solutions exhibiting critical behaviour. In 
particular, there exists a solution of the Percus-Yevick (PY) approximation 

c(r) = [1 - exp (dp(r)/k s T)][1 + h(r)] (1) 

for the so-called adhesive-hard-sphere (AHS) model, defined through the inter- 
action potential [2, 3] 

i 00, r < o, 
~b(r)=l im k s T l n ( 1 2 z d / o ) ,  a < r < o + d ,  (2) 

a~o i0, r > e + d ,  

where "~ is a dimensionless temperature-dependent parameter, k s is the Boltzmann 
constant, and T is the temperature. The  direct correlation function c(r) and the 
total correlation function h(r) are related through the Ornstein-Zernike equation 

h(r) = c(r) + O J dsc(s)h( I r - s l ), (3) 

p being the number  density. 
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The above model has been solved exactly [2], and, from the compressibility 
equation of state, the existence of a critical point has been shown. In addition, the 
critical exponents take classical values (e.g. 7 = 1, ~ = 3). However, the critical 
behaviour does not correspond to a mean field theory, since the equation of state 
in the critical region does not have the classical form [3]. Let us remark that the 
possibility of solution of the model is based on the limit indicated in (2). In other 
words, no exact solution of the PY equation is known for a square well potential 
with finite width and depth. 

Another quite well studied integral equation is the mean spherical approx- 
imation (MSA), given by the closure 

h ( r ) =  - 1 ,  r<a,.~aj (4) 
c(r) = --c~(r)/k B T, r > 

This equation has been solved [4] and analysed in considerable detail [5] for the 
case of a three-dimensional fluid with a hard core Yukawa (HCY) potential, 

i 00, r dO' ,  

~(r) = J exp - -z  r > a .  
-r-~ (7 

attractive well, and z is a parameter characterizing the 
this model, the compressibility equation of state reads 

Here, J is the depth of the 
range of the potential. For 
[5] 

;~- 1 = 1 ~ P  = a 2 = ( 6 )  

kB T r F2 

where p is the pressure and ~ is a function of the reduced density r /=  (Tr/6)pa 3 
while K =- J/kB T: this function is given by the smallest real root of the quartic 
equation 

--36~/2)~ 4 + X)o 3 -- 12r/K,~ 2 + D K 2  - K 2 = 0. (7) 

Finally, in (6) and (7), C, D, F, G, H, and X are functions of r/, whose explicit 
expressions can be found in the Appendix of [5]. Of course, they depend para- 
metrically on z. 

The analysis of (6) and (7) shows [5] that, at a given z, there exists a spinodal 
line (loci of a = 0) in the r / -  K plane having a minimum at the critical point 
(qr Kr Moreover, in the region enclosed by the spinodal line there is a line 
bounding a region where (7) fails to have real roots. This leads one to distinguish 
three regions in the q -  K plane [6]:  points lying outside the spinodal line 
(Region I), points where there is no real solution (Region III ) ,  and points located 
between the spinodal line and the curve representing the limit of real solutions 
(Region II). The quantity a is continuous in Regions I and II.  In particular, it is 
analytic at the critical point, where, in addition, Oa/Ot I = 0. As a consequence, the 
spherical model values of the critical exponents (7 = 2, 6 = 5) are obtained. 
Although these values differ from those usually referred to as classical, they are 
consistent with the mean field condition of analyticity of the free energy at the 
critical point [7]. 

Thus,  the two models that we have just described lead to a quite different 
critical behaviour. A main point in the study of integral equations is to elucidate 
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whether this kind of discrepancy is due to the equation itself or to the interaction 
potential considered. The apparent common features of the PY and MSA clo- 
sures led Cummings and Stell [.5] to conjecture that, at least for short-ranged 
potentials, the spherical model values of the critical exponents should also hold 
for the PY approximation. So, one could ' regard  the quite different adhesive- 
sphere exponents in the PY approximation as stemming from the highly singular 
nature of that potential, which includes an attractive interaction that is infinitely 
strong and short ranged '  [.-5]. 

However, there is some strong analytical [.8] and also numerical [-9] evidence 
indicating that the MSA and the PY approximation have an intrinsically different 
critical behaviour. In this paper, we also argue in that direction by studying an 
adhesive-hard-sphere limit in the MSA. This limit is introduced by starting from 
the HCY potential given in (5). We obtain spherical model values for the critical 
exponents, and, therefore, there does not seem to be anything singular in the 
AHS limit. This result suggests that the MSA and the PY approximation gener- 
ally lead to quite different critical behaviour. 

2. ADHESIVE-HARD-SPHERE LIMIT 

The AHS potential given by (2) is defined as a square well potential in the 
limit of zero width and infinite depth. Of course, some relation between both 
limits is introduced in order to get something different from pure hard spheres or 
an unphysical infinitely strong attraction. 

Our aim is to define a limit of the HCY potential leading to an interaction 
analogous to AHS. Then,  we consider the potential (5) in the limit z -* ~ ,  J - *  0% 
with the scaling relation 

J =  J / z  ~ = finite, (8) 

where # is a nonnegative exponent to be determined in the following. From the 
explicit expressions given in [5], one easily gets 

1 + 2_______.~ -1  
C = 12r/(1 - 1/) 2 z + O(z-2),  (9) 

D = z + O(z~ (10) 

F = - 6 t  1 + O ( z - * ) ,  (11) 

1+2~/  
G = 6~/ (1 - rl) 2 + O ( z - l ) '  (12) 

t/2 
H = 72 + O(z-1),  (13) 

1 - ~ /  

2 + r /  -1 
X = 36tl 2 (1 - ~/)2 z + O(z-2).  (14) 

As discussed in w 1, the main physical information is provided by the smallest real 
root of (7). Let us write 

2 = 2 / z  ~ (15) 
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where /9 is a (positive or  negative) exponent  depend ing  on /2, and ,( cannot  be 
ei ther  zero or  infinity. Thus ,  (6) and (7) become 

[ l+2t l  Kz , -O- ,  l+2rl 12 rl ~zO]2 
Z -1 = 2 (1 ~/)2 ~ ( l - - r / )  2 l - - r /  ' (16) 

2 +__.___~ 2.3z3O_ 1 _ 12r / /~2z  20 +u --36r/z'~4z4~ + 36r/2 (1 -- r/) 2 

+ I~2z ~ --/~2z2~ = 0. (17) 

respectively,  where  we have in t roduced  /~ - J/k n T. Since 2 mus t  be finite, the 
leading terms in (17) have to be of  order  z 2u. Then ,  the fol lowing possibilities 
arise: 

4/9 = 2#/>  max (3/9 -- 1, 2/9 +/2,  /9 + # + 1), (18a)  

3 0 - -  1 = 2# > / m a x  (4/9, 2/9 +/2,  /9 + /2  + 1), (18b) 

20 + /2  = 2/~ ~> max (4/9, 30 - 1,/9 + /2  + 1), (18c) 

/9 + # + 1 = 2# i> max (4/9, 3 0 -  1, 2/9 +/2).  (18d) 

T h e  case (18b) can be discarded,  since # is nonnegat ive.  T h e  cases (18a)  and 
(18 c) are equivalent  and yield 

/2>~2, /9 = �89 (19) 

Finally, the relation (18 d) is verified when 

/2 <~. 2, 0 = / 2 - - 1 .  (20) 

Le t  us analyse the allowed possibilities. If/~ > 2, (17) reduces to 

_36r/2 ~4 _ 12r/ /~2 _ / ~ 2  = 0, (21) 

which has the imaginary  solutions 2 = •  (K/O1) 1/2. Thus ,  no physical  solution is 
ob ta ined  in this case, i.e. Region I I I  fills the whole t / - -  I(7 plane. T h e  cor respond-  
ing isothermal  compressibi l i ty  is given by  

Z -1 = - -24  - -  

which  diverges to - oo when z ~ oo. 
For /2  = 2, we have 

(1 - - 7 )  2 
/~z u, (22) 

(23) 

A simple analysis shows that  this equat ion has real roots only  when r//~ ~< 9/512. 
( In  particular,  on the b o u n d a r y  line r//~ = 9/512, the double  real root  is 2 = 
16I~/9.) So, in this case, there exists a Region I I ,  where 

(24) 

that  goes to + oo when z ~ o0. I n  Region I I I ,  defined by  r//~ > 9/512, (24) still 
holds,  bu t  ,(is now complex.  

--30/z,~ 4 -- 12~/g,~ 2 + K , ~ -  R 2 = 0. 
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Summary of the main results obtained in the text for the different values of the scaling 
exponent #. 

Value Value Regions in the Inverse isothermal 
of # of 0 r / - / (  plane compressibility 

0 < # < 1 # - 1 Region I Hard spheres 
# = 1 0 Region I 

Region II  Adhesive hard spheres 
1 < p < 2 p -- 1 Region II  Real, positive, divergent 
# = 2 1 Region II Real, positive, divergent 

Region I I I  Complex, divergent 
# > 2 �89 Region I I I  Real, negative, divergent 

Let  us now consider 0 ~< p < 2. Then ,  (17) becomes 

R s  R 2 = o, (25) 

whose solution is ~ = / ~ .  Substi tut ion into (16) yields 

~(1 [ 1 + 2 7  12 r/ KzU t]2 
= - -  - - . ( 2 6 )  

(] .)2 1 - t/ 

In this expression, the competi t ion between the two limits z -+  (x) and J - ~  (x) 
clearly appears. I f  # < 1, the depth of the potential goes to infinity too slowly, and 
we get nothing but pure hard spheres:  

(1 + 2r/) 2 
g - - ~  . ( 2 7 )  

(1 - -  7) 4 

In the language that we are using, only Region I is present.  On the other hand, if 
# > 1, the depth of the well increases too rapidly, and a nonphysical behaviour is 
obtained, namely 

X- I = ( 12~/ ~2/~2Z2(#_ 1) (28) 

Now, Region I I  fills the , - - / ( p l a n e .  
However,  for the particular value # = 1, both limits balance and one gets a 

physically meaningful result different f rom hard spheres, namely, 

Z_I [ 1 + _ 2 ,  , /~]2. (29) 
= (~ 7) 2 12 ] - ~ _  ~ 

Therefore ,  in the context of the MSA, it seems legitimate to identify the 
adhesive-hard-sphere limit of the H C Y  potential (5) as the limit z -~  oo, J - ~  o0, 
taken with J/z--const .  All the other cases analysed are either nonphysical 
(divergent equation of state) or trivial (hard spheres). T h e  situation is sum- 
marized in the table. 

3. RESULTS AND DISCUSSION 

The  spinodal line obtained f rom (29) is 

/ ~ _  1 1 + 2 ~ /  

12 7(1 - n )  
(30) 
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Spinodal line in the plane of inverse temperature vs density for adhesive hard spheres in 
the mean spherical approximation. The arrows indicate the coordinates (t/c, /~c) of 
the critical point. 

T h i s  l ine is p lo t t ed  in the  figure.  T h e  m i n i m u m  of  the  curve  defines the  cr i t ical  
poin t ,  and  its coord ina te s  are 

` /3  --  1 
t/c = -~ 0"366, (31) 

2 

& ,/3+2 
= -~ 0"622. (32) 

6 

T h e  b e h a v i o u r  in the  cr i t ical  reg ion  is ob t a ined  by  e x p a n d i n g  (29) a r o u n d  these  
values.  T h e  resul ts  are 

Z -  1 _ (6/~c + 1) 8 
36 (~ _ ~o)4, R = R o ,  ~-- .  tt~, (33) 

•-1 = ( 12t/c ~2(/~7__ Rr t/ = he '  (34) 
\ 1  - ~/r 

which  i m p l y  ~ = 5 and ~ = 2, respec t ive ly .  So, the  spher ica l  m o d e l  values  of  the  
cr i t ical  exponen t s  are ob ta ined .  In  o the r  words ,  the  A H S  l imi t  has not  p l ayed  any 
s ingu la r  role  conce rn ing  the cr i t ical  region.  

W e  can then conc lude  tha t  the  M S A  and the  PY a p p r o x i m a t i o n  have a qui te  
d i f ferent  cr i t ical  b e h a v i o u r  for the  A H S  l imi t .  W e  also wan t  to s tress  the  dif fer-  
ence in the  def in i t ion  of  the  A H S  l imi t  in bo th  cases. In  the  PY a p p r o x i m a t i o n ,  
the  area  of  the  well  decreases  as d In [ d[ when  the w i d t h  d goes to zero,  whi le  in 
the  M S A  the  area r ema ins  finite. Never the les s ,  bo th  def in i t ions  lead to 

c(r)  ~ d - 1 ,  a < r < a + d ,  (35) 
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when used in the corresponding approximations. Thus,  it appears sensible to 
think that the behaviour of c(r) for r < a plays an essential role in the differences 
showed by the MSA and the PY approximation near the critical point. 

We want to mention that the opposite limit of an infinitely weak and long- 
ranged attractive tail (z ~ O, J ~ O, J / z  2 = const) can be analysed in a similar way 
[10]. This limit has a singular nature and one obtains fully classical values for the 
critical exponents instead of the spherical model ones. 
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