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1. - Introduction. 

Many recent developments for systems far from equilibrium have resulted 
from novel methods for nonequilibrium computer simulation [1]. However, 
a direct comparison with theoretical predictions or experimental results has 
often been inconclusive, due to an imprecise correspondence to the numerical 
algorithms [2]. For example, the transport properties of a fluid under shear 
have been studied using standard molecular-dynamics techniques, except 
with periodic boundary conditions imposed in the Lagrangian frame for 
uniform shear fl.ow. These are the Lees-Edwards boundary conditions [3], and 
they result in the desired macroscopic nonequilibrium flow field. However, 
in contrast to a real fluid sheared by mechanical contact with moving surfaces, 
the system heats up monotonically at spatially constant temperature and 
density. Thus, although the macroscopic velocity field is the same as that 
expected in an experimental situation, the other hydrodynamic fields differ 
and it is possible that the transport properties would also be different. In 
addition, external nonconservative forces can be used in the computer simula­
tions to compensate for the viscous heating. This has the advantage of 
allowing for a stationary state, but it further complicates the relationship of 
transport properties obtained from such simulations to either experimental 
properties or those computed from theoretical models. The objective here 
is to summarize briefly a theoretical formulation of the Lees-Edwards type 
of simulation method and some results comparing shear viscosities for systems 
with and without viscous heating. 

(*) Permanent address: Department of Physics, University of Florida, Gainesville, 
FL 32611. 
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2. - Nonequilihrium statistical mechanics . 

.A simple fluid of N particles in a cube of volume V = (2l)3 is considered." 
The state of the system is characterized by a distribution function, e(I', t), 
defined over this region, where the phase point, I'= {qix, pix}, denotes the posi­
tions and momenta in an inertial frame (the laboratory frame). The average 
of an observable, A(I'), is defined by 

(1) (A; t) =f dI' A(I')e(I', t). 

The time dependence of the distribution function is calculated from the Liou-
ville equation, 

-. 

(2) 

where L is the Liouville operator associated with the Hamiltonian, H,, for the 
N particles, 

(3) 

and F(qixp) is the force on the oc-th particle due to the {J-th particle (assumed 
to depend only on their relative separation, qixp = qix - qp). The last term 
on the left-hand side of eq. (2) represents the effects of a nonconservative 
force, fix, which in general is a- function of the momenta. Equation (2) must 
be supplemented with suitable initial and boundary conditions. .A general 
class of boundary conditions for the Liouville equation has the homogeneous 
form [4] 

(4) [e(I', t)]q,.e~ =Jdr'W(I', I''; t)e(I'', t), 
Pa·n>O 

q:ei: 
p: ·n'<O 

where E is the surface for the volume and n is a unit vector normal to the 
surface, directed inward. The function W(I', I''; t) characterizes the (j.istribu­
tion of particles entering the system in terms of those incident on the surface. 

The system to be modelled is a fluid with equal but opposite aver::i,ge fl.ow 
velocity at the surfaces y = ± l. The average velocity field,_ U(r), is expected 
to be linear between these surfaces, and directed along the x-axis, i.e. 

( 5) 
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Here, a = a U xf ay is the magnitude of the shear rate. For such a macroscopic 
flow it is useful to refer the positions and momenta of all particles to a frame 
of reference that is locally at rest with respect to the average flow. This is 
accomplished by a local Galilean transformation 

The co-ordinate transformation is that for the Lagrangian variables of the 
flow. The Lees-Edwards boundary conditions are easily stated in terms of 
these variables: a particle incident on a surface at position 'ii..x with mo­
mentum p .x is replaced by a particle on the opposite surface with the same 
momentum and same values for the co-ordinates within the surface. This 
prescription is consistent with a periodic extension of the original volume, 
and this extension is also part of the Lees-Edwards conditions. It is clear 
that these are the ,.....usual periodic boundary conditions for equilibrium simula­
tions, except that they are applied in the rest frame. 

The above can be translated into corresponding boundary conditions for 
the Liouville equation. Using the notation G(f'} = G(I') for the transforma­
tion of an arbitrary function, G, under (6) (where f' = {q.x,.PJ), the Lees­
Edwards boundary conditions in terms of eq. (4) are 

(7) W(I', F') = o(p.x - :p:} o(qC<Z + q_:rz;) o(qC<,, ~ q_~,,} o(qC<Z - q_:,J · 
·IT o('ijp - 'iJ/J) o(pp - p/J) , 
{J~e< 

for q.xz = ± l and qfJ ¢: .E for {J ¥=- a. Similar expressions apply for q°'" = ± l 
and q_O<Z = . ± l, and the generalization to many particles simultaneously on 
the surface is straightforward. Equations (6) and (7) lead to the simpler 
condition 

(8) 

so that the distribution function on opposite surfaces must be the same. Equa­
tion (8) is also compatible with a periodic extension of the original volume, 
but it is necessary to show that the Liouville equation will admit such periodic 
solutions. In the rest frame variables eqs. (2) and (3) become 

(9) 

The Liouville equation in these variables is, therefore, invariant under co-ordi­
J;l.ate translations, if the nonconservative force is invariant. .A sufficient condi-
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tion for periodic solutions is a periodic representation of the conservative 
and nonconservative forces, and the boundary condition (8). For self-consis­
tency, the class of observables in (1) should also be given a periodic extension. 
Equations (1), (8) and (9) constitute the statistical mechanical formulation 
of the Lees-Edwards boundary-value problem. 

A class of homogeneous solutions to (9) results for initial conditions, §(f', 

t = O), that are translationally invariant functions. In that case the macro­
scopic conservation laws are satisfied by an average number density, momentum 
density and energy density given by 

(10) { 
(n(r); t) = n0 , (p(r); t) = n0 m U(r), 

(u(r); t) = !mn0 U 2(r) + s(t). 

Here, m is the mass, U(r) is the flow field (5), n0 is the constant density, and 
B(t) is the internal energy, whose time evolution is governed by 

(11) 

where P" is the average pressure tensor (defined below). Equations (10) and 
(11) include the additional constraints of zero average nonconservative force 
and initial momentum. The macroscopic hydrodynamic equations, therefore, 
have exactly the flow field desired, an.d spatially uniform internal energy and 
density. Interestingly, these results are exact for all rand t; there are no bound­
ary layers, and all initial transients occur only through s(t). This is a very 
special feature of the Lees-Edwards boundary conditions. 

The transport properties characterize the pressure tensor as a function 
of the shear rate and s(t). At small shear rates Newton's viscosity law is expected 
to hold, Pu = p~ii -170(au + aii), where p is the hydrostatic pressure and 170 

is the shear viscosity. More generally, it follows from the symmetry of the 
problem that the pressure tensor has the form 

(12) Pi;= [p + ~2 

{1JJ1(a) + 21JJ2(a))] ~ii - 17(a)(aH +au)-

-1jJ1(a)aika;k -1P2.(a)(aika1k + a,,;ak;). 

The three scalar functions are the nonlinear shear viscosity, 17(a), and the first 
and second viscometric functions, 1JJ1(a) and 1JJ2 (a), respectively. The pressure 
tensor can be calculated from 

(13) 
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(The phase function, T;;, is that part of the microscopic stress tensor excluding 
convection by the macroscopic flow.) 

The objective now is to obtain useful representations of the pressure tensor 
from formal solutions to the Liouville equation. The transport properties 
vanish in the local equilibrium ensemble, so it is useful to represent formal 
solutions in terms of the deviation from this ensemble, 

(14) §(t) = §L(t) + J(t) , §L(t) = exp [- {J(t)H'] j J df' exp [- {J(t)H'], 

where H'= H({qa,.Pa}), i.e. it is the Hamiltonian for the system, but with 
the laboratory momentum replaced by the rest frame momentum. This simple 
form of the local equilibirum ensemble is another special aspect of the hydro­
dynamic field (10), resulting from the Lees-Edwards boundary conditions. 

r· 
The parameter (J(t' is defined by the requirement 

(15) 

It follows that T(t) = (kB{J(t))-1 is a nonequilibrium temperature whose func­
tional· relationship to the internal energy is the same as that in equilibrium. 
This is distinguished from the kinetic temperature, Tk(t) = 2<K'; t) /3kB N, 
where K' = 2: (P!/2m) is the kinetic energy relative to the flow. A formal 

IX 

expression for J(t) is obtained from the Liouville equation (with J(t = 0) = O), 

t 

(16) 

J(t) =-I dr q;(t, r)S(r)§L(r), 

0 

where i:F!(t, z) is the solution operator for the Liouville equation, 

(17) (a )- -ot + 2 O/i(t, r) + ~ v:P .. ·fa Olt(t, r) = 0' -O/i(r, r) = 1. 

The function S(t) represents three types of sources for the nonequilibrium 
state. The first arises from the inertial forces due to the Lees-Edwards boundary 
conditions imposed in a noninertial frame. The second term is an effect of the 
viscous heating, and the third is entirely associated with.·the nonconservative 
force. 

In the following, attention will be restricted to the shear viscosity. From 
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eqs. (12)-(16), this is given by 

t 

(18) ar1(a, t) =f dr V-1 (T;11(t, r) S(r))p, 
0 

where the time dependence has been shifted to T;;(t, r) = q;t(t, r)T;1 , and 
q;t denotes the adjoint of q;. In the next section this expression is considered 
in more detail for two specific choices for the nonconservative force. 

3. - Constant-temperature shear viscosity. 

One important reason for introducing the nonconservative force is to control 
viscous heating. As mentioned in the introduction, it is not clear what other 
effects are induced jn:the system when such forces are effective. He1·e, the shear 
viscosity at constant temperature is compared with that for a system with 
only the conservative Newtonian force. It should be noted at the outset that 
the nonconservative force used to hold the temperature constant is not unique, 
and a choice of convenience is made here to allow for a rather detailed analysis 
in the low-density limit. Further comment on this point is made in the dis­
cussion section. 

The form for the nonconservative force commonly used in computer simula­
tions is a « drag » force, 

(19) i = -Ap(X, 

where .A. can be selected to control the temperature T(t) (or some other property 
of the system). For constant temperature the condition is 

(20) 

which is satisfied by 

(21) 

The second equality follows from the definition of the shear viscosity in eqs. (12) 

and (13), and sk(t) = v-1(K'; t). The formal expressions for the nonlinear 
shear viscosities with and without nonconservative forces can now be compared. 
These viscosities are denoted by 'Y/<il(a, t), with i = 1 for the case of viscous 
heating (.A.= 0) and i = 2 for constant temperature (.A. given by eq. (21)). 
From (18) a common form for the expressions is obtained, 

f 

{22) 'Y/<i>(a, t) = J di- [ O(t, r J/i(r)) - a'Y/<i>(a, r) flCil(t, r JP( r))] , 
0 
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where C(t, rJfJ(r)) and Dw(t, rJfJ(r)) are the correlation functions, 

C(t, rJ{J(T)) == {J(r) v-1 <T;11(t, T) T;11)p(7:)' 

(23) DW(t, rJfJ(r)) == ~~:~ v-1 (T;l/(t, r) [H' - <H')pM])pM' 

n<2l(t, ,,. lfJ) - ofJk( r) v-1 (T' (t ) [ fJ x-, <K-' · >]) 0 

= osk(r) a:• 'r {Jk(r) - 'T p • 

It is understood here that the time dependence of T;;(t, r) in these expressions 
is calculated using the appropriate .A for each case. 

The forms of the shear viscosities for the two cases are seen to be quite 
similar. In the first, T(t) varies in time, while, in the second, T(t) is constant 
but Tk(t) varies. FU)'.ther considerations show that D< 2l differs in form from D(l) 
only by fluctuations in the potential energy. Consequently, the structure 
of the shear viscosities is the same in the low-density limit, with only T(t) 
and A being different. Also, since Tk(t) --+ T(t) = const at low density in case 2, 
a stationary value for rp>(a, t) may be expected . .At finite density a stationary 
value is apparently not obtained, even though the hydrodynamic state variables 
are constant in time. In the Navier-Stokes limit the second term in the 
brackets of eq. (22) vanishes, the temperature becomes constant, and the 
time evolution of T~11 (t, r) is Newtonian with periodic boundary conditions 
in the laboratory frame. Consequently, both cases 1and2 agree with the Green­
Kubo result in this limit. 

Equations (22) are highly nonlocal and nonlinear. Nevertheless, a closed 
description of the transport properties at the macroscopic level is obtained 
once the correlation functions have been determined, which may prove useful 
for approximations at large shear rates. For example, at low density it can 
be shown [5] that the correlation functfons are determined from a bilinear 
kinetic equation related to the nonlinear Boltzmann equation (the method 
of ref. [5] extends in a straightforward way to include the nonconservative 
force chosen here). The resulting shear viscosities are also equivalent to those 
obtained directly from the kinetic-theory pressure tensor, 

(24) 

where f is the homogeneous solution to the nonlinear Boltzmann equation 
in the local rest frame, 

(25) [ a a -] - - -at - ai1P1 opi - .A\l;;·p I= J[f,f]. 

Use has been made of Lees-Edwards boundary conditions at low density [6] 
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and invariance of the collision operator under transformation to the rest frame. 
Finally, A. in (25) is given by the low-density limit of (21) for case 2, or zero 
for case 1. In the latter case, IKENBERRY and TRUESDELL [7] have calculated 
the exact nonlinear shear viscosity from (24) and (25) for Maxwell molecules 
(F(q) r-..J q-5). The method can be applied to case 2 as well, so that the shear 
viscosities are known in detail for all values of the shear rate at low densitites. 
To state the result, a dimensionless shear rate, a= a/v, and shear viscosity, 
ij(a) = 'YJ(a)v/p, are introduced. Here v is a constant associated with an eigen­
value of the collision operator. The result for Maxwell molecules is then 

(26) 

This equivalence of constant-temperature and viscous-heating states extends 
to all other transport properties as well [6]. 

This is an encouraging result to support the view that the nonconservative 
forces are « passive », i.e. that the temperature can be controlled without 
affecting the transport properties. However, the exact equivalence for Maxwell 
molecules probably holds only at low density, and cannot be extended to other 
force laws even in this limit. To support this latter statement, the shear viscos­
ity has been determined for a class of force laws, F r-..J q-n, for a model of the 
nonlinear Boltzmann equation (the BGK model) [8]. For n = 5 the model 
gives the same viscosities as the Boltzmann equation and (26) is regained. For 
n * 5 the equality in (26) fails, so that different transport properties are obtained 
when the viscous heating is controlled. In the case of hard spheres (n --+ oo) 

the coefficients of order a2 in the shear viscosity (super Burnett coefficients) 
differ by about 30 %- However, the functions rj<1>(a) and ij< 2l(a) are quite similar 
over the whole range of shear rates, with a maximum difference of about 16 % . 

4. - Discussion. 

Two main topics have been addressed here: a suitable formulation of the 
Lees-Edwards boundary-value problem and the influence of nonconservative 
forces on transport properties. Regarding the first, the Liouville equation (9) 
with periodic boundary conditions, (8), is appropriate for the calculation of 
transport and other properties (e.g., structure factors, fluctuations) for both 
homogeneous and inhomogeneous states. It is also the form suitable for com­
parison with a class of computer simulations. The effects of nonconservative 
forces on transport properties are somewhat difficult to predict a priori. The 
example given here shows that it is possible to control the temperature by 
such forces without changing the qualitative behaviour of transport in the 
system, although it also indicates that quantitative differences are to be expect­
ed. Some additional points not addressed here should be noted: 
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a) The Lees-Edwards boundary conditions are nonlocal, relating the 
distribution on one surface to that on the opposite surface. .As a consequence, 
there are no boundary layers or spatial variations in the temperature. .At 
best it is an idealized representation of the bulk properties of real fluids. Some 
care is required in comparison with other computer simulation methods that 
are more realistic (e.g., stochastic boundary condition methods [9]). 

b) The periodic boundary conditions are applied in a noninertial frame, 
and there are « inertial forces » in the corresponding Newtonian equations 
of motion. The latter are equivalent to one of the «non-Newtonian» methods 
used in computer simulation (the Doll's tensor form [10] is apparently incorrect). 
Such methods are interpreted here as Newtonian, but expressed in the frame 
of reference for which the boundary· conditions are simplest. 

c) The nonconservative force chosen in sect. 3 is not unique . .A stronger ,--
constraint is to hbld the total microscopic energy constant in time. In that 
case the parameter A. becomes a phase function 

(27) 

and the nonlinear shear viscosity is found to be 

t 

(28) 'Yj(a) =I dr v-1 (T~,/t, r)(3N/2K') T~11>{J. 
0 

This is a particularly simple form, similar to the Green-Kubo result of linear 
response. However, in contrast to the force of sect. 3, eq. (27) implies an 
inherently many-body, nonlocal force. It does not appear possible to describe 
this case by kinetic theory, even in the low-density limit. While it is possible 
to show that the shear viscosity in the Navier-Stokes limit agrees with the Green­
Kubo result (to order N-1), no further connection with real fluids has been 
established. 

d) .A local form for A. can be found, consistent with constant microscopic 
energy, that avoids ·the theoretical problems of (27). However, the result differs 
from the Green-Kubo result even at Navier-Stokes order (,.._.100 % at low 
density). This illustrates the need for a detailed analysis of each method 
chosen to control heating. 

e) .An alternative to controlling the total energy is to require constant 
kinetic energy. This is the usual method for nonequilibrium computer simula­
tions. In this case, even the results at zero shear rate are uncertain (although 
·the correct thermodymanics is obtained). Preliminary considerations indicate 
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that the Navier-Stokes order results are quite close to the Green-Kubo re­
sults [11]. 
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