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A recent paper [I. Klebanov et al., Mod. Phys. Lett. B 22 (2008) 3153] claims that the
exact solution of the Percus–Yevick (PY) integral equation for a system of hard spheres
plus a step potential is obtained. The aim of this paper is to show that Klebanov et al.’s
result is incompatible with the PY equation since it violates two known cases: the low
density limit and the hard sphere limit.
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1. Introduction

Given a fluid of particles interacting via a certain potential φ(r), access to its (equi-

librium) structural and thermodynamic properties is usually obtained by means of

approximate integral equations,1 whose solution typically requires hard numerical

work. Exceptions are practically restricted to the Percus–Yevick (PY) equation for

hard spheres2,3 and sticky hard spheres,4 and the mean spherical approximation

(MSA) for the hard-core Yukawa potential.5

The simplest potential including an energy scale and two length scales is that

of hard spheres plus a step-function tail:

φ(r) =







∞, r < σ ,

ε, σ < r < λ ,

0, r > λ .

(1)

If ε < 0, the step potential is attractive and Eq. (1) describes the well-known square

well potential. On the other hand, ε > 0 defines the square-shoulder potential. The

pure hard-sphere fluid is recovered if either ε = 0 (at arbitrary λ/σ), or λ = σ (at

arbitrary, but finite, ε), or ε → ∞ (again, at arbitrary λ/σ).

Starting from the PY integral equation, Wertheim6 was able to express the

Laplace transform

G(t) ≡

∫

∞

σ

dr e−trrg(r), (2)
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where g(r) is the radial distribution function, in terms of quantities involving the

cavity function y(r) ≡ eφ(r)/kBT g(r) (where kB is the Boltzmann constant and T

is the temperature) only in the interval 0 ≤ r ≤ λ:

G(t) =
(1 + 4πρK)t−2 − F (t) + 2πρt−1[Y (−t) − Y (t)]

1 + 2πρt−1[F (−t) − F (t)]
, (3)

where ρ is the number density, K ≡ −F ′(0), and

F (t) ≡ −

∫ λ

0

dre−trrf(r)y(r) , (4)

Y (t) ≡ −

∫ λ−σ

0

dre−tr

∫ λ

σ+r

dr′r′f(r′)y(r′)(r − r′)[1 + f(r − r′)]y(r − r′) . (5)

Here, f(r) ≡ e−φ(r)/kBT − 1 is the Mayer function. Equations (3)–(5) apply not

only to the potential (1) but more in general to any interaction with a hard core at

r = σ and a finite range at r = λ.

In a recent paper,7 Klebanov et al. claim that they obtain the exact solution of

the PY integral equation for the potential (1). According to their approach, Eq. (3)

is complemented by

y(r) = C1 + C2r + C4r
3, 0 ≤ r ≤ λ , (6)

where the coefficients C1, C2, and C4 are the solutions of a closed set of equations.

Inserting Eq. (6) into Eqs. (4) and (5), one gets F (t) and Y (t), and hence G(t)

through Eq. (3).

The aim of this paper is to show that, in contrast to what is claimed in Ref. 7,

Eq. (6) is not compatible with the PY solution because it contradicts known results

in the low density limit as well as in the hard sphere limit.

2. Low Density Limit

The virial expansion of the cavity function is

y(r) = 1 +

∞
∑

n=1

ρnyn(r) , (7)

where the functions yn(r) are represented by sums of diagrams.1 In the special case

of the potential (1), the first-order contribution y1(r) is given by8

y1(r) = (1 + γ)2Φσ,σ(r) − 2γ(1 + γ)Φσ,λ(r) + γ2Φλ,λ(r) , (8)

where γ ≡ e−ε/kBT − 1 and

Φa,b(r) ≡
π

12r
[3(a + b)2 − 2(b − a)r − r2](b − a − r)2Θ(b − a − r)

−
π

12r
[3(b − a)2 − 2(a + b)r − r2](a + b − r)2Θ(a + b − r) , (9)
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Θ(x) being Heaviside’s step function. More explicitly, in the interval 0 ≤ r ≤ 2σ

one has

y1(r) = (1 + γ)2
π

12
(4σ + r)(2σ − r)2 + γ2 π

12
(4λ + r)(2λ − r)2 − 2γ(1 + γ)

4π

3
σ3

+ 2γ(1 + γ) ×











0

π
3(σ + λ)2 − 2(λ − σ)r − r2

12r
(λ − σ − r)2

,
0 ≤ r ≤ λ − σ

λ − σ ≤ r ≤ 2σ
.

(10)

We see that, while y1(r) is a cubic function in the interval 0 ≤ r ≤ λ − σ, it is

a quartic polynomial function divided by r for r > λ − σ. Moreover, the second

derivative of y1(r) is discontinuous at r = λ − σ. Therefore, Eq. (6) is inconsistent

with Eq. (10) to first order in density. Since the PY theory yields the exact y1(r)

for any interaction potential,1 we conclude that Eq. (6) is inconsistent with the true

PY solution.

3. Hard Sphere Limit

As an independent test, let us now take the limit ε → 0, keeping λ/σ fixed. In

that case, as mentioned above, the potential (1) reduces to that of hard spheres of

diameter σ, the value of λ > σ not playing any role. The exact solution of the PY

equation for hard spheres is well known.1–3,6 In particular, the functional form of

y(r) for 0 ≤ r ≤ 2σ is2

y(r) =











A0 + A1r + A3r
3

B1

r
e−κ1r +

B2

r
e−κ2r cos (ωr + ϕ)

,
0 ≤ r ≤ σ

σ ≤ r ≤ 2σ
, (11)

where the coefficients Ai, Bi, κi, ω and ϕ are functions of density whose explicit

expressions will not be needed here. It is quite clear that Eq. (6) cannot reduce to

Eq. (11) if ε → 0 with λ > σ. Therefore, Eq. (6) is again incompatible with the PY

equation.

4. Conclusion

In summary, the approximation presented in Ref. 7 is not the solution of the PY

integral equation for the interaction potential (1), in contrast to what is claimed

by Klebanov et al. The flaw in their derivation could be due to the fact that, at a

given point, the authors discard the product G(t)F (−t) when manipulating Eq. (3).

Therefore, what they obtain is, at most, an approximation to the true solution of

the PY equation, differing from the latter even in the low density and in the hard

sphere limits.
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