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Is it possible to infer the equation of state of a mixture of hard discs 
from that of the one-component system? 
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Based on exact asymptotic properties of the composition-independent virial coefficients of a 
binary mixture of hard discs in the limits or = n2/n, + 0, or + 1 and or + co, R. J. Wheatley 
(1998, Molec. Phys., 93, 965) has recently proposed an approximate interpolation equation for 
these coefficients. In this note, the equation of state equivalent to this interpolation is obtained, 
expressing the compressibility factor of the mixture in terms of that of the pure system. An 
extension to an arbitrary number of components is also given. The equation of state derived 
here is compared with another one recently proposed by following a different route (Santos, A., 
Yuste, S. B., and Lopez de Haro, M., 1999, Molec. Phys., 96, 1) and with Monte Carlo 
simulation results. It is shown that the latter equation is more accurate than the former 
one, at least for not too disparate mixtures (0.7 5 a < 1). 

In the last few years, the search and proposal of accu- 
rate equations of state for mixtures of hard discs or hard 
spheres has received renewed attention [14].  This has 
been stimulated in part by the recent (numerical) calcu- 
lation of the fourth and fifth virial coefficients for these 
systems [ H I .  The aim of this note is to obtain an 
expression for the equation of state of a binary mixture 
of hard discs in terms of the equation of state of the pure 
system, by starting from an interpolation formula for 
the virial coefficients recently proposed by Wheatley [3, 
71. Moreover, this expression is extended to any number 
of components. The equation of state obtained here is 
compared with another one recently proposed [4] and 
with Monte Carlo simulation data [9]. 

An m-component system of hard discs is characterized 
by the total number density p = N / V  ( N  being the total 
number of particles and V being the area), the set of 
molar fractions {xi} = {xl ,  x2, .  . . , x,} and the set of 
diameters {a i }  = {a1, a2,. . . , om}. A quantity more 
useful than p as a measure of the density of the system 
is the area packing fraction q = ELl qi, where 
qi = (n/4)xipa' is the fraction of the total area occupied 
by the discs of species i .  The equation of state of the 
system is given by the compressibility factor 
p v / N k ~ T  = Z(m)(q ;  {xi}, {ai}), where p is the pressure, 
kB is the Boltzmann constant and T is the temperature. 
Apart from the packing fraction q, the compressibility 
factor depends on 2(m - 1) parameters: m - 1 indepen- 
dent molar fractions (since Ckl xi = 1) and m - 1 inde- 
pendent diameter ratios (since Z(m)  is a dimensionless 
quantity). In the particular case of a binary mixture 
(m = 2), one has Z(2)(q; XI,  a) ,  where Q = a2/01. Most 

of the exact knowledge of the equation of state comes 
from the virial coefficients BF) ,  which are the coeffi- 
cients in the expansion of the compressibility factor in 
powers of density: 

co 

z(*)(v {xi}, {ai}) 1 CBF)({x i} ,  {ai>)pn-'. (1 )  
n= I 

For one-component systems, Bhl)(o) = (na2/4)"-' b,, 
where the b, are pure numbers. In the case of binary 
mixtures, the virial coefficients Bh2) can be expanded in 
terms of composition-independent components: 

( 2 )  
Obviously, Bn,o(a1, a21 = (nd/41~- 'bn and 
Bo,,(ol,a2) = (na;/4)"-Ibn. Also, if Q = a2/01 = 1, we 
trivially have B,,,,-,, (a,  o) = (no2/4)"-'bn. Much 
subtler conditions are derived in the limits a + 0 and 
a -+ 00 by regarding the smaller discs as occupying a 
free area equal to the total area minus the area of the 
larger discs. Thus, one has [3] 
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where n = n l  + n2 and 1 5 nl 5 n - 1. Wheatley [3] con- 
structed fitting functions for the fourth and fifth virial 
coefficients by using the above exact properties and his 
numerical results [7] for Q = 0.1,0.2, . . . ,0.9. Based on 
equation (3), he also proposed estimates for the sixth to 
eighth coefficients by means of the interpolation formula 

(4) 

where the virial coefficients b,, n 5 8, of the one-com- 
ponent fluid are known [lo]. In addition, Wheatley [3] 
proposed the following rational function approximation 
for the equation of state, 

where vo = 3112~/6 is the close-packing fraction of the 
pure substance and the eight coefficients cn are chosen so 
that equation (5) reproduces the exact second and third 
virial coefficients, the fourth and fifth virial coefficients 
as given by his approximate fitting functions, and the 
sixth to eighth virial coefficients as given by equation (4). 

What I propose here is a different application of 
equation (4). The first step consists of assuming that 
equation (4) gives reasonable estimates for every value 
of n. This assumption is supported by the fact that 
equation (4) is exact for n = 2 and is remarkably accu- 
rate for n = 3,4,5.  In the next step, the infinite series 
expansion (1) (with m = 2) is resummed. As a result, 
the compressibility factor of the binary mixture is 
expressed in terms of that of the pure system as 

+ (1 - Q)-Z(I) - 
1 -71 x2 (1 :ql) 

Equation (6) expresses the pressure of the mixture as a 
linear combination of three terms: (i) the pressure that 
particles of species 1 would have if they behaved as a 
pure system in a free area equal to the total area minus 
the area occupied by the other species; (ii) the same, but 
for species 2; and (iii) the pressure associated with a pure 
substance occupying the same area fraction as the true 
mixture. In the limits Q + 0 or a + co, equation (6) 
becomes 

where the subscripts 1 and s refer to the larger and the 
smaller discs, respectively. This is precisely the starting 
point to derive (3). Let us check now that equation (6) 
leads to equation (4). First, note that 

where, as before, n = n l  + n2. Analogously, 

Finally, 

From equations (7)-(9) one can easily identify the com- 
position-independent coefficients B,, ,n2 associated with 
the equation of state (6) and confirm that they coincide 
with Wheatley's interpolation, equation (4). This proves 
the full equivalence of equations (4) and ( 6 ) .  

Since the exact equation of state of the pure system is 
not known, equation (6) actually defines a family of 
equations of state for the binary mixture. It is rewarding 
that if one assumes that the pure system is described by 
the Scaled Particle Theory (SPT), i.e. Z(' ) (?)  = 
(1 - v ) - ~ ,  then equation (6) reduces to the SPT equation 
of state for a mixture [9], which for an arbitrary number 
of components reads 
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where (u') = EL, xp:. A drawback of equation (6) is 
that it only applies to binary mixtures. On the other 
hand, using as a guide the requirement that it reduces 
again to equation (10) if z(')(Q) = (1 - qlP2, I propose 
the following extension: 

m 

Z(I)(q). ( I  1) 
(a) - x;a1 

(u2) - xi.; + C xp'i 
i= I 

The reader can easily check the consistency of 
equation (1 1) with equation (10). In the polydisperse 
limit, i.e. rn + 03 and xi + 0 (which implies qi ---f 0), 
equation (1 1) simplifies to 

It turns out that the equation of state (12) has been 
recently proposed forJinite rn (even rn = 2) by following 
a completely different approach [4]. Thus, we can see 
equation (12) as an alternative equation of state, inde- 
pendent of equations (6) or (1 1). Both equations of state 
(1 1) and (12) are consistent with equation (12); in addi- 
tion, they tend to overlap as the number of components 
increases. The main advantage of equation (12) lies on 
its simplicity, clearly superior to that of equation (1 1). 
On the other hand, based on the analysis of the virial 
coefficients, one could in principle expect equation (12) 
to be less accurate than equation (1 1). For instance, in 
the binary case equation (1 2) yields 

x [ V b ,  + 1 + 2(b,, - 1)a  

+ ( e b ,  n2 + l )a2] .  

While equation (13) has the same structure as 
equation (4), it does not comply with the properties 
(3), except if (and only if) b, = n, which corresponds 
to the SPT equation of state. 

In order to test the reliability of equations (6) and (12) 
for a binary mixture, we will compare their predictions 
with Monte Carlo simulation data [9]. To do so, we need 
to assume an equation of state for the pure system. For 
illustration purposes, two choices will be made here. 
First, we take the simple equation proposed by Santos 
and co-workers [I 11, 

Although this equation is constructed under the only 
requirements of reproducing the second virial coefficient 
b2 = 2 and having a pole at  the crystalline close-packing 
fraction vo, it has a better agreement with simulations 
than some other more sophisticated equations. Second, 
we take the equation proposed by Henderson [12], 

where b3 = 16/3 - 4(3'I2)/n and the constant 
cH = 0.043 is fitted to optimize the agreement with simu- 
lations. In a recent work, Mulero el a[. [13] have shown 
that equation (1 5) is perhaps the most accurate available 
equation of state for hard discs. Table 1 shows the 
values of the quantity pcf /kBT for some dense binary 
mixtures, as obtained from Monte Carlo simulations [9] 
and from equations (5), (6) and (1 2), the two latter com- 
plemented by equations (14) and (1 5) .  

From the results of the table, it follows that the best 
agreement with the simulation data generally corre- 
sponds to equation (12), either in connection with 
equation (14) (typically for 71 > 0.55) or in connection 
with equation (15) (typically for 71 5 0.55). The second 
observation is that equation (5) usually performs better 
than equation (6). As a summary of table 1, the average 
absolute deviations from the simulation results are 0.08 
for the equation of state (5), 0.12 for the combination of 
equations (6) and (14), 0.10 for equations (6)+(15), 0.05 
for equations (12)+(14) and 0.06 for equations 
(12) + (1 5); the average relative deviations are 1.6%, 
2.5%, 2.0%, 1.1% and 1.1%, respectively. It is also 
interesting to remark that the difference between the 
pressures given by equations (6) and (12) is practically 
independent of the choice of the one-component equa- 
tion of state. 

To sum up, in this note the equation of state equiva- 
lent to the interpolation equation (4) proposed by 
Wheatley [3, 71 for a binary mixture of hard discs has 
been obtained. This equation of state, cf. equation (6),  
expresses the compressibility factor of the mixture in 
terms of that of the pure system. An extension to an 
arbitrary number of components, equation (1 l), has 
also been proposed. This gives an affirmative answer 
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Table I .  

Equation of state of a mixture of hard discs from a one-component system 

Comparison of Monte Carlo simulation values [9] of the quantity po:/kBT with the predictions of several equations of 
state: equation (5) proposed by Wheatley [3], equation (6) derived in this paper, complemented by equations (14) and (15), and 
equation (1 2) proposed in [4], complemented by equations (14) and (1 5). 

a: XI 17 Simul. ( 5 )  (6) + (14) (6) + (1 5 )  (12) + (4) (12) + (1 5 )  

0.9 0.48 0.54 3.70 3.72 3.64 3.69 3.65 3.71 
0.9 0.49 0.63 6.54 6.78 6.67 6.68 6.68 6.69 
0.8 0.65 0.55 4.05 4.06 4.10 4.15 4.00 4.05 
0.8 0.315 0.55 4.72 4.71 4.44 4.50 4.63 4.70 
0.8 0.52 0.60 5.88 5.96 5.94 5.98 5.87 5.91 
0.8 0.315 0.60 6.33 6.55 6.17 6.21 6.45 6.50 
0.7 0.546 0.55 4.55 4.57 4.60 4.66 4.50 4.56 
0.8 0.351 0.481 3.00 3.03 2.89 2.93 2.98 3.02 
0.8 0.351 0.532 4.00 4.14 3.94 4.00 4.07 4.13 
0.8 0.351 0.548 4.50 4.57 4.36 4.42 4.50 4.56 
0.8 0.351 0.564 5.00 5.07 4.83 4.89 4.98 5.05 
0.8 0.351 0.579 5.50 5.59 5.32 5.38 5.50 5.56 

to the question posed in the title. In fact, this answer has 
already been considered in [4], where a general recipe 
for any dimensionality is given. In the special case of a 
two-dimensional system, the above recipe becomes 
equation (12). It is amazing that equation (12) has 
been 'rederived' here by taking in equation (1 1) the 
limit of a polydisperse mixture. Despite the fact that 
equation (12) is simpler than equation (6), comparison 
with simulation results [9] shows that it is also more 
accurate, at least for not very disparate binary mixtures 
(0.7 5 a < 1). On the other hand, since equation (12) is 
not fully consistent with the numerical coefficients in 
the asymptotic properties (3), it might be that 
equation (6), or more generally equation (1 I), becomes 
preferable over equation (12) for disparate mixtures 
(a  << 1). In order to explore this possibility, it is very 
important that more extensive simulations are carried 
out. 

Finally, it is important to note that the extension 
of equations ( 5 )  or (6 )  to any dimensionality d is 
not straightforward. The corresponding asymptotic 
behaviours of the composition-independent coefficients 

and -a + 00, respectively, where ,d is the volume of a 
sphere of unit diameter. This suggests to approximate 
B,,,n2 (ol, Q I ~ ~ ) ( T ~ ~ ( ~ - ~ ) Q - ~ ( ~ ' - ' )  b y a polynomial in QI of 
degree d, but the number of coefficients exceeds in d - 2 
the number of conditions. In fact, Wheatley et al. [8] 
have proposed such a polynomial interpolation for 
d = 3 and fixed the extra coefficient by a fit to the 
numerical values of the virial coefficients. 

I am indebted to S. B. Yuste and M. L6pez de Haro 
for insightful discussions about the subject of this paper. 
This work has been partially supported by the DGES 
(Spain) through Grant No. PB97-1501. 
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