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By means of the Direct Simulation Monte Carlo (DSMC) method, the Boltzmann equation is 
numerically solved for a gas of hard spheres enclosed between two parallel plates kept at 
different temperatures and subject to the action of a gravity field normal to the plates. The 
profiles of pressure, density, temperature and heat flux are seen to be quite sensitive to the 
value of the gravity acceleration g .  If the gravity field and the heat flux are parallel (g > 0), the 
magnitudes of both the temperature gradient and the heat flux are smaller than in the opposite 
case (g < 0). When considering the actual heat flux relative to the value predicted by the 
Fourier law, it is seen that, if g > 0, the ratio increases as the reduced local field strength 
increases, while the opposite happens if g < 0. The simulation results are compared with 
theoretical predictions for Maxwell molecules. 

1. Introduction 
The steady planar Fourier flow is one of the basic 

non-equilibrium states. It corresponds to a macroscopic 
system enclosed between two parallel infinite plates 
located at z = 0 and z = L and kept at different tem- 
peratures T-  and T,. After a certain transient period, 
the system reaches a steady state characterized by a 
temperature gradient aT/& along the direction z 
normal to the plates and a constant heat flux q2. In 
the case of a fluid described by the Navier-Stokes equa- 
tions, the heat flux is just proportional to the tempera- 
ture gradient (Fourier law): 

where K ( T )  is the thermal conductivity coefficient, 
which, in general, depends on the local temperature T .  
In principle, the validity of the linear relation (1) is 
restricted to small gradients, i.e. to C >> A, where C is 
the characteristic hydrodynamic length defined as 
C = TlaT/azI-' and X is a microscopic characteristic 
length (such as the mean free path in the case of a 
dilute gas). However, computer simulations of both 
dense fluids [l] and dilute gases [2, 31, as well as kinetic 
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theory treatments [4-81 show that equation (1) is an 
excellent approximation even if C - A. In the special 
case of dilute gases, Asmolov et al. [4] found an exact 
solution of the Boltzmann equation for Maxwell mol- 
ecules [9] in which equation (1) is verified for arbitrary 
values of the thermal gradient. The same result is 
obtained from an exact solution [5] of the Bhatnagar- 
Gross-Krook (BGK) kinetic model [lo] for any inter- 
action potential. 

The effect of gravity on the heat conduction of dilute 
gases is usually neglected. This is because the character- 
istic distance associated with gravity (i.e. the scale height 
h = u i / g ,  where uo is the thermal velocity and g is the 
gravity acceleration) is much larger than C and X under 
usual laboratory conditions. Thus, the Fourier law (1) 
still holds if h >> C - A. On the other hand, an inter- 
esting question, from a physical point of view, is 
whether or not the heat conduction is influenced by a 
gravity field g along the z direction when the conditions 
of rarefaction and/or the strength of the field are such 
that the ratio X/h  is not negligibly small. In the case of 
Earth's atmosphere, for instance, h varies only within a 
range of 5-1Okm up to an altitude of lOOkm [ I l ,  121. 
On the other hand, X increases from cm at the sur- 
face to tens of kilometres at an altitude of 500km. 
Consequently, X/h  - lo-'' at the surface but rapidly 
increases with the altitude, being X/h  N 1 at the base 
of the exosphere [l 11. 
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In the study of the gravity effect on the heat conduc- 
tion the main quantity of interest is the reduced thermal 
conductivity coefficient K* ( E ,  g * ) ,  where 

(3) 

(4) 

The quantity E is a dimensionless measure of the 
thermal gradient over the scale of the mean free 
path, while g* is a measure of the strength of the gravity 
field over the same scale. In equation (4) we have 
identified the thermal velocity as uo = (2kBT/m)"2, 
where kB is the Boltzmann constant and m is the mass 
of a particle. As a convenient definition of the mean free 
path we take 

where p = nkBT is the hydrostatic pressure, n being the 
number density. The above definition of A is based on 
the result for the thermal conductivity coefficient n in 
the BGK model [13, 141. It must be pointed out that all 
the quantities in (2t(4)  are local, i.e. they depend on z. 
For instance, n* is the ratio between the actual value of 
the heat flux (which is in fact uniform in the steady state) 
and the local value obtained from (1) with the actual 
local values of the temperature and its gradient. If the 
system is large enough ( L  -+ 00) and we restrict our- 
selves to the bulk domain (i.e. far from the boundaries), 
it is expected that all the space dependence of K* occurs 
through E and g* only. 

The problem of elucidating the effect of g* # 0 on the 
effective thermal conductivity n* has been recently 
addressed by us from a theoretical point of view [15- 
181. In [15] the Boltzmann equation for Maxwell mol- 
ecules was solved by a perturbation expansion through 
order g 2 .  The result is 

K * ( E ,  g * )  = K * ( E ,  0) + F E g *  + (y + 5 0 3 . 7 ~ ~ ) g * ~  

+ %7*3), 

where K * ( E ,  0) = 1. Henceforth we take the convention 
that g > 0 when the field g is parallel to the heat flux 
vector q and g < 0 when g is antiparallel to q. In the first 
case, according to equation (6), the heat transport is 
enhanced with respect to the Navier-Stokes prediction 
( K *  > l), while it is inhibited if g < 0. Of course, in the 
limit of a negligible field (g* 4 0), the validity of the 
Fourier law for arbitrary E [4] is recovered ( K *  1). A 

similar analysis has been carried out in the context of the 
BGK model of the Boltzmann equation, also for 
Maxwell molecules [16]. This allowed us to perform 
the expansion through sixth order in the field, the behav- 
iour of the numerical coefficients indicating that the 
series expansion is only asymptotic. The result to 
second order is 

K * ( E ,  g*)  = K * ( E ,  0) + y E g *  + ('5? + y V ) g * *  

+ 0 ( g * 3 ) .  (7) 

The asymptotic analysis of [16] agrees well with a finite- 
difference numerical solution of the BGK equation [ 171. 
Comparison between equations (6) and (7) shows that 
the BGK model tends to overestimate the influence of 
the gravity field. A much more complex gravity effect 
appears in the planar Couette flow [18], where normal 
and shear stresses are present in addition to heat trans- 
port. 

Thus far, all the previous studies about the influence 
of gravity on the heat conduction have been restricted to 
Maxwell molecules. In addition, most of them have been 
based on theoretical asymptotic analyses of the Boltz- 
mann or BGK equations, the investigation of [ 171 being 
the only exception. The main merit of the Maxwell inter- 
action is that it usually makes the analytic treatment of 
the Boltzmann equation more manageable, but other- 
wise it is a rather unrealistic potential. Structural, ther- 
modynamic and transport properties of real fluids are 
much better captured by the hard-sphere model [ 191. 
The aim of this paper is to investigate the gravity 
effect on the planar Fourier flow in the case of a dilute 
gas of hard spheres by solving numerically the Boltz- 
mann equation by means of the DSMC method [20]. 
As will be seen, the simulation results agree qualitatively 
with the theoretical analyses. The physical problem is 
stated in section 2, where special attention is paid to 
the choice of the boundary conditions. The simulation 
method is described in section 3. Section 4 presents the 
results. Finally, the conclusions are summarized in 
section 5. 

2. 
field 

Let us consider a dilute gas of hard spheres enclosed 
between two parallel plates located at z = 0 and z = L. 
Both plates are maintained at temperatures T -  and T,, 
respectively. Without loss of generality, we will assume 
that T ,  > T-.  In addition, a constant gravity field 
g = -gz is applied. Figure 1 presents a schematic illus- 
tration of the system geometry. Under these conditions, 
the Boltzmann equation reads [13, 141 

Planar Fourier flow in the presence of a gravity 
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Figure 1. Schematic illustration of the system geometry. 

Here, f (z ,  v, t )  is the one-particle velocity distribution 
function, o is the diameter of a sphere, 0 is the Heavi- 
side step function, g = v - vI  is the relative velocity, & is 
a unit vector in the direction of the line joining the 
centres of the two colliding particles, and v’ = 
v - (g . &)& and vi = vI + (g-&)& are post-collisional 
velocities. In equation (8) we have already assumed 
that, due to the geometry of the problem, the only rele- 
vant space coordinate is z.  The hydrodynamic fields and 
the associated fluxes can be expressed as moments of the 
distribution function: 

n(z1 t )  = dvf(z1 v, t ) ,  (9) J 
S P(z, t )  = m dvvvf(z, v, t ) ,  p = nkBT = 3 Tr P, (10) 

In the expressions of the pressure tensor, equation (lo), 
and of the heat flux, equation (1 l) ,  we have assumed the 
absence of a flow velocity field. Multiplying equation (8) 
by (uzl u 2 )  and integrating over velocity space, one gets 
the following steady state balance equations 

(12) 
a 
az - P,, + mng = 0, 

a 
-q2 = 0. 
dZ 

In order to solve the Boltzmann equation (8) one 
needs to complement it with initial and boundary con- 
ditions. Since we will focus on the steady state, the par- 
ticular choice of initial condition is not relevant here. As 
for the boundary conditions, they can be expressed in 
terms of the kernels K +  (v, v’) defined as follows. When a 
particle with velocity v’ hits the wall at z = L,  the prob- 
ability of being reemitted with a velocity v within the 
range dv is K+(v,v’)dv; the kernel K-(v,v’)  represents 
the same but at z = 0. The boundary conditions are then 
[211 

@ ( h , ) l ~ , l f ( z  = (0, L } ,  V, t )  = @(h,) dv’ ~ u ~ I K ~ ( v , v ’ )  J 
x @(d) 
x f ( z  = (0, L},v’ ,  t ) .  

(14) 

In this paper we consider boundary conditions of com- 
plete accommodation with the walls, so that 
Ki(v,v’) = K,(v) does not depend on the incoming 
velocity v’ and can be written as 

K*(v) = 4’ @(T~,)I~Zl4*(V),  

(15) 

where &(v) represents the probability distribution of a 
fictitious gas in contact with the system at z = (0 ,L ) .  
Equation (1 5) can then be interpreted as meaning that 
when a particle hits a wall, it is absorbed and then 
replaced by a particle leaving the fictitious bath. Of 
course, any choice of &(v) must be consistent with 
the imposed wall temperatures, i.e. 
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kBT* = 4mJdvu2&(v). (16) 
The simplest and most common choice is that of a Max- 
well-Boltzmann distribution: 

These boundary conditions have been frequently used in 
molecular dynamics simulations [l, 21 as well as in 
kinetic theory analyses [7, 8, 14, 171. Under these con- 
ditions, the system is understood to be enclosed between 
two independent baths at equilibrium at temperatures 
T, and T - ,  respectively. While the conditions (17) are 
adequate for analysing boundary effects [ 14, 221, they 
are not very efficient when one's interest lies with the 
transport properties in the bulk. In order to inhibit the 
influence of boundary effects, it is more convenient to 
imagine that the two fictitious baths are in non-equilib- 
rium states resembling the state of the actual gas near 
the walls. More specifically, we can assume that the 
fictitious gases are described by the BGK equation, 
whose exact solution for the steady planar Fourier 
flow (in the absence of gravity) is known [6]. In which 
case, 

-(2kBT,/m)"'- (18) 
mv2 - ~ 

E+V,  2 k ~ T k ~  

where we have additionally assumed statistical indepen- 
dence among the three velocity components. In equation 
(18) E~ is the local reduced thermal gradient at 
z = (0, L} .  If we formally take the limit E* + 0, equa- 
tion (18) reduces to equation (17) [6]. On the other hand, 
if T- # T,,  then E+ # 0. The exact solution of the BGK 
model [5,  61 has the properties aT3/*/dz  = const (for 
hard spheres) and p = const; from them, it is easy to 
obtain 

where 

- n = - j  I L  dzn(z) 
L O  

is the average density. This second class of boundary 
conditions were first proposed in [ 3 ] ,  where they 

proved to be much more efficient than the conditions 
(17) for the heat conduction problem. Following the 
same terminology as in [3], we will refer to the 'equi- 
librium' conditions (17) as conditions of Type I and to 
the 'non-equilibrium' conditions ( I  8) as conditions of 
Type 11. 

3. Simulation method 
In order to solve numerically the Boltzmann equation 

(8) with both types of boundary conditions, we have 
used the so-called DSMC method [20, 231. Comparison 
with known exact solutions of the Boltzmann equation 
under strong non-equilibrium conditions [24] proves the 
reliability and efficiency of the DSMC method to solve 
the Boltzmann equation. In this method, the velocity 
distribution function is represented by the velocities 
{vi} and positions {zi} of a sufficiently large number 
of particles N .  Given the geometry of our problem, 
the physical system is split into layers of width Az, suffi- 
ciently smaller than the mean free path. The velocities 
and coordinates are updated from time t to time t + At, 
where the time-step At is much smaller than the mean 
free time, by applying a convection step followed by a 
collision step. In the convection step, the particles are 
moved ballistically, i.e. uiz -+ uiz - g a t  and zi + 

z i  + uizAt  - $g(At) . In addition, those particles 
crossing the boundaries re-enter with velocities sampled 
from the corresponding probability distribution K* (v).  
The collision step proceeds as follows [20,  231. For each 
layer a, a pair of potential collision partners, i and j ,  
and a unit vector a. are chosen at random with 
equiprobability. The collision between particles i 
and j is then accepted with a probability equal to 
@(gii*t3ii)wii/wmax, where go = vi - vj is the relative velo- 
city, wii = ( g i i - u i i ) 4 ~ a 2 n ,  is the collision rate of the pair 
( i ,  j ) ,  n, being the number density in layer 0, and wmax is 
an upper bound estimate of the collision rate in the 
layer. If the collision is accepted, post-collisional velo- 
cities v:,~ = vi,j (gii-t3i)t3i  are assigned to both particles. 
After the collision is processed or if the pair is rejected, 
the routine moves again to the choice of a new pair until 
the required number of candidate pairs N,w,,,At in 
the layer, where N ,  is the total number of particles in 
layer a, has been processed. 

In the course of the simulations, the following 'coarse- 
grained' local quantities are computed. The number 
density in layer a is 

where O,(z) is the characteristic function of layer a, i.e. 
O,(z) = 1 if z belongs to layer a and is zero otherwise. 
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Similarly, the temperature, the pressure tensor and the 
heat flux of layer cr: are 

N 

N 
q, = --x L m  0 , ( Z i ) U i V i .  2 N A z 2 .  

I =  I 

According to equation (1 3), q is a constant in the steady 
state. Thus, we have also evaluated the average heat flux 
as 

The standard definition of mean free path in the case 
of hard spheres is [13] 

This quantity is not exactly the same as the mean free 
path defined by equation (9, which is based on the BGK 
model. The thermal conductivity of a dilute system of 
hard spheres is (in the first approximation) [13] 

(27) 
75 ( 7rmkBT)IJ2 kB 

K . =  
64m7ra2 ' 

so that X = (15~' /~/16)X' .  In the following, we take 
units such that x' = (21/2Ti7r~2)-1 = 1 (length unit), 
m = 1 (mass unit), (2kBT+/m)IJ2 = 1 (speed unit), 
T, = 1 (temperature unit) and n = 1 (density level). 
The units of these and other related quantities are 
given in table 1. The table also gives the values of 
those units taking as a reference example a gas with 

Table 1. Units used in this paper for the relevant quantities. 
The third column gives the 'real' values of those units 
taking D = 3A m = 3 x kg, T+ = lo3 K and 
n = 4 x 1015 m-3' as a reference example. - 

Quantity Unit 
~ 

Temperature ( T )  
Mass (m) 
Length ( z ,  L )  
Speed ( u )  
Time ( t )  
Acceleration (g) 
Number density (n) 
Pressure ( p ,  Pzz )  
Heat flux (4;) 

Reference value 

lo3 K 
3 x kg 

625 m 
959 m s-' 

0.652s 
1.47 x lo3 ms-' 
4 x 1 0 ' ~ m - ~  

0.106Jm-2s-' 
1.10 

26 ( T = ~ A ,  m = 3 x 1 0 -  kg, T ,=103K and E = 4 x  
1015 mP3, which are typical of the atmospheric con- 
ditions at an altitude of 220 km [12]. 

Each physical situation is then characterized by the 
values of L, T- and g only. In terms of quantities 
expressed in the above units, the reduced local par- 
ameters E and g*, defined by equations (3) and (4), are 
given as 

* 157rJ2g g =-- 
32 p '  

According to the Fourier law, equation (l), the heat 
flux is 

where we have taken into account that K. cx TIJ2 for a 
hard-sphere gas and have used the identity 
TIJ2dT = 3dT3I2. Equation (30) implies that in the 
steady state described by the Fourier law one would 
have aT3/2/6'z = const. While this is not in general 
true, the slope of T3I2 is expected to change more 
smoothly than that of T. This is why in equation (28) 
E is written in terms of the former rather than in terms of 
the latter. 

In the simulations we have taken N = 5000 particles, 
a layer width AZ = 0.1 and a time-step At = 0.004. We 
have started from initial conditions of the form 

(31) 
wheren(z,O) c( 1/T z,O andT(z,O) = T - ( l  + c z / L ) ~ / ~ ,  
with c = (T+/T-)3b - '1. After a time period t = 200 
the system has already relaxed to the steady state [3]. 
We follow the evolution of the system until t = 2000 and 
average the relevant quantities over 5000 snapshots 
equally spaced between t = 200 and t = 2000. 

4. Results 
By using the method outlined in the previous section, 

we have analysed 51 different states. In all of them, the 
separation between the plates has been taken as L = 10. 
Two different temperature ratios have been considered 
(T- = 0.01 and T_ = 0.05) and boundary conditions of 
Types I and I1 have been applied. For each one of these 
four combinations, 12 or 13 different values of g have 
been taken, typically in the range -0.024 < g < 0.014. 
We illustrate in figures 2-5 the profiles found in the 
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Figure 2. Profile of T3I2 in the case T _  = 0.05 with boundary 
conditions of Type 11. The values of g are, from top to 
bottom, g = -0.016, -0.008, 0, 0.008 and 0.012. The 
labels C and H denote the locations of the cold and hot 
walls, respectively. 

-0.045 r . I I I I I 

-0.050 

-0.075 I I , I 

0.0 0.2 0.4 0.6 0.8 1 .o 
C Z / L  H 

Figure 3. Profile of qz in the case T -  = 0.05 with boundary 
conditions of Type 11. The values of g are, from bottom to 
top, g = -0.016, -0.008, 0, 0.008 and 0.012. The labels C 
and H denote the locations of the cold and hot walls, 
respectively. 

simulations by choosing the case T -  = 0.05 with 
boundary conditions of Type I1 as a reference example. 
The corresponding temperature profiles are shown in 
figure 2 for g = -0.016, -0.008, 0, 0.008 and 0.012. 
We observe that the temperature gradient is larger for 
g < 0 (i.e. when the gravity field is antiparallel to the 
heat flux) than for g > 0 (gravity field parallel to the 
heat flux). This implies that the magnitude of the heat 
flux is expected to be larger in the former case than in 
the latter. This is confirmed by figure 3, where the profile 

0.35 I I I 1 I I 

0.15 1 
0.10 I I I I I I 

0.0 0.2 0.4 0.6 0.8 1 .o 
H Z/L C 

Figure 4. Profiles of p (-) and P,, (- - -) in the case 
T -  = 0.05 with boundary conditions of Type 11. The 
values of g are, from top to bottom at the right end, 
g = -0.016, -0.008, 0, 0.008 and 0.012. The labels C 
and H denote the locations of the cold and hot walls, 
respectively. 

10 

n 
1 

0.0 0.2 0.4 0.6 0.8 1 .o 
H Z / L  C 

Figure 5. Profile of n in the case T -  = 0.05 with boundary 
conditions of Type 11. The values of g are, from top to 
bottom at the right end, g = -0.016, -0.008, 0, 0.008 and 
0.012. Note that the vertical axis is in logarithmic scale. 
The labels C and H denote the locations of the cold and 
hot walls, respectively. 

of qz is plotted for the same situations as in figure 2. 
Figure 3 also shows that, except for statistical fluctua- 
tions, the results are consistent with qr = const. This is a 
consistency test that a steady state has been reached in 
the simulations (cf. equation (13)). The fact that the heat 
fluxes are constant and yet the profiles of T3I2 are non- 
linear can be traced back to local deviations from the 
Fourier law. 
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1.0, I I I I I 

C z / L  H 

Figure 6 .  Profile of T3I2 in the case T -  = 0.01 with boundary 
conditions of Types I (- - -) and I1 (-). The values of g are 
(a) g = -0.016 and (b )  g = 0.012. The labels C and H 
denote the locations of the cold and hot walls, respect- 
ively. 

The profiles of p and P,, are shown in figure 4. At 
g = 0 the simulation results are consistent with a con- 
stant Pz,. On the other hand, in agreement with equa- 
tion (12), P,, is an increasing (decreasing) function of z 
when g < 0 (g > 0). The hydrostatic pressure p is slightly 
larger than P,, for z / L  smaller than about 0.34.4, while 
it is slightly smaller than P,, for larger distances from 
the cold wall. It is worthwhile noting that the local 
density n = 2p/T is much smaller in the hotter layers 
than in the colder ones, as seen in figure 5 .  Nevertheless, 
this disparity in the population of particles is widely 
influenced by the sign of g. Thus, for g = -0.016 the 
densities near the cold and hot walls are n N 4 and 
n N 0.6, respectively, while these values are n Y 8 and 
n Y 0.3 for g = 0.012. The large densities near the cold 
wall are responsible for the abrupt change of pressure in 
that region, in agreement with the balance equation (12). 

In the cases T -  = 0.05 (with boundary conditions of 
Type I) and T -  = 0.01 (with boundary conditions of 
Types I and 11) we have obtained results similar to 
those displayed in figures 2-5. The most interesting dif- 
ference is that, as expected, the boundary effects are 
much less important when applying boundary con- 
ditions of Type I1 than those of Type I. This is illu- 
strated in figure 6, where it can be seen that, given a 
value of L,  T-  and g, the jump temperature at the walls 
is much smaller in the case for boundary conditions of 
Type 11. This extends to g # 0 the observation made in 
[3] for g = 0. 

As stated in section 1, we are mainly interested in 
investigating the influence of the gravity strength on 
the heat flux relative to the value predicted by the 

Navier-Stokes approximation with the actual thermal 
gradient. This ratio is the reduced thermal conductivity 
K * ,  equation (2). In the limit in which boundary effects 
are negligible ( L  4 GO), it is expected that K* depends on 
position only through a functional dependence on the 
local parameters E and g*, defined by equations (3) and 
(4) or, equivalently, by equations (28) and (29) in our 
units. In order to minimize as much as possible the 
unavoidable boundary effects associated with a finite 
L,  we will focus on the region around a point zo suffi- 
ciently far from both boundaries. By measuring the 
pressure, temperature and thermal gradient at z = zo 
(the heat flux is measured as the average value ij,), we 
can compute the associated values of K * ,  g* and E = €0. 

The question arises as to how to choose the value of zo. 
Here we have applied the following criterion. First, the 
value of zo for g = 0 is such that the expected number of 
collisions a particle experiences when going from z = 0 
to z = zo or from z = L to z = zo is 5, i.e. N(z0) = 5 ,  
where 

Notice that, since A ’  = l / n  in our units, N(L)  = L = 10. 
In this way we have obtained c0 = 0.33 (T- = 0.05, 
Type I), E~ = 0.36 (T- = 0.05, Type 11), E~ = 0.44 
(T- = 0.01, Type I) and E~ = 0.48 (T-  = 0.05, Type 
11), all of them with g = 0. If we followed the same 
method when choosing zo when g # 0, then we would 
obtain a different value of E~ each time and that would 
hinder the analysis of the direct influence of the gravity 
field on the coefficient K * .  Therefore, for the second part 
of the criterion, we fix the above values of c0 for each of 
the four combinations of T -  and type of boundary con- 
ditions and then determine zo to accommodate the cor- 
responding c0. The values of zo, M(zo), g* and K* 

obtained in this way are given in tables 2-5. As we can 
see, the point zo is always closer to the cold wall than to 
the hot wall. However, when the separation is measured 
in terms of the number of collisions rather than as an 
actual distance, it turns out that the point zo is ‘closer’ to 
the hot wall, i.e. N(zo) > 5, if g > 0, while the opposite 
happens if g < 0. 

In the absence of gravity (g = 0), we observe that K* is 
smaller than 1. This is in part due to a residual influence 
of boundary effects [3], as indicated by the fact that K* is 
closer to 1 with boundary conditions of Type I1 than 
with those of Type I. From the exact solution of the 
Boltzmann equation for an unbounded system of Max- 
well molecules [4], it follows that K* = 1 for g* = 0 and 
arbitrary E .  However, it is possible that K * ( E , O )  is 
slightly smaller than 1 in the case of hard spheres, 
even if any boundary effect is removed. Thus, in order 
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Table 2. Values of zo, N(zo),  g * ,  K* and An* for different 
values of g in the case T -  = 0.05 with boundary con- 
ditions of Type I .  The values of zo are such that the 
reduced thermal gradient is E~ = 0.33. 

9 Z o l L  W o )  9* K* Art* 

-0.024 2.55 3.3 
-0.020 2.55 3.5 
-0.016 2.60 3.8 
-0.012 2.60 4.1 
-0.010 2.60 4.3 
-0.008 2.55 4.3 
-0.006 2.60 4.5 
-0.004 2.50 4.5 

0.000 2.70 5.0 
0.003 2.80 5.3 
0.006 2.85 5.6 
0.008 2.90 5.8 
0.010 3.20 6.3 

- 0.095 
- 0.079 
-0.063 
-0.048 
-0.040 
-0.032 
-0.025 
-0.017 

0.000 
0.013 
0.028 
0.039 
0.052 

0.903 
0.905 
0.906 
0.9 17 
0.921 
0.927 
0.934 
0.939 
0.943 
0.951 
0.969 
0.978 
0.986 

-0.040 
-0.038 
-0.037 
-0.026 
-0.022 
-0.016 
- 0.009 
- 0.004 

0.000 
0.008 
0.026 
0.035 
0.043 

Table 3. Values of zo, N(zo),  g * ,  K* and Arc* for different 
values of g in the case T -  = 0.05 with boundary con- 
ditions of Type 11. The values of zo are such that the 
reduced thermal gradient is E~ = 0.36. 

9 zo/L N(zo) 9* K* AK* 

-0.020 
-0.016 
-0.012 
-0.010 
- 0.006 
-0.003 

0.000 
0.004 
0.008 
0.010 
0.012 
0.014 

2.45 3.9 
2.45 4.1 
2.45 4.3 
2.40 4.4 
2.50 4.7 
2.50 4.9 
2.50 5.0 
2.60 5.5 
2.60 5.5 
2.90 6.2 
3.00 6.4 
3.55 7.0 

-0.068 
-0.055 
-0.042 
-0.035 
-0.022 
-0.01 1 

0.000 
0.016 
0.032 
0.046 
0.058 
0.077 

0.908 
0.921 
0.934 
0.940 
0.949 
0.955 
0.963 
0.983 
0.988 
1.016 
1.036 
1.064 

-0.055 
-0.042 
- 0.029 
-0.023 
-0.014 
-0.008 

0.000 
0.020 
0.025 
0.053 
0.073 
0.101 

Table 4. Values of zo, N(zo),  g*,  K* and AK* for different 
values of g in the case T -  =0.01 with boundary con- 
ditions of Type I .  The values of zo are such that the 
reduced thermal gradient is E~ = 0.44. 

9 Z o l L  W o )  9* K* A K *  

-0.024 2.00 3.1 -0.108 0.833 -0.066 
-0.020 2.00 3.4 -0.091 0.838 -0.061 
-0.016 2.00 3.6 -0.073 0.838 -0.061 
-0.014 2.00 3.8 -0.065 0.849 -0.050 
-0.012 1.95 3.9 -0.056 0.861 -0.038 
-0.008 2.00 4.3 -0.038 0.871 -0.028 
-0.004 2.00 4.6 -0.020 0.880 -0.019 

0.000 2.05 5.0 0.000 0.899 0.000 
0.004 2.15 5.5 0.022 0.917 0.018 
0.006 2.40 6.0 0.036 0.921 0.022 
0.008 2.70 6.5 0.052 0.930 0.03 1 
0.010 3.00 7.0 0.074 0.964 0.065 
0.011 3.50 7.5 0.092 0.994 0.095 

Table 5. Values of zo, N(zo),  g * ,  K* and AK* for different 
values of g in the case T -  = 0.01 with boundary con- 
ditions of Type 11. The values of zo are such that the 
reduced thermal gradient is E~ = 0.48. 

-0.024 1.85 3.4 -0.088 
-0.020 1.80 3.6 -0.075 
-0.016 1.80 3.8 -0.061 
-0.012 1.80 4.1 -0.047 
-0.008 1.80 4.4 -0.032 
-0.004 1.85 4.7 -0.016 

0.000 1.90 5.0 0.000 
0.004 1.95 5.5 0.019 
0.006 2.00 5.7 0.030 
0.008 2.10 6.0 0.043 
0.010 2.20 6.3 0.058 
0.011 2.30 6.5 0.068 
0.012 2.70 7.1 0.084 

0.837 -0.075 
0.851 -0.061 
0.864 -0.048 
0.879 -0.033 
0.888 -0.024 
0.890 -0.022 
0.9 12 0.000 
0.939 0.027 
0.943 0.031 
0.974 0.062 
0.992 0.080 
1.010 0.098 
1.047 0.135 

to characterize the pure gravity dependence of the effec- 
tive thermal conductivity K* at a given value of E ,  we 
define 

AK*(E,g*) = K*(&,g*) - K * ( E , O ) .  (33) 

The values of AK* for the corresponding fixed values of 
c0 are also included in tables 2-5 and are plotted in 
figure 7. It is observed in figure 7 that, although some- 
what scattered, the points tend to lie on smooth curves. 
The behaviour of An* is in qualitative agreement with 
the theoretical predictions for Maxwell molecules, equa- 
tions (6) and (7). More specifically, the departure from 
the Fourier law, as measured by AK*, is positive when 
the gravity field is parallel to the heat flux (g* > 0), while 

it is negative when both vectors are mutually antiparallel 
(g* < 0). In addition, the magnitude of the deviation is 
larger in the former case than in the latter, i.e. 
AR*(E,g*) > -AK*(E, -g*). From figure 7 we can also 
conclude that the gravity influence is less dramatic when 
the boundary effects are more important, since (AK*I 
tends to be smaller in the case of boundary conditions 
of Type I. From the data corresponding to the boundary 
conditions of Type I1 we can estimate that 
AK*(E,g*) N BEg* + ..., where the coefficient B has a 
value between 2 and 2.5. This is about 4 times smaller 
than the exact coefficient B = 46/5 obtained in the case 
of Maxwell molecules. We are not able at present to 
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Figure 7. Plot of An* versus the reduced field strength g* for 
T -  = 0.05 with boundary conditions of Type I (0, 
E = 0.33), T -  = 0.05 with boundary conditions of Type 
I1 (m, E = 0.36), T -  = 0.01 with boundary conditions of 
Type I (0,  E = 0.44) and T -  = 0.01 with boundary con- 
ditions of Type I1 ( 0 ,  E = 0.48). The lines are polynomial 
fits to guide the eye. 

elucidate which part of this discrepancy in the numerical 
value of B is attributable to boundary effects still present 
in our simulation results and which part is due to the 
role played by the interaction. Besides, when comparing 
results obtained with different interactions, one must 
have in mind that the choice of appropriate dimension- 
less parameters is not unique. In our case, we have 
defined E ,  equation (3), and g*, equation (4), by using 
the mean free path given by equation (5 ) ,  which is based 
on the BGK model. If, on the other hand, we had used 
the standard mean free path of hard spheres, equation 
( 5 ) ,  then we would have A&*(&, g* )  N B’eg* + . . ., where 
B‘ = (X/X’)’B 2~ 2.76B. 

5. Conclusions 
In this paper we have numerically solved the Boltz- 

mann equation (by means of the DSMC method) for a 
steady heat conduction problem of hard spheres in the 
presence of a gravity field. The gas is enclosed between 
two parallel plates separated a distance equal to L = 10 
(average) mean free paths. Two different temperature 
ratios (T_ /T+  = 0.01 and T - / T +  = 0.05) and two alter- 
native types of boundary conditions (boundary effects 
being more important in the case of Type I than in the 
case of Type 11) have been considered. For each one of 
these four possibilities we have applied 12 or 13 different 
values of a constant gravity field g = -gi normal to the 
plates. The sign criterion is such that g > 0 means a field 
antiparallel to the thermal gradient (and hence parallel 
to the heat flux vector), while g < 0 means the opposite. 

The first conclusion we draw from the results is that 
the hydrodynamic profiles are rather sensitive to the 
value of g. While the pressure p is roughly uniform if 
g = 0, it decreases (increases) with z if g > 0 (g < 0), this 
effect being more important as the magnitude of g 
grows. This is not surprising since it is an extension to 
non-equilibrium states of the equilibrium barometric 
law p ( z )  c( exp (-rngz/kBT). A less obvious effect 
appears in the case of the temperature profile. If there 
were no temperature jumps at the walls, the temperature 
of the gas would change from T -  at z = 0 to T ,  at 
z = L, irrespective of the value of g. However, due to 
unavoidable boundary effects, T ( 0 )  > T -  and 
T ( L )  < T, .  Our simulation results show that the tem- 
perature jump at the cold (hot) wall decreases as the 
value of g increases (decreases). For instance, in the 
case T -  = 0.05 with boundary conditions of Type 11, 
T(0)  - T -  N_ 0.04 and T ,  - T ( L )  = 0.04 for g = 
-0.016, while T ( 0 )  - T -  N 0.01 and T ,  - T ( L )  0.20 
for g = 0.012. In other words, the temperature jump at a 
wall decreases as the relative density near that wall 
increases. The more positive (negative) g is, the larger 
the density is near the cold (hot) wall and the smaller the 
temperature jump is. Since the temperature jump is 
more important near the hot wall, a side effect of the 
above discussion is that the (average) thermal gradient 
across the system increases when g decreases, so that it is 
larger for g > 0 than for g < 0. A larger thermal gra- 
dient implies a larger magnitude of the heat flux and this 
expectation is confirmed by our simulation results, 
which show that (qzl clearly increases as g decreases. 

Our interest has not focused, however, on the abso- 
lute change of the heat flux due to the gravity field, but 
on its change relative to the Navier-Stokes prediction 
when the actual temperature gradient is considered. To 
that end we have introduced the ratio K* defined by 
equation (2), which is a local quantity that in the bulk 
region is expected to depend on space only through a 
functional dependence on the reduced thermal gradient 
8, equation (3), and gravity strength g*, equation (4). 
For each one of the four different combinations of 
T _ / T +  and boundary conditions we have fixed a value 
E = E~ (E,, = 0 .34 .5 )  and have analysed the g* depen- 
dence of Alc*(Eo,g*) = n*(Eo,g*) - K * ( E ~ , O ) .  The simu- 
lation results for hard spheres presented in this paper are 
in qualitative agreement with those obtained for Max- 
well molecules by a perturbation analysis of the Boltz- 
mann [15] and the BGK [16] equations. More 
specifically, when the field and the heat flux are parallel 
(g* > 0) the gravity induces an enhancement of the (rela- 
tive) heat conduction (A&* > 0), while the opposite hap- 
pens when both vectors are mutually antiparallel. In 
addition, the influence of gravity is more pronounced 
in the former case than in the latter. At a quantitative 
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level, on the other hand, the values of lA&*I reported 
here are typically smaller than those theoretically esti- 
mated for comparable values of E and g*. A certain part 
of this difference is possibly due to boundary effects still 
present in our simulations and absent in the theoretical 
analyses of [ 15, 161. This expectation is supported by the 
fact that lA&*I is generally smaller in the case of con- 
ditions of Type I than in that of Type 11, thus indicating 
that boundary effects tend to mitigate the influence of 
gravity. Notwithstanding this, the remaining difference 
leads us to conclude that the response of the system to 
the application of the field, as measured by A&*, is less 
important in the case of hard spheres than in the case of 
Maxwell molecules. 
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