
MOLECULAR PHYSICS, 2001, VOL. 99, No. 23, 1959-1972 

Virial coefficients and equations of state for mixtures of hard discs, 
hard spheres and hard hyperspheres 
A. SANTOS'*, S. B. YUSTE2 and M. LOPEZ DE HAR03 

Department of Physics, University of Florida, Gainesville, FL 3261 1, USA 
Department of Chemistry, University of California, San Diego, La Jolla, CA 

Centro de Investigacibn en Energia, UNAM, Temixco, Morelos 62580, Mexico 
92093-0340, USA 

(Received 30 January 2001; revised version accepted 2 May 2001) 

The composition-independent virial coefficients of a d-dimensional binary mixture of (addi- 
tive) hard hyperspheres following from a recent proposal for the equation of state of the 
mixture (SANTOS, A., YUSTE, S. B., and LOPEZ DE HARO, M., 1999, Molec. Phys., 96, 1) are 
examined. Good agreement between theoretical estimates and available exact or numerical 
results is found for d = 2 ,3 ,4  and 5, except for mixtures whose components are very disparate 
in size. A slight modification that remedies this deficiency is introduced and the resummation 
of the associated virial series is carried out, leading to a new proposal for the equation of state. 
The case of binary hard sphere mixtures (d = 3) is analysed in some detail. 

1. Introduction 
Depending on the nature of the independent vari- 

ables, it is well known that the full thermodynamic 
description of a given system requires the availability 
of either one of the thermodynamic potentials or of 
the corresponding equations of state. In the case of 
classical fluids, the usual expression for the equation 
of state (EOS) is a relationship between the pressure p ,  
the density p and the temperature T of the fluid. 
However, except for very few ideal systems, the explicit 
(exact) form of this relationship is not known in general. 
Therefore, given the fact that an experimental determi- 
nation of the EOS for every particular fluid of course is 
not practical, researchers have concentrated their efforts 
on proposing 'reasonable' empirical or semi-empirical 
approximations. Perhaps the neatest example of such 
an approach, produced over a century ago and pro- 
viding an essentially correct qualitative picture of the 
thermodynamic properties of gases and liquids, is the 
celebrated van der Waals EOS [l]. An alternative pro- 
posal, first introduced by Kammerlingh Onnes [2] as a 
mathematical representation of experimental results on 
the equation of state of gases and liquids, is the so called 
virial equation of state. Written for the compressibility 
factor Z e p / p k B T  (where k~ is the Boltzmann constant) 
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as a power series in p, it provides an expansion that gives 
the deviation from ideal gas behaviour in ascending 
powers of the density, namely 

m 

Z = 1 + C B,p"-'.  
n=2 

Here, the B, are the virial coefficients. For a simple fluid, 
the virial coefficients are in general functions of T alone, 
while in the case of mixtures they also depend on com- 
position [3]. An interesting aspect of the virial equation 
of state, discovered many years after it was introduced, 
is the fact that it can be derived rigorously using statis- 
tical mechanics [4]. This in turn implies that the virial 
coefficients are not merely empirical constants but rather 
are related to intermolecular interactions in a well 
defined manner. It is unfortunate, however, that in gen- 
eral the actual computation of the virial coefficients is a 
formidable task, and that the radius of convergence of 
the series in equation (1) is not known. 

In the case of hard core fluids (rods, discs, spheres and 
hyperspheres) the virial coefficients are easier to com- 
pute than those corresponding to any other intermol- 
ecular interactions. Even in these model systems and 
with the exception of hard rods, where the exact EOS 
and corresponding virial coefficients are known, only the 
first few of such coefficients are available so far [5-81 
because the number of cluster integrals involved 
increases very rapidly with the order of the coefficient. 
The availability is scarcer for mixtures than for simple 
fluids, although recently there has been renewed interest 
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in partially remedying this deficiency [9-191. The limited 
knowledge of the virial coefficients has proved useful, 
however, in the sense that proposals for the EOS of 
these systems may be judged, among other things, by 
how well the virial coefficients arising in such proposals 
compare with the exact values. The rationale here is that 
a 'good' theoretical EOS should lead to an accurate 
prediction of the value of the virial coefficients. 
Alternatively, the few available virial coefficients may 
also be used profitably to construct a rational (PadC or 
Levin) [6,  20-241 approximation to the EOS, or to guide 
in the construction of a theoretical EOS, as was the case 
with the Carnahan-Starling (CS) EOS [25] for a simple 
hard sphere fluid. 

A variety of (approximate) EOSs for simple fluids 
composed of hard discs and hard spheres are available 
in the literature [26], and some work has also been 
reported on simple fluids of hard hyperspheres [27-3 11. 
Very recently we introduced a simple recipe to derive the 
compressibility factor of a multicomponent mixture of 
d-dimensional hard hyperspheres in terms of that of the 
corresponding single-component system [32]. A straight- 
forward consequence of such a recipe is that one can 
readily derive the explicit expressions for the virial coef- 
ficients of the mixture in terms of those of the single- 
component fluid for all d.  The major aim of this paper is 
to assess the usefulness of our recipe further by com- 
paring the predictions of the values of the virial coeffi- 
cients of binary mixtures of hard discs, hard spheres and 
hard hyperspheres for d = 4 and d = 5 with those 
obtained through Monte Carlo integration. Along the 
way we will introduce slight modifications to our orig- 
inal proposal and consider an alternative EOS to cope 
with mixtures of components very disparate in size. This 
new EOS is consistent with the forms suggested by 
Wheatley for the virial coefficients of hard discs [33] 
and hard spheres [34]. 

2. Approximate equation of state and virial coefficients 
for a binary mixture of d-dimensional hard spheres 
In this section we consider first a multicomponent 

mixture of d-dimensional (additive) hard hyperspheres, 
and then restrict ourselves to binary mixtures of hard 
hyperspheres in d dimensions. 

Let the number of components be N ,  the total number 
density of the mixture be p, the set of mole fractions be 
{ x i } ,  and the set of diameters bejai}, ( i  = 1, $ .  . . , N ) .  
The packing fraction is q = qi = udp(c ), where 
qi = udpicrf is the partial packing fraction due to the 
species i, pi = pxi is the partial number density corre- 
sponding to species i, vd = ( 7 ~ / 4 ) ~ ' ~ / r (  1 + d / 2 )  is the 
volume of a d-dimensional sphere of unit diameter and 
(cr") = ELl xicy. In previous work [32] we proposed a 
simple equation of state for the mixture, Z,(q),  consis- 

tent with a given EOS for a single component system, 
Z s ( q ) ,  at the same packing fraction q, namely 

with 

(3) 

In the 1-dimensional case, equation (2) yields the exact 
result Z,(q)  = Z,(q) .  Further, for binary mixtures 
with d = 2, 3, 4 and 5 ,  it proved to be very satisfactory 
when a reasonably accurate Z, (q )  was taken [24, 32,35, 
361. 

From the virial expansion Z , ( q )  = 1 + cz2 bnqn-', 
where b, are (reduced) virial coefficients, and according 
to equations (1H3), the nth virial coefficient of the mix- 
ture is given by 

En = ~ ~ - ' ( ~ ~ ~ ) ' ' - ~ ( 2 ~ - ~ d o b , ,  + 1 -do + i d [ ) ,  (4) 

and explicitly for n 2 2 

x [(21dbfl - l)(d - m)(O'"+')(cd-') +i(am)(cd)]. d 

( 5 )  

Now we shall look specifically at binary mixtures. In 
this case it is useful to define composition-independent 
coefficients EnI mZ as 

Our objective is to use our model to get approximate 
expressions for En, ,nz as explicit functions of el, a2, and 
d .  In appendix A it is shown that the result is 

where n = nl + n2, Q = q/el and 

(7) 
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(9) 

The special case of n = 2 is obtained by first setting 
b, = 2d-1 and then setting n = 2. The result is 

c$in, = zdp2nl(nl - 11,  c$!,~ = 0, c::!~, = tn ln2 .  
(1 1) 

This gives the exact second virial coefficient. 
Equation (7) expresses the reduced coefficient. 

(12) 
- d ( n - l ) a - d ( n 2 - l )  

B:l,f12(4 = B",,fl2(~1'C722)~1 

as a polynomial in a of degree d. Although it is known 
that the exact coefficients do not have in general such a 
polynomial structure [34], most of the proposals to date 
for d = 2 and d = 3 are polynomials [ 15, 16, 18, 23, 24, 
33, 341. Let us see which consistency conditions the 
approximations (7)4 10) fulfil. First, they verify the 
obvious symmetry property B,l,f12(q, 0 2 )  = B,,,,, (Q, q), 
which implies that BEl,f12(a) = adB+,,,,, ( l la) .  In addi- 
tion, the coefficients ( 8 x 1 0 )  satisfy the properties 

n1 [2d-1n2 + d(nl - l)b,], (14) n(n- 1) 

( I )  - b ( l )  - (2) - (2) - C(3)  = C(3) - Cn,o - n, C O , ~  - C,O - C0,n - n,O O,n - 0. (15) 

Equation (1 3) implies that 

Ci;!, + C ~ ~ l , , ,  + Ci?!,, + Cktifll + 2d-1 [C:?!,,, + C!i;!,,] = b,, 

(16) 

(17) 

which guarantees that 

BiI,,,(a = 1 )  = ui-lb,, 

i.e. if both species have the same size we recover the one- 
component case. The same situation appears if x1 = 0 or 
x2 = 0, which means that Bi,O(a) = ui-'b,ad and 
Bi,,(a) = u:-'b,. This is verified as a consequence of 
equation (15). A subtler consistency condition is [34] 

which ensures that the derivative of the excess free 
energy of mixing with respect to cr2 is zero when the 

spheres are of the same size [34]. In approximation (7), 
equation (1 8) requires 

dCitln2 + (d - l)Ct!, + 2d-2(d - l)Ci:ln, 

+2d-2(d+ l)Ci:lfl, = d'b n (19) 

If we interchange the roles of nl and n2 in equation (19) 
and add the original and the transformed equations, we 
obtain equation (16). If, instead, we subtract both equa- 
tions, we obtain 

d[Ci:if12 - C~;!,,] + (d - 2)[C(2) 4 , n z  - C(2) n2rnl ] 

Thus, enforcement of equation (19) is equivalent to 
enforcement of equation (20). The property (14) guar- 
antees that condition (20) is fulfilled by the coefficients 
in equations ( 8 x 1 0 ) .  

The most stringent conditions appear in the limits 
a -+ 0 and a +. 00. In that case, equation (7) yields 

On the other hand, the exact result is [33, 34, 371 

b,, (a + 0 ) ,  
(22) I u ~ - ' a d ~ b , ,  (a  -+ 00). 

B:,,,, (a)  = 

The above condition means that, in the limit of infinite 
size asymmetry, the smaller spheres contribute to the 
total pressure as if they were a one-component system 
in a free volume equal to the total volume minus the 
volume occupied by the larger spheres. Our approxima- 
tions (7H10)  give the correct forms for the asymptotic 
behaviour of Bi,,, , ,  but not the correct coefficients 
(except for n2 = 1 in the limit a +. 0 and for nl = 1 in 
the limit a + 00, apart from the trivial cases nl = 0, n 
and n2 = 0, n). In fact, in our approximation the virial 
coefficient B, depends parametrically on b, only, and 
not on the previous coefficients b,,, nl 4 n, as is 
needed in equation (22). This is a consequence of the 
form of our approximation, in which the compressibility 
factor of the mixture at a given packing fraction q is 
expressed in terms of the compressibility factor of the 
monodisperse system at the same packing fraction. 

Another consistency condition is [34] 

1, I n-1 
ui-ld-. 

n 

This comes from the exact value of the derivative of the 
excess free energy with respect to molecular size in the 
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Table 1. Reduced virial coefficients b, for the one-component case. 
b n d = 2’ d = 3’ d = 4b d = 5  

2 2 4 8 16 
3 3.12801775 10 32.405 759 4 106 
4 43.257 85446 18.364 77 77.7451797 311.18341 
5 5.336 897 28.224 5 145.9 843.4 
6 6.362 6 39.739 252.0 988 
7 7.351 53.539 
8 8.338 70.78 

’ Reference [6]. ’ References [7, 29, 301. 

Table 2. Ratio R,, as given by equation (25). 

n d = 2  d = 3  d = 4  d = 5  

3 1.032 1 0.944 0.883 
4 1.014 1.018 1.072 1.148 
5 0.999 1.001 1.078 1.452 
6 0.991 1.007 1.132 0.736 
7 0.989 1.023 
8 0.992 1.047 

limit of infinite size asymmetry [38]. In general, this con- 
dition is not verified by our approximation either. We 
consider condition (22) to be more important than (23) 
because it is not restricted to n2 = 1 (or nl = 1) and also 
because it refers to the leading term in the limit of infi- 
nite size asymmetry, while condition (23) refers to the 
subleading term. 

Table 1 gives the known values of the coefficients b, 
for 2 d d d 5. From them, equations ( 7 H l l )  can be 
used to estimate the coefficients Bil,,z for any value of 
Q in these dimensions. We will come back to this point 
later on. The values of table I can also be used to check 
the degree to which equation (22) is violated by approx- 
imations (7H10). The less favourable case corresponds 
to nl = 1 in the limit Q + 0 (or, equivalently, n2 = 1 in 
the limit Q -+ 00). Let us then define 

According to equations (8) and (lo), we have 

(25) 
(22-d + n - 3)b, + 2d-’ - 1 

R, = 
(n - 1)bfl-I 

Table 2 shows the values of R, that can be obtained 
from the known virial coefficients. In the cases d = 2 
and d = 3 the known values of ratio R, differ from 1 
less than 5%.  In fact, by assuming R,  N 1, equation (25) 
can be used to estimate b9 and blo. This gives b9 N 9.39 

( d  = 2), b9 N 86.7 ( d  = 3), blo 2: 10.44 (d  = 2) and 
blo N 103.6 ( d  = 3). Estimates based on Pad& approxi- 
mants are [6] b9 ~ 9 . 3 7  (d  = 2), b9 21 93.1 (d = 3), 
blo N 10.55 ( d =  2) and blo N 123.2 ( d =  3). On the 
other hand, the deviations of R, from 1 become more 
important as the dimensionality increases, and are 
already relatively large for d = 5 .  Thus, at least for 
those high dimensionalities, it appears to be convenient 
to modify prescription (7) to satisfy requirement (22). 
This is the subject of the next section, where we will 
also discuss in more detail how good the estimates of 
Bi, ,,2, as obtained after using equations (7H11) with the 
values of the coefficients b, given in table 1, are for any 
value of Q and for 2 < d < 5. 

3. A new proposal for the equation of state of a binary 
mixture 

In order to account for the conditions imposed by 
equation (22) without greatly sacrificing the simplicity 
of our original recipe, let us now explore the possibility 
of keeping the structure of equation (7), but with expres- 
sions for the coefficients different from those in equa- 
tions (8H10). Requirement (22) implies that 

In addition, condition (17) yields equation (16). Note 
that equation (1 3) is more restrictive than equation 
(16). Since we want our modified expressions to 
remain as close as possible to the original ones, we will 
take equation (13) as a second condition. From equa- 
tions (26) and (1 3) we have 

We need a third condition to close the problem. Since 
Cif!,2 does not enter into equation (21) and, in agree- 
ment with our philosophy of departing from the original 
formulation as little as possible, one option is to keep 
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equation (9); however, the resulting approximation is 
consistent with condition (15) but does not satisfy 
requirement (19). If we enforce the fulfilment of equa- 
tion (19) (or, equivalently, of equation (20)), then C ~ ~ ~ , ,  
must have the following form 

(29) 

where D,, ,,, must by symmetric, but otherwise remains 
so far unknown. To close the problem, we impose the 
more restrictive property (14). This leads to 

nl n2 (2d-1 - 1)(2d-1 - db,)-  
n - 1  

1 - 
D f l i ' f 1 2  - n[2 + 2d-' ( d  - 3)] 

Equations (27x30) close the modified version of our 
approximation. 

It must be noted that equations (29) and (30) are 
meaningless if d = 2. This is related to the fact that if 
d = 2 it is impossible to enforce conditions (1 7), (1  8) and 
(22) simultaneously on a polynomial of second degree 
for BE,,,,, as the number of conditions exceeds the 
number of unknowns. As a matter of fact, equations 
(27) and (28) are enough to determine BE,,,, uniquely 
when d = 2, irrespective of the value of Ci?!,,. The 
result is 

B;,,,, = u ~ - ' [ ~ b , , +  (bfl--bnl nl --bfl,)a+-b,,a2]. n2 nl 
n n n 

(31) 
This was the form proposed by Wheatley [33] by 
imposing conditions (17) and (22). However, condition 
(18) is not verified unless nl(b, - b,,) = n2(b, - b,,), 
which is true only if b, = n, i.e. if one introduces 
scaled particle theory [39]. For the sake of comparison, 
the form that stems from our original approximation, 
equations (7H10), is (for d = 2) 

+ (+, + I)a2].  

In summary, the modified expressions for the virial 
coefficients are given by equation (31) for d = 2 and 
by equations (7) and (27x30) for d 2 3. We are now 
in a position to compare the theoretical predictions we 
have provided in this and the previous section with the 
available Monte Carlo data for the virial coefficients. 
We note that the coefficients B,,,,, corresponding to 
n < 5 have been evaluated for d = 2 [ l l ,  151, d = 3 

[12-14, 161, d = 4 [I91 and d = 5 [19]. Further, the coef- 
ficients corresponding to n = 6 for d = 2 are known [18]. 
Because of its special physical interest and for reasons 
that will become apparent later, the case of hard spheres 
(d  = 3) will be addressed separately in 54. 

We begin our assessment of our estimates of E,,,,, 
with the binary mixture of hard discs. This implies 
using equation (32) for the original recipe or using equa- 
tion (31) in the modified version, which coincides with 
Wheatley's proposal [33]. In figures 1 4  we compare the 
results of taking these two routes with those of [lo, 1 1 ,  
15, 181. As seen in the figures, the theoretical prescrip- 
tions do a very good job of the whole range of a, the 
modified version (31) being almost perfect. 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

a 
Figure 1. Reduced composition-independent virial coeffi- 

cients Bi,,n-n, as functions of the size ratio ct for d = 2, 
n = 3, and, from top to bottom, nl = 1 and 2. The circles 
are exact results [lo], the solid line is the theoretical pre- 
diction of equation (32) and the dashed line is the theor- 
etical prediction of equation (31). 

1 .o 0.oL ' ' . ' ' . ' " 
0.0 0.2 0.4 0.6 0.8 

Figure 2. Reduced composition-independent virial coeffi- 
cients B:,,,-,, as functions of the size ratio (Y for d = 2, 
n = 4, and, from top to bottom, nl = 1, 2 and 3. The 
circles are exact Monte Carlo results [l l] ,  the solid line 
is the theoretical prediction of equation (32) and the 
dashed line is the theoretical prediction of equation (3 1). 

a 
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h =- 

a 
Figure 3. Reduced composition-independent virial coeffi- 

cients B;,,fl-fll as functions of the size ratio a for d = 2, 
n = 5, and, from top to bottom, n, = 1,2,3 and 4. The 
circles are Monte Carlo results [15], the solid line is the 
theoretical prediction of equation (32) and the dashed line 
is the theoretical prediction of equation (31). 

3.0 - 

2.5 - 

2.0 - 

0.0 0.2 0.4 0.6 0.8 1.0 
a 

Figure 5. Reduced composition-independent virial coeffi- 
cients B;l,fl-fll as functions of the size ratio (Y for d = 4, 
n = 3, and, from top to bottom, n, = 1 and 2. The circles 
are Monte Carlo results [19], the solid line is the theor- 
etical prediction of equations (7H10) and the dashed line 
is the theoretical prediction given by equations (7) and 
(27H30). 

a 
Figure 4. Reduced composition-independent virial coeffi- 

cients B;,,fl-fll as functions of the size ratio a for d = 2, 
n = 6, and, from top to bottom n1 = 1,2,3,4 and 5. The 
circles are Monte Carlo results [18], the solid line is the 
theoretical prediction of equation (32) and the dashed line 
is the theoretical prediction of equation (31). 

In the case of hard hyperspheres with d = 4 and d = 5,  
figures 5-10 illustrate the performance of equation (7) 
together with equations (8E(11) and of equations (7) 
and (27H30) with respect to the 'exact' data of [19]. 
In these dimensionalities, it is clear that although the 
modified version of the estimates for the virial coeffi- 
cients continues to exhibit a very good performance, 
the use of equations ( 7 H l l )  presents limitations for 
n = 4 and especially for n = 5. Nevertheless, the EOS 
for the binary mixture derived from equation (2) 
(which yields the original estimates of the coefficients 
B,,,, ,),  once the proper Zs(77) is used with both d = 4 
and d = 5, turns out to be very accurate [36]. 

z- 
Ib =- 

2.0 - 

0.0 0.2 0.4 0.6 0.8 1.0 
a 

Figure 6 .  Reduced composition-independent virial coeffi- 
cients BZ,,fl-,,, as functions of the size ratio a for d = 4, 
n = 4, and, from top to bottom, n, = 1, 2 and 3. The 
circles are Monte Carlo results [19], the solid line is the 
theoretical prediction of equations (7H10) and the 
dashed line is the theoretical prediction given by equations 
(7) and (27H30). 

Once we have analysed the behaviour of the virial 
coefficients, the important question that now arises is, 
which is the EOS consistent with the modified virial 
coefficients? For d = 2, from equation (31) one obtains 
P71 

X *2 - *I Z,(q) = L z ,  (A) ~ 

1 - v 2  1 - 772 *2 

x2 *I - ff2 (2) + - z, (") ~ + Z,(q) - . 
1 - 7 7 1  1 - 7 7 1  *I *I02 

(33) 
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a 
Figure 7. Reduced composition-independent virial coeffi- 

cients Bi,,n-n, as functions of the size ratio a for d = 4, 
n = 5,  and, from top to bottom, nl = 1,2,3 and 4. The 
circles are Monte Carlo results [19], the solid line is the 
theoretical prediction of equations (7x10) and the 
dashed line is the theoretical prediction given by equations 
(7) and (27K30). 

2i: 
ki =- 

a 
Figure 8. Reduced composition-independent virial coeffi- 

cients B:,,n-nl as functions of the size ratio a for d = 5, 
n = 3, and, from top to bottom, n1 = 1 and 2. The circles 
are Monte Carlo results [19], the solid line is the theor- 
etical prediction of equations (7H10) and the dashed line 
is the theoretical prediction given by equations (7) and 
(27x30). 

The EOS consistent with equations (27)-(30) can also be 
explicitly obtained for d >, 3 by carrying out the resum- 
mation of the corresponding virial series. The result is 
(see appendix B for details) 

a 
Figure 9. Reduced composition-independent virial coeffi- 

cients Bil,n-n as functions of the size ratio a for d = 5,  
n = 4, and, hom top to bottom, nl = 1,2, and 3. The 
circles are Monte Carlo results [19], the solid line is the 
theoretical prediction of equations (7x10) and the 
dashed line is the theoretical prediction given by equations 
(7) and (27)-(30). 

P 
ki =- 

a 

Figure 10. Reduced composition-independent virial coeffi- 
cients Bi,,n-n, as functions of the size ratio a for d = 5,  
n = 5,  and, from top to bottom, nl = 1,2,3 and 4. The 
circles are Monte Carlo results (191, the solid line is the 
theoretical prediction of equations (7x10) and the 
dashed line is the theoretical prediction given by equations 
(7) and (27x30). 

where K ,  KO, K1 and K2 are independent of the density 
and are given by 

1 
2 -  + d - 3  2 d  

x [ o j  + 0; + (2d-1 - l)a,a&2 + a;-2) - 2daf2], 
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1 
(2d - 4)(22-d + d - 3)a12 

x { ~ f 2 [ 2 ~ ( d  - 2)al + 8(1 - 2d-1 + d2d-3)a2] 

K1 = 

- (Zd-' - 2)a1a&7-1 + & I )  

- (d  - 2)(2d-1 - l)d&' - (2d-' - d)af- '  a 2  

- (d - 2 ) a F 1  - [d - 4 - 2dp'(d - 3)]&'}, 

1 
(2d - 4)(22-d + d - 3)a12 

x {a12[2 (d - 2)a2 - 8(1 - 2d-1 + d2d-3)aI] 

(37) 

K2 = 

d d  

- (2d-1 - 2)ala2(af-1 + & I )  

- (d - 2)(2dp1 - l)a;afpl - (2dp1 - d ) d p 1 a ;  

- (d - 2)&' - [d - 4 - 2d-1(d - 3)]aF1}. (38) 

Here, aI2 = (al + a2)/2. Note that equation (33) for 
hard discs is included in the structure of equation (34), 
except that then equations (35x38) cannot be applied, 
and instead we have K O  = 0 ,  K I  = a2(a2 -al), 
K 2  = al(crl - a2) and K = (a2)(1 - xlK1/d - x2K2/d).  

Equation (34) complies with the exact results given in 
equation (22). Clearly it is more complicated than the 
original recipe, equation (2), and should in principle be 
useful in particular for mixtures involving components 
of disparate sizes. In contrast to equation (2), proposal 
(34) expresses Zm(7) in terms not only of Zs(7) but also 

We note that if d = 3, it follows from equations (35)- 
(38) that K O  = 0, K I  = a2(pl - a2) , K 2  = al(al - a2) 
and K = (a3)(l - xlKl/a2 - x2K2/a:). Consequently, 
equation (34) for hard spheres becomes 

involves ZS(71/(1 - 72))  and ZS(72/(1 - 71)). 

2 2 

(39) 

It is interesting to note that equations (33) and (39) can 
be written in the common form 

d-  1 

x r y )  

Equation (40) reduces to equation (33) if d = 2 and to 
equation (39) if d = 3. In addition, it becomes exact for 
d = 1, i.e. Z s ( ~ )  = Z,(v)  = (1 - 7)- . It seems then very 
tempting to assume equation (40) for arbitrary d. With 
such an assumption, after using equations (B 3), (B4), 
(B 8) and (B 9), we simply obtain for the composition- 
independent virial coefficients: 

1 

nl 
n + (!Ifll - b,)-a(a - l)d-l 

1 
n2 
n + (bn2 - bn)-(l - C q - l  

Of course, this includes the cases d = 2 [cf. equation 
(31)] and d = 3 [cf. equation (47)]. However, equation 
(41) differs from prescriptions ( 2 7 x 3 0 )  if d 2 4. 
Although equation (41) is consistent with conditions 
(17) and (18) (for d 3 3) and (22), it does not reproduce 
the exact second virial coefficient B;,l (a)  = ud( 1 + ~ ) ~ / 2  
(except, of course, for d < 3). In fact, we have checked 
that the performance of equations (40) and (41) is very 
poor for d 2 4, and they will not be considered further 
here. 

4. Equation of state of binary hard sphere mixtures 
Up to here, although occasionally we have mentioned 

explicit features of hard discs and hard spheres, the 
developments presented in the previous sections apply 
for general dimensionality d. Given their intrinsic im- 
portance, in this section we focus on the results for the 
EOS in 3 dimensions. In order to set the framework of 
our discussion, we shall first recall two other EOSs in the 
literature which share with ours the idea of obtaining 
2, (7) from knowledge of 2, (7). 

The first is due to Hamad [40] who, in 1994 [41], 
derived a consistency condition involving the derivatives 
of the contact values of the radial distribution functions 
gii with respect to gk [42]. Imposing this condition, he 
proposed the following equation of state for hard sphere 
mixtures: 

(42) 
where we have used the label H to refer to Hamad's 
proposal. It must be noted that equation (42) was not 
written explicitly in [40], where the results are expressed 
in a rather more involved form. The second EOS for 
binary mixtures of hard spheres that we want to con- 
sider was proposed more recently by Barrio and Solana 
[43] (label BS). It reads 
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(43) 

where p is adjusted as to reproduce the exact third virial 
coefficient [9], namely 

~ ; , ~ = ~ : 1 0 ~ ~ ,  B ; , ~  =u:(f+2a+5a2+;a3) ,  

B;,2 = u:(; + 5a + 2a2 + fa3), = u:10. (44) 

More explicitly, in our notation p is written as 

We concentrate first on the composition-independent 
virial coefficients. Our original recipe, equations ( 7 t  
(lo), gives for d = 3: 

n2 - 1 
x 2 ( n l + 3 n 2 - 4 ) + - ( n l + 2 n 2 - 4 ) b ,  

+ [2(nl - 5n2 + 4) + (nl + 4n2 - 5)bn]a 

+ [2(n2 - 5nl +4) + (n2 + 4ni - 5)bn]cr2 

nl - 1 + 2(n2+3nl -4)+-- - - (n2+2nl  -4)bn a3 , 
n2 

{ nl 

[ I }  
(46) 

where we have incorporated the label SYH to distin- 
guish it from the other results. On the other hand, in 
the 3-dimensional case equations (27x30)  yield 

2nl - n2 b, +-bn, n2 - 2 3 b n , ) a 2  + :bn,a3], 
n n 

(47) 

which coincides with the form proposed by Wheatley 
[34] and so the label in this case is W. The virial coeffi- 
cients associated with equations (42) and (43) are also 
readily derived. In the former case, first it is easy to 
obtain 

(D3)2 ( 0 7 3 1  . 
3 
2 

+ - (n -  l)(n-2)- 

Now, by making m = 0 and m = 1 in equation (A 2) and 
m = 1 in equation (A l), and inserting the results into 
equation (48), we obtain the composition-independent 
coefficients arising from Hamad's proposal: 

B;:;, = u;-l{: [". - -nl 3 (n - 1 + n2) 
2 

+ -- 3 n1n2 (3nl - 1)a 2 
2 n  

n (49) 

As far as equation (43) is concerned, one may readily 
derive (for n 2 3) 

Now, after some algebra also involving the substitution 
of the results obtained by taking m = 0 and m = 1 in 
equation (A 2) into equation (50), the composition-inde- 
pendent virial coefficients for the Barrio-Solana EOS 
turn out to be given by 

[n2(3n2 + n - 4) + 3n ln2a  *BS = ";-I bn 
% ,n2 4n(n - 1) 

3bn-lnln~ + 3nln2a2 + n l  (3nl + n - 4)a3] - 8n(n - l ) (n  - 2) 

x [n + 2n2 - 4 + (n - 6n2 + 4). 

+ (n - 6nl + 4)a2 + (n + 2nl - 4)a3]. (51) 

These four approximations for Bi ,  ,n2 satisfy require- 
ments (17) and (18). Condition (22) is satisfied only by 
the W approximation, while condition (23) is satisfied 
only by the H approximation. By construction, the BS 
approximation, equation (5 l), reproduces the exact 
third virial coefficients of equation (44). It is interesting 
to point out that approximations (46), (47) and (49) also 
yield the exact value of the third virial coefficients. 

In order to assess the accuracy of the previous 
approximate expressions for Bi13n2 with n 2 4, we will 
take the case nl = 3, n2 = 1 as a benchmark for compar- 
ison, since the coefficient B;,l has been obtained exactly 
for the interval 0 < a < 2/& - 1 N 0.1547 [17]. The 
exact result is 
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(52) -=a 6 4 8 7  -ga 8 1 8  - g a ) .  9 9  

Setting nl = 3 and n2 = 1 in equations (46), (47), (49) 
and (51), respectively, yields 

(53) 

(54) 

( 5 5 )  

B;? =-[I v: + (28 - b4)a + (5b4 - 59)a2 + 300~1, 

B$ =,[b4- 0: 18+9a+36a2+3(b4-9)a3], 

4 

and 

B;:S = z [ b 4  - 15 + (3b4 - 15)a + (3b4 + 75)a2 
3 

+ (9b4 - 45)a3]. (56) 

Note that equations (53) and (54) would coincide if b4 
were equal to 18, as happens with the CS equation of 
state. However, they differ if we take the exact value 
b4 = 18.36477. The maximum deviation of equation 
(54) from the exact result (equation (52)) is about 
1.8% (for a N 0.08), while that of equation (53) is 
about 3.7% (for a N 0.09). Also, if b4 were equal to 
19, equation (55) would coincide with equation (54), 
while using the exact value for b4 implies that 

B;: = 0.091~; instead of the exact value 
lima+o Bi,l = t v : ,  which, however, is satisfied by 
approximations (53) and (54). Comparison between 
Hamad's approximation (55)  and the exact result (52) 
for a 6 2/& - 1 shows that the relative error of equa- 
tion (55 )  monotonically decreases from about 64% at 
a = 0 to about 18% at a = 2/&- 1. Finally, 
according to equation (56) with the exact value of b4, 

B;? = 0.210u:, while in the interval a < 2/& - 1 
the relative error of equation (56) monotonically decreases 
from about 16% at a = 0 to about 1.7% at 
a = 2 / f i  - 1. This relative error is always larger than 
that of equations (53) and (54), but smaller than that of 
equation (55).  

Apart from the exact result for B;,l, as pointed out 
above, numerical values of the coefficients BG,,n2 corre- 
sponding to n < 5 are also available for hard spheres 
[12-14, 161. In figures 1 1  and 12 we display a compar- 
ison between the theoretical estimates we have just dis- 
cussed for the virial coefficients and the numerical 
results. It is clear that the estimates Bi:::, Biwn2 and 
Bi:f2 for n = 4 and n = 5 are remarkably close to one 

I . , . , .  

0.4 0.6 0.8 1.0 
a 

Figure 1 1. Reduced composition-independent virial coeffi- 
cients BZl,n-nl as functions of the size ratio IY for d = 3, 
n = 4, and, from top to bottom, n, = 1,2 and 3. The 
circles are Monte Carlo results [13], the solid line is the 
theoretical prediction of equation (46), the dashed line is 
the theoretical prediction of equation (47), the dash- 
dotted line is the theoretical prediction of equation (49) 
and the dotted line is the theoretical prediction of equa- 
tion (51). 

2.0 1 
1.5 t 

a 
Figure 12. Reduced composition-independent virial coeffi- 

cients BZ,,n-nl as functions of the size ratio IY for d = 3, 
n = 5, and, from top to bottom, nl = 1,2,3 and 4. The 
circles are Monte Carlo results [14, 161, the solid line is the 
theoretical prediction of equation (46), the dashed line is 
the theoretical prediction of equation (47), the dash- 
dotted line is the theoretical prediction of equation (49) 
and the dotted line is the theoretical prediction of equa- 
tion (51). 

another and to the exact results, except perhaps in the 
case of I?;?. On the other hand, the prediction of Bi:n2 
is much poorer. 

Once we have briefly discussed the performance of the 
various approximate expressions for the composition- 
independent virial coefficients, we may next contemplate 
how well the approximate EOS for a binary mixture of 
hard spheres performs with respect to the simulation 
data. To address this issue, we first need to specify 
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what Z s ( q )  is. Two choices will be made here. On the 
one hand, since perhaps the most popular and widely 
known EOS for a single-component fluid of hard 
spheres is the CS EOS, we will also use it here. On the 
other hand, a more accurate EOS for the same system is 
obtained if a rescaled Pade approximation taking into 
account the known virial coefficients is used [24]. We 
should point out that the approximation used in [24] is 

somewhat different from the one used here, since appar- 
ently the number of significant figures in the value of the 
virial coefficients is not the same in the two instances. 
We have checked that the present approximation yields 
practically identical results. In tables 3 and 4 we present 
a comparison of the results obtained using the various 
approximate EOSs for the mixture with these two 
choices of Z s ( q ) ,  two different mole fractions and a 

Table 3. Comparison of the compressibility factor from several equations of state with simulation values 
(Zsimul) for binary additive mixtures of hard spheres (d = 3) with size ratio a! = 0.3. The fourth to seventh 
columns give the deviations from Zsimul of the values of the compressibility factor as obtained from equa- 
tions of state (2), (39), (42) and (43), respectively. In these equations of state, the Carnahan-Starling 
compressibily factor for the one-component fluid [25] has been used. For the sake of comparison, also 
the results arising from the Boublik-Mansoori-Camahan-Starling-Leland (BMCSL) equation of state 
[44] are included. 

XI 77 Zsimul' Eq. (2)' Eq. (39)' Eq. (42)d Eq. (43)e BMCSL 

0.0625 0.3 2.790 -0.001 -0.009 -0.061 -0.016 -0.014 
0.35 3.473 0.006 -0.01 1 -0.112 -0.024 - 0.020 
0.4 4.410 0.013 -0.019 -0.210 -0.043 -0.035 
0.45 5.722 0.027 -0.033 -0.385 -0.076 -0.063 
0.49 7.158 0.065 -0.036 - 0.603 -0.102 -0.081 

0.75 0.3 3.554 -0.005 -0.006 - 0.024 -0.010 - 0.008 
0.35 4.601 -0.012 -0.014 - 0.048 -0.021 -0.018 
0.4 6.045 -0.010 -0.014 -0.079 -0.027 -0.021 
0.45 8.097 -0.002 -0.01 1 -0.129 -0.033 -0.022 
0.49 10.415 -0.004 - 0.02 1 -0.210 -0.056 -0.037 

' Reference [45]. ' Reference [32]. 
' This work. 

Reference [40]. 
Reference [43]. 

Table 4. Comparison of the compressibility factor from several equations of state with simula- 
tion values (Zsimul) for binary additive mixtures of hard spheres ( d  = 3) with size ratio 
a = 0.3. The fourth to seventh columns give the deviations from Zsimul of the values of 
the compressibility factor as obtained from the equations of state (2), (39), (42) and (43), 
respectively. In these equations of state, a rescaled Pad6 approximant compressibility factor 
for the one-component fluid [24] (see text) has been used. 

XI 77 Eq. (39)' Eq. (42)d Eq. (43)' 

0.0625 0.3 
0.35 
0.4 
0.45 
0.49 

0.75 0.3 
0.35 
0.4 
0.45 
0.49 

2.790 
3.473 
4.4 10 
5.722 
7.158 
3.554 
4.601 
6.045 
8.097 

10.415 

~~ 

0.004 
0.014 
0.025 
0.043 
0.084 
0.003 
0.001 
0.010 
0.025 
0.028 

-0.005 
-0.004 
-0.008 
-0.018 
-0.015 

0.002 
-0.001 

0.006 
0.016 
0.012 

-0.050 
- 0.095 
-0.186 
-0.353 
-0.564 
-0.013 
-0.032 
-0.055 
-0.096 
-0.171 

-0.010 
-0.014 
- 0.029 
-0.058 
- 0.08 1 
- 0.001 
-0.007 
- 0.007 
- 0.006 
-0.023 

a Reference [45]. ' Reference [32]. 
' This work. 

Reference [40]. 
Reference [43]. 
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diameter ratio a = 0.3. In table 3, the values corre- 
sponding to the widely used Boublik-Mansoori- 
Carnahan-Starling-Leland (BMCSL) EOS [44] have 
also been included. One immediately notes that, as 
already stated in the literature [24, 32, 351, the EOS 
given in equation (2) using the CS EOS for the single- 
component system provides a very accurate account of 
the simulation data, better than any of the other EOS 
for mixtures considered, including that of equation (39). 
If instead of the CS EOS the rescaled Pad6 approxima- 
tion is taken for Z, (q ) ,  then it is equation (39) which 
gives, in general, the best results, although the original 
recipe (2) and the BS EOS (43) are not too far behind, 
the latter being especially accurate for xI = 0.75. It 
should be noted that, irrespective of the choice for 
Z, (q ) ,  both Z:(q) and Zks(q) for this size ratio and 
these packing fractions always underestimate the simu- 
lation results, a comment that applies also to the 
BMCSL EOS. 

5. Conclusion 
We have further assessed the merits and limitations of 

a simple recipe recently introduced [32] to derive the 
compressibility factor of a multicomponent mixture of 
d-dimensional hard spheres. We have now considered 
the case of binary mixtures, and looked in particular 
at the composition-independent virial coefficients. A 
comparison with the available exact and simulation 
results confirmed the usefulness of our approach 
except perhaps when the mixture involves components 
of very disparate sizes (especially for high dimensional- 
ities). Guided by the conditions that the virial coeffi- 
cients must comply with certain limits, a slight 
modification of the form of the original coefficients 
was made, trying to sacrifice simplicity as little as poss- 
ible while at the same time improving the accuracy of 
their numerical predictions. It is fair to state that the 
(modified) composition-independent virial coefficients 
are in excellent agreement with the reported values for 
all dimensions and all size ratios. 

Due to its particular relevance, the case of the binary 
mixture of hard spheres (d  = 3) was analysed in some 
detail, both in connection with the virial coefficients and 
through the consideration of different EOSs for this 
system that exist in the literature. As for the virial coeffi- 
cients, the trends pointed out above about the reliability 
of the original and modified prescriptions hold also for 
d = 3. A comparison with the simulation results for the 
compressibility factor of these mixtures given in tables 3 
and 4 indicates the superiority of the original recipe for 
the EOS, provided that one uses the CS EOS for Z,(q) .  
On the other hand, if the more accurate rescaled Pad& 
approximation for Z,(q)  is used, it is the new EOS 
(equation (39), i.e. the one obtained after resumming 

the virial series with the modified coefficients) which 
gives the best performance, although only slightly 
better than Zm(q) as given by equation (2) with d = 3. 
Both equations are also of comparable accuracy to pre- 
sumably one of the best EOSs available presently for 
hard sphere mixtures, namely the rescaled PadC approx- 
imant for mixtures introduced by Malijevskjr and 
Veverka [24]. This equation of state rests on a different 
philosophy, however, in the sense that it makes use of 
the known virial coefficients of the mixture rather than 
the Z, (q ) ,  as in our approach and those of Hamad [40] 
and Barrio and Solana [43]. 

In conclusion, we wish to add that both the original 
proposal of the EOS of a binary mixture of d-dimen- 
sional hard spheres, equation (2), and the modified ver- 
sion, equation (34), provide a simple yet accurate EOS, 
at least with respect to the composition-independent 
virial coefficients and in comparison with (relatively 
scarce) simulation data. Further confirmation of their 
usefulness depends on new simulations, which we hope 
will be encouraged by the results presented in this paper. 
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Appendix A 
Derivation of equations (WIO) 

In order to identify the composition-independent 
coefficients B,,,,, from equation (9, we need to expand 
the moments (d). After some algebra, we obtain 

and 
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( a d y 2  ( ad-") (8) 

x [nl (nl - l)ad + nl ( n  - nl )ad-m 

+ n l ( n - n l ) a m + ( n - n l ) ( n - n l  - l)] ,  (A2) 

where a! = a2/a1. Now we use the identities 

am = (1 + (A3) 
d! 

m=O C m!(d - m)! 

( d -  l)! 
m!(d - m)! 

( d  - m)am = (1 + (A4) 
m=O 

to obtain 

(d  - m) (ad) n - 3  ( ad-m) (8"'") ( ad-') (d - l)! 
m!(d - m)! 

= u1 

m=O 

d(n-1) 2 a!d(n-nl-l) (. - 3)! 
nl!(n - n l ) !  

nl =O 

d-1 d x x;'x""l[nl(nl - l)(nl - 2)2 

+nl(nl  - 1)(n - n1)2 

+2nl(nl - l)(n - n l ) a ( l  + 
+2nl (n-n l ) (n-n l  - 1)(1+a!)~-' 

+ n l ( n - n l ) ( n - n l  - 1)2~-'a! 

+ (n - nl) (n  - nl - l ) ( n  - nl - 2)2d-1], 

a! 

d-1 d-1 
a! 

(A5) 
and 

(ad)n-2(ad-m)(*m) 
d! 

m!(d - m)! m=O 

x [nl(nl - l)Pad + 2nl(n - nl)(l + afd 

(A 6) + ( n  - nl) (n  - nl - 1)2 1. d 

From here finally we obtain equations (7x10). 

where aI2 = (al + a2)/2 and the notation 1 ++ 2 indi- 
cates that a contribution similar to the three summands 
appearing in the brackets in which the roles of (nl ,  n2) 
and of (al,a2) are interchanged (i.e. nl -, n2, a1 -, u2 
and vice versa) should be added. The compressibility 
factor of the mixture is then given by 

Now we insert equations (27)-(30) and sum over nl and 
n. To do that, we use the identities 

nl d(n1-1) dn x-a1 C l 2 2 ,  
n 

In addition [37], 
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-zs(") X1 - x1 
1 - 7 2  1 - 7 2  

-zs("> X2 - xz 
1-71 1-71 

This allows one to  obtain Z,(Q) in terms of 2, eval- 
uated at  7, ql / ( l  - r ] 2 )  and q2/(1 - v l ) .  After some 
algebra, we arrive a t  equations (34H38). 
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