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Using a numerical solution of the MSA for a hard core Yukawa potential, 
the critical exponents are calculated. Although the results differ from the exact 
ones, they are much closer to them than to the classical values. The tendency of 
the numerical solution towards the analytical one is shown. 

In the last decade a great deal of work has been devoted to the study of the 
critical region as predicted by the integral equations for fluids [1, 2]. In most of the 
cases one has to resort to approximate numerical methods to solve the equations. A 
general feature of these methods is that a cutoff is introduced for the correlation 
function h(r). Since h(r) presents a long tail in the neighbourhood of the critical 
point, one might expect that the above numerical methods are not accurate enough 
to study the critical region. This suggests the need of carrying out tests for the 
numerical techniques. Of course, the most direct way is to compare with analytical 
solutions. Two analytical solutions for the integral equations exhibiting critical 
behaviour are known. One corresponds to the Percus-Yevick equation with an 
adhesive-hard-sphere interaction [1], and the other one refers to the mean spherical 
approximation (MSA) for the hard core Yukawa fluid (HCYF) [3]. In this paper we 
will be concerned with the latter. In fact, this work has been prompted and moti- 
vated by previous results for the same model [2, 4]. 

The HCYF is defined by the interaction potential 

~b(r)= J exp - z r - t r  r > a ,  
- r - ~  r 

where cr is the diameter of the hard core, J is the depth of the attractive well, and z 
characterizes the range of the potential. The MSA is defined by the closure relations 

h ( r ) -  - 1 ,  r<tr:'~aj 
(2) 

c(r) = --dp(r)/ka T, r > 
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Here, ks is Boltzmann's constant, T is the temperature, and c(r) is the direct correla- 
tion function, that is related to the correlation function h(r) through the Ornstein- 
Zernike equation 

h(r) = c(r) + p j" dsh(lr - s I)c(s), (3) 

p being the density. This model has been solved analytically. By using the compress- 
ibility equation of state 

Z - l - k s  T1 (a_~pp)r=l_pfdrc(r,, (4, 

where p is the pressure, it has been shown [3] that there exists a critical region 
characterized by the so-called spherical model critical exponents, i.e. fi = 2 and 

= 5. These exponents describe the behaviour near the critical point of the critical 
isochore and the critical isotherm, respectively. 

Cummings and Monson I-2] have solved the MSA numerically for an HCYF 
with z = 2, and compared their results with the analytical solution. They conclude 
that their method is unable to approach the critical point sufficiently closely to 
enable the critical exponents to be determined unequivocally. A similar study, but 
for z = 7.5, has been carried out by Mier-y-Ter/m and Fern/mdez-Fassnacht I-4]. 
Again, the numerical results disagree with the analytical solution. In particular, the 
numerical critical exponents are very close to the classical values y = 1 and 6 = 3. In 
both papers the discrepancy is attributed to the truncation of the correlation func- 
tion at a finite distance used in the numerical method. 

Here, the same problem is reconsidered. We will show that a careful use of the 
conventional Picard method leads to quite a good agreement with the analytical 
solution close to the critical point. Although we have not reached a region where 
the spherical model critical exponents are clearly identified, the tendency towards 
them is seen fairly well. 

The details of the numerical method have been described elsewhere I-5]. It must 
be noticed that the simplicity of the MSA allows the analytical calculation of the 
contribution to the Fourier transform of c(r) coming from r > tr. On the other hand, 
the method implies the truncation of h(r) at a certain distance r = R. In the calcu- 
lations we have used a grid size Ar = 0.0125tr and cutoff distances R/tr = 6"4, 12-8, 
25"6, 51"2, and 102.4. 

In order to compare the analytical and the numerical solutions, we have chosen 
the value z = 2, for which the analytical solution gives a critical point defined by I-2] 
Kr = J/ks T~ = 1.114384 and r/r = npca3/6 = 0.165978. Then, we have numerically 
solved the model along the isotherm K = 1.114. The results for X -1 are shown in 
figure 1 for the different values of R. Also, the analytical solution for the same value 
of K is plotted. It is seen that, for each value of R, there is a density interval for 
which the compressibility takes unphysical negative values. In fact, the numerical 
iterative method becomes unstable for those values of the density. More precisely, 
we have observed that the iterated values of h(r) tend to oscillate between two 
functions h+(r) and h_(r). In order to stabilize the solution, a mixing parameter ~ is 
introduced. We have found that a value ct = 0.75 leads to a quite fast convergence. 
The plotted negative value of ~-  1 are the ones obtained in this way. 

Figure 1 shows that the numerical solution approaches the analytical one as the 
cutoff distance R increases. The agreement is fairly good for R = 102.4o-. It must be 
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Figure 1. Inverse compressibility ~-1 versus reduced density along the isotherm K = 1.114. 
The dots correspond to the numerical solution with a cutoff distance R/a = 6.4 (a), 
12-8 (b), 25.6 (c), 51-2 (d), and 102.4 (e). The solid line is the analytical solution. 
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Figure 2. 
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Minimum value of the numerical ~ - t  along the isotherm K = 1.114 versus the 
cutoff distance R. 



698 Research Note 

t 
"7 

15 i v I i ! ! 

, o  

X x x x ~  

\ \x  N 

X X \ x \  , ~  \ x'~ Ik 

\ 
\ %% 
\ b ,  

% 

,,a 
ii x 

~ 5  i ~ i | i I | % 

11034 1.054 1.074 1.094 1.114 

K .. . ,  

Figure 3. Inverse compressibility versus inverse reduced temperature K along the isochore 
~/= 0.165. The dots and the solid line have the same meaning as in figure 1. Notice 
that the data in the cases (d) and (e) are undistinguishable except at K = 1-114. 

noticed that not very close to the critical density, smaller values of R seem to be 
accurate enough. As a measure of the influence of the cutoff, we have plotted in 
figure 2 the value of the minimum inverse compressibility (g-1)mi, versus R. It  is 
seen that (X-1)mi. rapidly approaches the analytical value. For  R = 102.4a, it is 
(X-~)min ~ --0"24 X 10-3, while the analytical value is of the order of 10-5. 

A similar analysis has been carried out along the isochore r / =  0.165, and the 
results are shown in figure 3. Again, the agreement between the numerical and the 
analytical solutions improves as R increases, and it is quite good for R = 102.4a. 

The values of K and r/considered are close to the analytical critical ones, and in 
this sense the above graphs indicate that the numerical method is able to reproduce 
the analytical results even in the critical region. Of  course, the accuracy will depend 
on the value of the cutoff distance. The natural question now is whether the method 
allows to determine the spherical model critical exponents. For  the analysis of this 
point, we will restrict ourselves to the data with R = 102.4tr. In figure 4 we plot - I n  
X- ~ vs. - In [ r//~/C - 1 [ along the isotherm K = 1.114 for r />  r/c. Also, the analytical 
solution is shown. From figure 1 we have estimated r/C = 0-1675_  0.0025. For  
consistency, this is the value we have used rather than the exact theoretical one. A 
least-square fit of the points yields 6(~/> t/c) ~ 4-30. A similar analysis for r /<  r/c 
leads to 6(r/< r/c ) ~ 4.51. These values show in a definite way that the behaviour is 
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Figure 4. Log-log plot of Z- x versus I 1 - qlrlr I along the isotherm K = 1.114 for r />  t/e , 

where r/r = 0.1675. The dots represent the numerical data, while the solid line corre- 
sponds to the analytical solution. 

nonclassical ,  a l though  they are smal ler  than  the exact  result  6 = 5. This  d i screpancy  
is ma in ly  due to the fact tha t  the cri t ical  po in t  used is no t  accura te  enough.  In fact, 
the analy t ica l  so lu t ion  a long  K = 1.114 gives a p p a r e n t  cri t ical  exponents  6(q > 
qc) "~ 4.28 and  6(q < qc) ,~ 4.51. 

Figure 5. 
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Log-log plot of Z -1 versus (1 - K/Kc) along the isochore q = 0"165, with K~ = 
1.114. 
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Finally, in order to estimate the critical exponent ~,, - I n  X-x vs. - I n  (1 - K/Kc) 
for q = 0.165 is plotted in figure 5, where we have taken Kc = 1.114. Using again a 
least-square fit, one gets ~ = 1.65 from the numerical data and ~ = 1.67 from the 
analytical solution. As above, the main reason for the discrepancy with the exact 
value y = 2 is associated with the uncertainty of the critical point. 

In summary, the numerical method we have used (with a cutoff distance 
R = 102.4o-) is able to reproduce the analytical solution fairly well in a region where 
X-1 takes values of the order of 10-3. This is not enough to identify unequivocally 
the critical exponents, although our results are clearly closer to the spherical model 
values than to the classical ones. In order to get more accurate values, there are two 
possibilities. The cutoff distance R must be increased or an asymptotic behaviour of 
h(r) in the critical region must be introduced into the calculations. The latter seems 
to be much more efficient and work is now in progress to apply that technique to 
cases where an analytical solution is not available. 
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