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A simple recipe to derive the compressibility factor of a multicomponent mixture of d- 
dimensional additive hard spheres in terms of that of the one-component system is proposed. 
The recipe is based (i) on an exact condition that has to be satisfied in the special limit where 
one of the components corresponds to point particles; and (ii) on the form of the radial 
distribution functions at contact as obtained from the Percus-Yevick equation in the three- 
dimensional system. The proposal is examined for hard discs and hard spheres by comparison 
with well-known equations of state for these systems and with simulation data. In the special 
case of d = 3, our extension to mixtures of the Carnahan-Starling equation of state yields a 
better agreement with simulation than the already accurate Boublik-Mansoori-Carnahan- 
Starling-Leland equation of state. 

Owing to their importance in liquid state theory, 
empirical or semi-empirical (analytical) equations of 
state of various degrees of complexity have been pro- 
posed for one-component hard-sphere fluids. Notable 
among these, is the celebrated Carnahan-Starling (CS) 
equation of state [l], which is not only rather simple but 
also accurate in comparison with computer simulation 
data. In the case of hard-sphere mixtures, the proposals, 
also empirical or semi-empirical in nature, are much 
more limited, with the Boublik-Mansoori-Carnahan- 
Starling-Leland (BMCSL) equation [2] standing out as 
the usual favourite. The situation for one-component 
hard-disc fluids is rather similar. Here, no analogue of 
the CS equation using the (v) + 4 (c) recipe has been 
derived, due to the absence of an analytical solution of 
the Percus-Yevick (PY) equation in this instance. 
Nevertheless, accurate and simple equations of state 
have been proposed, such as the popular Henderson 
equation [3] and the recent one by the present authors 
[4]. Hard-disc mixtures, on the other hand, have received 
much less attention and the proposed equations of state 
for these systems are rather scarce. Given this scenario, 
the major aim of this paper is to show that, on the basis 
of a simple recipe, accurate equations of state of a multi- 
component d-dimensional additive hard-sphere mixture 
may be derived, requiring the equation of state of the 
one-component system as the only input. The recipe 
makes use of a consistency condition that arises in the 

case that one of the components in the mixture has a 
vanishing size, as well as from some insight gained from 
the form of the radial distribution functions at contact 
given by the solution of the PY equation for a hard- 
sphere fluid in three dimensions [5] .  

Let us consider an N-component system of hard 
spheres in d dimensions. The total number density is p, 
the set of molar fractions is { X I , .  . . , x N } ,  and the set of 
diameters is {(T,, . . . , uN} .  The volume packing fraction 
is 17 = vdp(Od), where vd = (n/4)d'2/r(l + d / 2 )  is the 
volume of a d-dimensional sphere of unit diameter and 
( S )  = xi  xi.:. In the case of a polydisperse mixture 
( N  + 00) characterized by a size distribution f(a), 
(on) = Jdaanf(n). Our goal is to propose a simple 
equation of state Z ( N ) ( r ] )  for the mixture, consistent 
with a given equation of state for a one-component 
system, 2( ' ) (7) ,  where 2 = p/pkBT is the usual compres- 
sibility factor. A consistency condition appears when 
one of the species, say the Nth, has a vanishing dia- 
meter, i.e. aN + 0. In that case, 

X N  
X N ) Z ( N - 1 ) ( 1 7 )  + ~. 

1 - 1 7  

At a more fundamental level, we will consider the con- 
tact values of the radial distribution functions, gy (aij), 
the knowledge of which implies that of the equation of 
state through the relation 

( N )  
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Taking as a guide the form of g p '  obtained through 
the solution of the PY equation for hard spheres (d = 3) 
[5], we propose to approximate gjfJ' by a linear inter- 
polation between &') and (1 - q)-', namely 

When the above ansatz is inserted into equation (2), one 
gets 

Z")(q) - 1 = [Z( ' ) (q)  - 1]21-dLlo 

where 

( P  = o ,  1). ( 5 )  

This form of the equation of state complies with require- 
ment (1). Note that equation (4) expresses Z(N)(q)  - 1 as 
a linear combination of Z( ' ) (q)  - 1 and ( 1  - v)-' - 1, 
but the dependence of the coefficients on the size distri- 
bution is much more involved than in equation (3). The 
key outcome of this paper is the equation of state given 
by equation (4), in which the compressibility factor of 
the mixture is obtained from that of the one-component 
system for arbitrary values of the dimensionality d and 
the number N of components. It is worth noting that in 
the one-dimensional case, equation (4) yields the exact 
result z") (7) = z(') (7). 

As a straightforward application of equation (4), 
one can easily get giN) = 0j-I ( $ ) " - I  [ 2 1 - d ~ o b ~ ' )  + 1 - 
do + i d l ] ,  where the virial coefficients BiN) are defined 
by Z")(q) = 1 + CE2 BiN)pn-', and where bi') are the 
reduced virial coefficients of the one-component system, 
i.e. ~ ( ' ) ( q )  = 1 + cz2 bi')qn-'. 

We will now focus on the case of hard discs (d = 2). 
Equation (4) then becomes 

The relationship between Z")(?) and Z( ' ) (q)  as given 
by equation (6) rests on a different rationale from that 
pertaining to another simple proposal, namely the con- 
formal solution theory (CST) [6, 7 . In thls latter theory, 

qeff = 4 (1  + ( ~ ) ~ / ( c r ' ) > q ,  but we note that this equation 
does not comply with the general requirement (1). If the 

the equation of state reads Z g T ( q )  7 = Z(')(qeff) with 

one-component system is assumed to be described by the 
scaled particle theory (SPT) [8], our extension to mix- 
tures takes on a particularly simple form: 

This is precisely the true SPT equation of state for mix- 
tures [7], which is indeed rewarding. Th? equation of 
state Z(] ) (q )  = [l - 29 + (2q0 - 1)q2/&- , where qo = 
3'l2n/6 is the crystalline close-packing fraction, has 
recently been proposed by us [4] to describe a one-com- 
ponent system. When this equation of state, hereafter 
referred to as the SHY equation of state following the 
nomenclature introduced in [9], is substituted into 
equation (6), we obtain the following extension: 

(8) 

The well-known Henderson (H) equation of state [3] can 
also be extended: 

1 - (1 - (4 ' / (O2) )V + Pi') - 3)((42/(.2))7?2 
(1 - 71)2 

ZL?(71) = 7 

(9) 
where bf )  = - (4/7r)3'/.. This equation is quite 
similar to the one proposed by Barrat et al. [7], the 
only difference being that the coefficient of in the 
numerator is biN) - 1 - 2(c)'/(02), where b$ is the 
exact (reduced) third virial coefficient. Nevertheless, 
since b(N) is well approximated by 1 + (by )  - 1) x 
( ~ ) ~ / ( a  ), both equations of state are practically indis- 
tinguishable. Although we could consider the extensions 
of other equations of state originally proposed for a one- 
component system of hard discs (for a list of many such 
equations of state we refer the reader to references [4,9]), 
for the sake of simplicity we will restrict our analysis to 
the SPT, eSHY and eH equations of state. 

Let us now consider the virial coefficients BL" for 
hard discs. It follows that in this case 
BiN) = (~/4)~-'(>)~-'[1 + (bill - l ) ( ~ ) ~ / ( c ~ * ) ] .  This 
equation yields the exact second virial coefficient [7], 
the higher coefficients being approximate. In the 
particular case of a binary mixture, the composition- 
independent coefficients BL:ln are defined through 
Bi2) = C&o[n!/nl!(n - nI)!]B$n-n,x;1x2-n1. According 
to equation (6), 

2 
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where n = rzl + n2 and Q = c2/al. This form has the 
same structure as the interpolation formula suggested 
by Wheatley [lo]. In fact, he proposes an equation of 
state (henceforth labelled as W) of the form 

where the coefficients c, are chosen so as to reproduce 
the first eight virial coefficients given by the inter- 
polation formula (10). 

Now, let us consider the case d = 3. Equation (4) then 
yields 

1 +L [I --(2(2)2 (u2) - (.)(a3)) 1 - 71 (c3)2 

(12) 
Using the CS equation of state [l], Z( ' ) (q)  = 
(1 + q + q2 - q3)/(  1 - v ) ~ ,  the result may be expressed as 

(13) 
where the BMCSL equation of state [2] is 

(14) 
As another example, let us consider the Carnahan- 
Starling-Kolafa (CSK) equation of state [l 11, 
Z(')(q) = [l + q + q 2  -2q3(l +q)/3]/(1 - v ) ~ .  Its ex- 
tension is 

x ((c2)2 + (a)(g3)), (15) 

which does not coincide with Boublik's extension to 
mixtures of the CSK equation of state [12]: 

Recently, Henderson and Chan (HC) have proposed a 
modification of the BMCSL equation of state [13, 141 
for the particular case of a binary mixture in which the 
concentration of the large spheres is exceedingly small, 
starting from an asymmetric prescription for the radial 
distribution functions at contact. The resulting equation 
of state, with a1 2 a2, is 

We shall now perform a comparison with the (very 
few) available computer simulation data. We begin with 
hard-disc mixtures. In figure 1 we display the packing- 
fraction dependence of the compressibility factor Z for 
the SPT, W, eH and eSHY equations of state, together 
with the simulation results of Barrat et al. [7], for the 
binary mixture defined by x1 = 0.351 and g2/a1 = 0.8. 
In this case, the performance of the eSHY equation of 
state is outstanding and clearly superior to all the other 
choices. To complete the picture, in figure 2 we present 
the results for the ratio of the fifth virial coefficient to the 
fourth power of the (exact) second virial coefficient as a 
function of the larger disc concentration and for two size 
ratios. Here, the best agreement with the numerical data 
of Wheatley [IS] is obtained with the eH equation of 

Figure 1. Compressibility factor as a function of the packing 
fraction for a binary mixture of hard discs defined by 
xI = 0.351 and 0 2 / 0 1  = 0.8. 
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Figure 2. Fifth virial coefficient as a function of x1 for two 
binary mixtures of hard discs defined by u2/uI = 0.1 and 
u2/u, = 0.2. 

state, which is not very surprising since in the one-com- 
ponent case (xl = 1) it gives a very good estimate of 
this ratio. Nevertheless, the overall trends including 
the position of the maximum are still captured in all 
approximations. 

As far as hard-sphere mixtures are concerned, the 
following comments can be made. To our knowledge, 
only simulation results for binary mixtures have been 
reported. The most recent data [16] indicate that the 
BMCSL equation of state underestimates the pressure 
as obtained through simulation. In fact, the BCSK 
equation of state is geared to correct this deficiency, at 
least for 17 < 0.5, in a similar fashion as the CSK equa- 
tion of state corrects the CS equation of state. As a 
general trend, for 17 < 0.5, our extended equations of 
state, namely the eCS and the eCSK, also go in the 
correct direction. Moreover, in this density range, 

Although limited in scope, the results shown in figure 3 
illustrate these features. Here we have considered an 
equimolar binary mixture with size ratio u2/u1 = 0.6. 
As the differences between the values predicted by the 
various equations of state for the compressibility factor 
Z are very small, we have chosen to present the results, 
including the simulation data of Yau et al. [14] (open 
circles) and BaroSovi et al. [16] (filled circles), in terms 
of the packing fraction dependence of Z - ZBMCSL. 
Despite the scatter of the simulation results of Yau 
et a/. [14], it is apparent that, depending on the range, 
both the eCSK and eCS equations of state seem to do a 
better job than either the BMCSL, BCSK or HC equa- 
tions of state (although in all fairness we should add that 
the equimolar condition is beyond the scope for which 
the latter equation was originally devised). In fact, if one 
considers a higher density point computed by Yau et al. 

ZBMCSL < zeCS < ZeCSK and ZBMCSL < ZBCSK < ZeCSK. 
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Compressibility factor as a function of the packing 
fraction, relative to the BMCSL value, for an equimolar 
binary mixture of hard spheres with u2/u1 = 0.6. 
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Figure 4. Fifth virial coefficient as a function of x1 for two 
binary mixtures of hard spheres defined by u2/al = 0.05 
and u2/v1 = 0.2. 

[14] (7 = 0.59, Zsimul - ZBMCSL = 0.26) that is off the 
scale, it appears that the overall trend is better captured 
by the eCS equation of state, although for 17 < 0.5 the 
eCSK should probably be the preferred equation of 
state. The results for the composition dependence of 
the fifth virial coefficient for a binary mixture and two 
values of u2/2/al displayed in figure 4 also indicate that all 
the approximations lead to very good values as com- 
pared to the recent numerical data of Enciso et al. 
[17], with a slight superiority of the BCSK equation of 
state for the region around the maximum. The HC and 
the eCSK results have not been included, since they are 
almost identical to the ones of the BMCSL and the eCS, 
respectively. 

In conclusion, it is fair to state that we have intro- 
duced a very simple and general recipe that allows one 
to get a reasonably accurate approximation to the 
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equation of state of a multicomponent mixture of d-  
dimensional hard-spheres from any reasonable equation 
of state of the one-component system. It also seems that, 
as exemplified in the case of binary three-dimensional 
hard-sphere mixtures, the more accurate the equation 
of state of the one-component system, the better results 
the approximation yields. 
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