Combined heat and momentum transport in a dilute gas
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The infinite hierarchy of moment equations derived from the Boltzmann equation for Maxwell
molecules is analyzed in the case of steady planar Couette flow. It is proved that a solution exists
that is consistent with the following hydrodynamic profiles: p=nkgT=const, Tdu /Jdy=const,
(T9/9y)*T=const. In general, the velocity moments of order k are polynomials of degree k—2 in
a scaled space variable s « [T~ !dy. The momentum and energy transport are described by a
nonlinear shear viscosity #n(a)=%(0)F,(a) and a nonlinear thermal conductivity
x(a)=r(0)F (a), respectively, where a=du,/ds is the (constant) reduced shear rate. By
performing a perturbation expansion in powers of a, it is found that F,(a)=1— 1.472a*+ A a*)
and F, (a)=1—3.226a*+(a*). These numerical values are compared with those obtained from

the BGK and the Liu kinetic models. © 71995 American Institute of Physics.

I. INTRODUCTION

The steady planar Couette flow is one of the most inter-
esting states to analyze transport phenomena. It corresponds
to a fluid enclosed between two infinite parallel plates main-
tained in relative motion. The plates can be kept at the same
temperature or at two different temperatures. In either case, a
temperature profile is expected to exist across the system, in
addition to a velocity profile and a density profile.

Let x and y denote the coordinate parallel to the flow
and the coordinate normal to the plates, respectively. The
steady-state hydrodynamic balance equations are

a d

:'9'}—)ny=5 Pyy=0, (la)
d

gqy+ny5 u,=0, (1b)

where u=u,x is the flow velocity, P is the pressure tensor,
and q=gq,%X+q,y is the heat flux. Equation (1b) shows that
the existence of a velocity field induces the presence of a
heat flux. Consequently, a thermal gradient 37/dy is present,
even though both plates are kept at the same temperature.
For small gradients (Navier—Stokes order), the constitutive
equations are

aJ \
qy=—rKo(n,T) o b (22)

a
ny=—770(n,T)5_y'ux, (2b)

where ko and 7, are the thermal conductivity and shear vis-
cosity, respectively. They are functions of the local density »
and temperature T, which are connected by the (local) equi-
librium equation of state p=13 tr P= Peg(n,T) and the con-
dition

p=const. (32)
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Substitution of Egs. (2) into Egs. (1) yields the velocity and
temperature profiles at Navier—Stokes order:

a
7o(n,T) E™ u,=const, (3b)

] J g \? .
5 KO(n’T) 5 T|=- 770(”:”(5 ux) . (30)

The planar Couette flow described here must not be con-
fused with the so-called uniform shear flow. In the latter,
du, /dy=const is the only non-zero gradient and the unifor-
mity of the temperature is achieved at the expense of viscous
heating, which can be controlled by the application of a non-
conservative thermostat force."? Both kinds of shear flow are
generated in computer simulations by means of different
boundary conditions® and give rise to different transport co-
efficients beyond the Navier—Stokes regime.*

As a prototype fluid to investigate transport phenomena
beyond the scope of the Navier—Stokes order, it is useful to
consider a monatomic low-density gas with short-range in-
teractions. The state of the system is then specified by the
one-particle velocity distribution function f(r,v,#), which is
the solution of the nonlinear Boltzmann equation’

7] 7 v _fd jdﬂ AT 27 2!
Ef+v. =1 dv, go(g,cosf' f1—ffi1]
=JIf.f] @

with appropriate initial and boundary conditions. The hydro-
dynamic quantities and their fluxes can be expressed in terms
of moments of f:

n=f dvf, (5)

nu=J dvvf, (6)
m

3 nkpT= > f dvV?f, N
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P= mf dvVVf, (8)

=5 f dyVAVf. ©)

In Egs. (7)-(9), V=v—u is the peculiar velocity, m is the
mass of a particle, and kp is the Boltzmann constant. The
equation of state is that of an ideal gas, namely p=nkgT.

Most of the known solutions to Eq. (4) for spatially in-
homogeneous states correspond to Maxwell molecules (i.e.,
particles interacting via an r~* repulsive potential), for
which the collision rate go(g,cosd)=oy(cosh) is indepen-
dent of the relative velocity g. About 40 years ago, Ikenberry
and Truesdell® obtained the exact expression of the pressure
tensor for a gas of Maxwell molecules under uniform shear
flow. This solution has been recently extended to the fourth
order moments.” In the case of steady planar Fourier flow,
Asmolov et al.®® analyzed Eq. (4) for Maxwell molecules.
The planar Fourier flow can be seen as a particularization of
the planar Couette flow to du,/dy=0, i.e., the plates have
different temperatures but both are at rest. It was shown the
existence of a self-consistent solution where the kth order
moments are polynomials of degree k—2 in the temperature
gradient. In particular, the heat flux is proportional to the
temperature gradient, so that the Fourier law, Eq. (2a) holds
exactly for arbitrarily large temperature gradients.

To the best of our knowledge, no solution of the Boltz-
mann equation for the planar Couette flow with arbitrary
temperature and velocity gradients is known. Such a solution
exists, however, in the case of the Bhatnagar—Gross—Krook
(BGK) model kinetic equation.'®!! In the BGK model,'? the
Boltzmann collision operator J[f,f] is replaced by a single-
time relaxation term:

JLfl=—v(f—fLe) (10)
where v(n,T) is an effective collision frequency and
_ m 32 (v—u)2 0

is the local equilibrium distribution function. The exact so-
lution of the BGK model for the steady planar Couette flow'?
is characterized by the following hydrodynamic profiles:

p=const, (12a)
: % == 12b)
m ay U,=a=const, ( )
L a7 mo(T) Fyla) ‘
[v(n,T) 3\;] T=- ko(T) F(a) & (12¢)

where 7o=p/v, xg=5kpp/2mv, and F,(a) and F (a) are
nonlinear functions of the reduced shear rate a, whose ex-
pressions can be found in Ref. 10. These functions define a
generalized thermal conductivity and a generalized shear vis-
cosity through the relations

J
(Zy=”K0(T)FK(a)5 T, (13a)
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a
nyz_ UO(T)Fn(a)g‘jux- (13b)
For the purpose of this paper, it is convenient to give here the
behaviors of F . and F,, for small a. They are

Fa)=1+F2a?+ A a*), (14a)

F(a)=1+FZa+a(a%, (14b)

with FP'=~42 and FP=—4 It has been recently
provedlfthat a solution consistent with the profiles (12) and
(13) also holds for the Liu model,'* an extension of the BGK
model which introduces two independent collision frequen-
cies (v and {) and gives the correct value of the Prandtl
number; in the case of the Liu model,’® F Ef) =—2(»/7)? and
F®=—%(y/{)% Notice that in the limit a—0, Egs. (12)
become Egs. (3) and Egs. (13) become Egs. (2).

The aim of this paper is to prove that the steady-state
Boltzmann equation admits a solution characterized by Egs.
(12) and (13) in the particular case of Maxwell molecules.
This generalizes the known solution for the Fourier flow.®*
The proof is carried out in Sec. II, where the hierarchy of
moment equations is considered. This hierarchy consists of
an infinite number of first-order differential equations with
respect to the reduced thermal gradient. The solutions are
polynomials in the thermal gradient with coefficients that are
nonlinear functions of the shear rate and satisfy an infinite
hierarchy of algebraic equations. The exact expressions for
those coefficients cannot be found in closed form, so that a
perturbation expansion in powers of the shear rate is per-
formed in Sec. IIl. This allows us to obtain the (super-
Burnett) coefficients 7> and F (,72> . The results are discussed
in Sec. IV.

. HHERARCHY OF MOMENT EQUATIONS

In the steady planar Couette flow the distribution func-
tion is expected to depend on space only through the coordi-
nate y, ie., f=f(y,v). The Boltzmann equation, Eq. (4),

then becomes
I

The balance equations (1) can be easily obtained from Eq.
(15). They are just the first few members of the infinite hi-
erarchy of equations for the velocity moments of f. Let us
introduce the moments

My, i, 0, (0)= f AVVVRVES(y,v). (16)

From Eq. (15) one gets

a u

o My, kyr14e, T a—yx kiMi — vyt 1k, =k, by by (17)
where

T, ey ey (9) = f AV VRVRITELf]. (18)
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In the sequel, we will use the roman boldface k to denote the
triad {k,,k,,k3} and the italic lightface k to denote the sum
ki+kyt+ks. Thus, My=My i, k, is a moment of order
k=k;+kytks.

In the special case of Maxwell molecules, the collision
rate is independent of the velocity, ie., go(g,cos8)
= gy(coséh), and Ji can be expressed as a bilinear combina-

tion of moments of order equal to or smaller than k:'°
Ji= 2 TCf oMMy, (19)
k' k"
where the dagger denotes the constraint &'+ k" =k. The co-
efficients Cﬁ,’k,, are linear combinations of the eigenvalues

rf_ r dQU’o(COSQ)[ 1+ 5,.05/0

o (7] (7] o
_ 2r+8 " i 2r+d
cos” 3 P, (cosz) sin ) Pf(51n2)}

(20)

of the linearized collision operator.lS’16 The explicit expres-
sions for Jy, through order k=4 are given in Appendix A.
The Navier—Stokes thermal conductivity and shear viscosity
for Maxwell molecules are’

SkB 14 -
ko(T)= m g (21a)
pP
- )

where A\, /A ;=3 Let us define an effective collision fre-
quency as

V=I’l)\.]1 (22)

and introduce the scaled space variable

y
s()= jo dy' v(y"). 23)

Now we make the assumption, to be confirmed by con-
sistency, that a solution to Eq. (15) or, equivalently, to Eq.
(17) exists compatible with Eqs. (12), where now v is given
by Eq. (22) and #y/ke=4m/15kg. Equations (12b) and
(12¢) imply that the flow velocity is a linear function of s,
while the temperature is a quadratic function of s. If we
choose y=0 as the plane where the temperature T(0)=1T is
a maximum, then

T(s)=To— % ¥(a)s?, (24)
where
Hay=h 2 1T 25)

From Eqs. (12a) and (22)—(24) one gets the relationship be-
tween s and y:

kB ( m
= ——s| Ty~ 5 ¥52). 26
TN U0 3k, %S) 26)
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So far, the space dependence of the hydrodynamic fields is
established but the coefficients F,(a) and F (a) remain un-
known.

The thermal gradient is a function

onlese form. it can be renresented by t 2
Cllalss 100, 1L Lall OC Iopivseintl Oy unv palaiiicwor

thma

of space. In dimen-

;T (27)
This parameter measures the relative variation of tempera-
ture along the y direction over a distance equal to the (local)
mean free path. The reduced shear rate a measures the varia-
tion of flow velocity relative to the thermal velocity over the
same distance. Both dimensionless parameters are indepen-
dent and describe how far the system is from equilibrium at

each point. Far from the boundaries, the solution to Eq. (15)
is PYpP{‘fF‘{‘] to adont the form

LLLLL L0 aliVp Wae a0

Fyw=n (y)[ T oy, (s
where
2keT
&)= [—f——(—y—’] [v—u(y)] (28b)

is the peculiar velocity relative to the thermal velocity. Ac-
cording to the symmetry properties of the problem, the re-
duced distribution function ¢ must be invariant under the
transformations

&~ & (29a)
Er—E by — &y e, (29b)
£~ a——a. (29¢)
Equation (28a) represents a normal solution,’ since it de-

pends on space only through its dependence on the hydrody-
namic fields and their gradients. Thus, it does not necessarily
satisfy the specific boundary conditions of the problem. On
the other hand, the solution (28a) should apply in a “bulk”
domain, outside the boundary layers. From a technical point
of view, it can be seen as a particular solution to Eq. (15)
corresponding to homogeneous boundary conditions (half
distributions vanishing at the boundaries).!! These are (ide-
alized) conditions for planar Couette flow between very cold
walls.

Equation (28a) implies that the velocity moments, Eq.
(16), have the form

Mk<y>=n[——‘?—(—y—) Mla,e(y)), (30)
where
o iy 0,9 | aEIEE B0, 8. (31)

As a consequence,

] 2kpT\* 2 [k _
a5 Mi=n (T) K‘?: *)Ev‘f""/’k

(62+4 ° %
—rdy| ], 32)
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where use has been made of Egs. (12), (25), and (27). Then
Eq. (17) becomes

2

t—1 €

€ty kyr1dy ™ ( 5 T4 ‘J’) %«vf’gk, eyt 1k

thiacty 1k, 14,

CE, \ntyr iy (33)
)\Uk,}i‘l(l , k', K k! #K
The hierarchy (33) is equivalent to the hierarchy (17) (for

Mazxwell molecules), provided that the profiles (12) are self-
consistent. The consistency conditions are

. 'ngOO= 1, (343-)
~28100= AZ010= #0901 =0, (34b)
ufgmo'i‘ «2%020"" uigooz': % (340)
Insertion into Eq. (33) yields
a J
Ezu'ff')il 10':3—6‘./55@, (353.)
e |[é& '
[E —( ) +4’}/) j|(uf7f')10+./f5030+./f50]2)
= ’261.,2%'110 (35b)

Equations (35) are equivalent to Eqgs. (1). Equation (35a)
shows that .4,y does not depend on €. This is consistent
with the generalized Newton law, Eq. (13b). The physically
meaningful solution of Eq. (35b) is

a
..ﬁgzlo‘i‘vsg’,{o:;o"l‘.,Zg()12=5.,-gguo€. (36)

The left-hand side is proportional to the component g,, of the
heat flux. The fact that it depends linearly on e indicates that
the generalized Fourier law, Eq. (13a), holds for arbitrary
thermal gradients.

In order to complete the proof of the consistency of Egs.
(12), we need to show that the hierarchy (33), seen as an
infinite set of first-order differential equations with respect to
€, admits a solution. By inspection, it is easy to realize that
such a solution does exist. In it, the moments of order &k are
polynomials in € of degree k— 2, the coefficients being func-
tions of the shear rate a. More specifically,

k-2

.,.gfgk(a,e)=§0 wa)e. 37)

The symmetry properties (29a) and (29b) imply that

wO=0 if ks or ky+k,+£ are odd numbers. The key point
1s that according to Eq. (37), (k—2— €d/d€).#%y is a poly-
nomial of degree k—4, so that both sides of Eq. (33) are
polynomials of degree k—2. By equating the coefficients of
the same degree, one has
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k=& , :
, £4+1 &
) B k,,+1,k3m4(/+1)7/*"1({1,1:221-l,k3+k1a/"'§clll.k2+l,k3
1 £
k £ e g
= E 1.Ckr K" E ﬂq((: ,U«;:r: )
)\ 1 kl,k" ! )

= Y}cf)kq ky (38)

with the ‘convention that w=0if /<0 or £>k—2, ex-
cept pid= 8,9, on account of Eq. (34a).

The coefficients F, (a) and F @), defined by Egs. (13),
are expressed as

Fa)=—Husll(a)+ uiih(a) + uiiy(a)], (392)
(0)
. LHiiola) .
F(a)=-3 P (39b)

In addition to the shear-rate dependent thermal conductivity
and shear viscosity, other transport coefficients are also im-
portant. The viscometric functions ¥'{(a) and ¥,(a) mea-
sure normal stress effects. They are defined as

1—H2%(a)+V¥,y(a)] Mo 9t ’ (40a)
=p L~ l(a. 2la ) ay ? U

1 770 aux 2
Pyy=py1+3{¥(a)—V,(a)] > o) | (40b)
[1+‘{xp (@) +2W,( )](77" au")z} (40¢)
= 3 1) e . C
p i(a N> 5

In terms of the coefficients ,uff ), the viscometric functions

are
9 i
V(@)= 5zl uiha)— uiha)], (412)
Wy(a)= ——s-[//«(()%)z(a)—ué(i’)(a)]- (41b)

Although the temperature gradient is directed along the y
direction, the presence of a profile of the x component of the
flow velocity induces a non-zero x component of the heat
flux. It is characterized by a transport coefficient ®(a) de-
fined by

772 oT du,
qx= mn[ )5}7 dy (42)
Consequently,
9 .
®(a)= 5[ ulih(a) + uiia) + uiti(a@)]. (43)

Thus, we have proved in this section that the Boltzmann
equation (15) for Maxwell molecules admits a solution with
the space dependence expressed by Eqgs. (12) and, more gen-
erally, Eq. (37). In fact, Egs. (24), (27), (30), and (37) show
that the moments M are polynomials in s of degree &k~
By inverting the relationship (26) one can get the depen—
dence on y. On the other hand, the numerical coefficients
y(a) and ,u.(" Y(a) are still unknown. They obey the algebraic
hierarchy (38), which cannot be solved in a recursive way,
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since the coefficients of order k£ and degree £ are coupled to
those of order k+ 1 and degree #+ 1. However, the hierar-
chy can be solved step by step if one performs a perturbation
expansion in powers of the shear rate.

lli. EXPANSION IN POWERS OF THE SHEAR RATE

We assume now that the shear rate a is small and expand
the coefficients u{’’ in powers of a:

W= O+ il uf P @
On account of the last identity in Eq. (38), one also has
@)= x {0+ X Va+ xEPa+ - - (45)

According to the invariance (29c¢) ,uff'*’”: X{{ N=0 if
k,+j=odd. Notice that /+; indicates the hydrodynamic
order. Thus, ,u,l(f‘j ) is a Navier—Stokes coefficient if
A+ j=1, a Burnett coefficient if #+j=2, a super-Burnett
coefficient if #+ j=3, and so on. Insertion of the expansion
(44) into Eq. (38) gives rise to a set of hierarchies, one for
each power of a. The first four hierarchies are

k-7

(F-1;0) _ (50
5 l’«kl,k2+1.k3“‘X§c1,k;,k3’ (46)
k—#
£=1;1) £30) = A
3 :“gcl.k2+1,k3+k1#§c1—1,k2+1,k3*X1(c,,kz,k3v 47
k—7 ,
F—1;2) _ 8. £+1;0
5 B ik ﬁ(/+1)ﬂ1(c,,kz+%.k3
Lo, (£ — A2)
+”‘1'u'£1—%,k2+l,/c3_X§<1,k2,k3’ (48)
k=t

(=133) B0 pi 1y (6 LD)
T T A i AU DV e A

72 — (3
+k1#§cl—%,k2+1,k3_’XI(cl,k; ey * (49)

In these equations we have taken into account that, according
to Eq. (25), y(a)=% a’+ @(a*). Equation (46) is the hier-
archy corresponding to the case of pure heat flow (a=0, €
arbitrary). It can be solved recursively®® by following the
scheme

{Mf{{:l"o)’k'gk'l'lvk’ +/Is~k+/’}_*{/‘£§(/;0)}’ (50)

(£30)

i.e., the knowledge of w; "’ requires the previous knowl-

edge of the coefficients w ® with k'<k+1 and
k' +7'<k+ /. The explicit expressions for the moments at

a=0 through order k=5 are’

A 00(€,0) = Ao €,0) =1, (51a)
B oo(€,0)=1, (51b)
a1 €,0) =.. % 12( €,0) = — %€, (52a)
A €,0)= — 3, (52b)
A 400 €,0)= . # 004 €0y =3..7%,00(€,0) =3+ £€2, (53a)
Ao €,0) =g €,0)= 1+ 15€?, (53b)
Apap(€,0) =2+ 5e?, (53c)
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./’//’4[0( E,O) = ‘,‘1?;014( E,O) = 3.//5212( 6,0_)

3 9 | 1163 2 1

_— | 8,4
710|378 T30 w"(7+

A0 €,0) = #Ha( €,0)

_ 3 9fues 2 PRl
TT1°10|378 T30 6o\ @))€

_ 15 9f1163 2 2 [, 1\,
*-"ZgOSO(E’O):jT 6“‘5 _3-?7_5“: +§T+3—a—); 7+'(*;)‘,“ €.

(54c)

In Egs. (54), @' =Ny/A;=2.0133 and @"=A3/A,;=22.3555.

Once the coefficients ,u,ffr‘m are known, the remaining

coefficients (" are obtained from Egs. (47), (48), and (49)

if j=1, 2, and 3, respectively, by generalizing the scheme
(50) to

s 0 S A sk £+ o {0
(55)

According to Egs. (39), the coefficients F\>) and F’ defined
in Egs. (14) are

2y 4, (132) 0 (12 1 (152
F&= =4 pii + pi + nbi),

(2) __ 0;3
FP=—3u{(5).

(56a)
(56b)

The calculations leading to these coefficients are rather
straightforward but tedious and are done in Appendix B. In-
sertion of Egs. (B10) and (B14) into Egs. (56) yields

FP=— (82 bew)=-3.226,

(57a)
F(,f’ = 3% (57b)

where w=Ngs/\{;==2.8097. These are super-Burnett coeffi-
cients that, according to Eqgs. (13) and (14), measure how the
thermal conductivity and the shear viscosity tend to decrease
with respect to their Navier—Stokes values as the shear rate a
increases. The parameter y(a) defined in Egs. (24) and (25)
behaves as

ya)=fa®[1+(F?~ FMa? + a)]. (58)

Since FP>F, y tends to increase with a.

The results of Appendix B allow us also to obtain the
viscometric functions, Eqs. (41), and the function '®, Eq.
(43) in the limit a—0. From Eqs. (B6) and (B7) one gets
T (0)=—%, ¥,(0)=%, and ®(0)="F. These are Burnett
coefficients and coincide with the ones obtained from the
Burnett constitutive equations for Maxwell molecules® if one
particularizes to the profiles (12). In this respect, when mak-
ing such a comparison, it is important to realize that, accord-
ing to Egs. (12), ¢*T/ay>+T~1(3T/dy)*=—(4mi15kp)
X(Au,/8v)? and ¢%u,/dy*=—(du,/3y)(d InT/dy).

V. DISCUSSION

We have considered in this paper the state of a dilute gas
subject to steady planar Couette flow. The gas is enclosed
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between two infinite parallel plates kept in relative motion
and, in general, at different temperatures. In the particular
case of plates at rest but with different temperatures, the state
becomes that of steady planar Fourier flow. By analyzing the
exact infinite hierarchy of moment equations derived from
the Boltzmann equation for Maxwell molecules, we have
proved that the solution has a quite simple spatial structure.
More specifically, the hydrodynamic profiles are p = const,
ulds=a=const, 3°T/3s*=—(2m/kz)¥(a)=const, where s
is a scaled space variable, Egs. (23) and (26). In general, the
velocity moments of order k are polynomials of degree
k—2 in s. In dimensionless form, the moments of order k
are polynomials of degree k—2 in the reduced thermal gra-
dient e(s)=[2kzT(s)/m]"23 InT/ds, the coefficients being
nonlinear functions of the reduced shear rate a. The two
independent parameters € and a are arbitrary and character-
ize the departure of the system from equilibrium. In the so-
lution found here, the pressure tensor, and hence the nonlin-
ear shear viscosity 7(a)= 7(0)F ,(a), is independent of e,
while the heat flux is proportional to €. The latter allows one
to define a  nonlinear  thermal  conductivity
k(a)=r(0)F (a). The coefficients F,(a) and F (a) are
related to the curvature of the temperature profile through the
identity y(a)= 242 F,(a)/15F (a).

In the particular case of the Fourier flow (a=0, e arbi-
trary), the exact solution of Asmolov et al.® is recovered. For
arbitrary shear rates, the coefficients such as F,(a) and
F,(a) obey an infinite hierarchy of coupled algebraic equa-
tions. By performing a perturbation expansion in powers of a
around the Fourier flow state, the hierarchy can be solved in
a recursive way. In particular, F,(a)=1 +F(,72) 24 Hat,
F(a)=1+F®a*+@(a*), where Fm—- 2 FP=-3.226
are super-Burnett coefficients. The BGK and Liu model ki-
netic equations admit a solution analogous to the one ana-
lyzed here but, obviously, with different values for the nu-
merical coefficients. For instance, the BGK equation!® yields
F(,?’= —Bvlvger)?, FS)E — (vl vpgr)?, where vpgy is
the only collision frequency contained in the BGK equation.
It can be adjusted as to reproduce either the exact Navier—
Stokes shear viscosity (wpgg=73v) or the exact Navier—
Stokes thermal conductivity (vggg=v). In the former case,
the coefficients F (,72) and F (,]2) agree within about 10% w1th
the exact values. In the case of the Liu model, one has!®
F‘,,”- — 8w 0)?, FP=~%w/)?, where { is an additional
collision frequency and the exact Navier—Stokes transport
coefficients are obtained with independence of the choice for
the ratio {/».'* If one chooses {=v, the exact constitutive
equation for the heat flux to Burnett order is obtained,'”
while that happens for the pressure tensor if one chooses
£=3v. In the first case, F'? is estimated with a deviation of
22%, while in the second case F (,]2) is estimated with a de-
viation of 4%. In either case the ratio F\2/F (,,2) is underesti-
mated in a 44% by the Liu model and, paradoxically, in an
18% by the BGK model. Higher order coefficients, such as
F® and F ‘:) , can also be obtained, but the algebra involved
becomes much less manageable.

It must be pointed out that the solution we have obtained
for the Couette flow describes an infinite system (i.e., both
moving plates are separated by an infinite distance), so that
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boundary effects are absent. Thus, the solution cannot be
extrapolated inside the boundary layers and boundary effects
(such as the velocity slip and the temperature jumps at the
walls) may not be predicted. Instead, the solution corre-
sponds to what is usually referred to as a “normal” solution
to the Boltzmann equation.'® This point, in the context of the
BGK equation, is thoroughly discussed in Ref. 11. When the
separation between the plates is measured in terms of the
scaled variable s, it becomes finite, say 2s,,. The normal
solution can then be interpreted as the solution to the Boltz-
mann equation with boundary conditions at s=*s,, corre-
sponding to plates moving with velocities = u,,= *as,, and
kept at zero temperature, T,,=0. The Boltzmann equation
could be numerically solved by means of the DSMC
method'® with values of T,, sufficiently small to get the ve-
locity moments, as well as the velocity distribution function
itself. In order to minimize the boundary effects, one could
apply boundary conditions corresponding to a gas enclosed
between two baths described by the BGK solution of the
steady planar Couette flow, following the same procedure as
in the case of the Fourier flow.'® Since we have proved here
that the moments are polynomials in s, simple fits outside
the boundary layers would provide transport coetfficients
such as F,(a) and F(a) for arbitrary values of the shear
rate a.

Finally, it is worth remarking how important exact solu-
tions of the Boltzmann equation are, especially in non-
homogeneous situations. They are useful to improve our un-
derstanding of nonequilibrium phenomena and also to assess
the reliability of approximate methods or kinetic models. The
solution we have dealt with in this paper has been inspired
and suggested by a solution to the BGK equation having a
similar structure. This shows the interest of using kinetic
models as a means to explore the possibility of finding exact
solutions of the Boltzmann equation.
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APPENDIX A: COLLISIONAL MOMENTS

In this appendix we list the collisional moments Jy, Eq.
(19), for Maxwell molecules through order k=4. They are

Jii0=—3vM 1y, (Ala)
3 14

Jago™= — ‘EV( M 00— E)’ (Alb)

Jii=—3vMyy, (A2a)

J210= = 2V[M 310~ §(Mo12+ Moz0) 1, (A2b)

J300=— 3V[ M 300~ 5(M 120+ M 109) ], (A2c)
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TJi2= = (v + 50 )M 1o+ (v — )

M130+M310+3 Muo)

i o
+(3V_V'); MnoMooz"(V—?V'); Mo

. 1 .
XM g0+ Mopo)+ (5 —¥V'); MioiMo1, (A3a)
27 1
Ja20=— (v + 350" YM 0+ (157 —55v")| Mooy — 8Mozo
2
+8M3y— 2 M2, ~ 9——5+6M 01+6M0“) + (v’
— 359) (M ygp+ Mpg) + (55" — 550) (M 40+ M ga0)
1
+(3V_V');M200M020+(%V'_ ) (M200
+ M) + (Bv— 3% V’) M3y, (A3b)
Ja0=—(Gv+ 30 )M 30+ (39" — 3v)
M|12+M130+3 ~ Mo
6.1 1
—(3v—3v )Z(M020M110+M101M011)
15_.1 1 . .
Fv "6V);M200M110, (A3c)
Jago=—(3v+ 350" )M 400+ (557" — 75v) (M gp0+ M og)

- 1

+(%V—%V'){Mo4o+2Mozz+Moo4+;(2M%20
r 5

+2M g+ 9y + 25y~ 16M 710~ 16M%m”

L
('~ 89) — Mo+ (' = ) = Moy, (A30)
In these equations, v is given by Eq. (22) and »'=nl\y,,
where Ags/A ;= 0=2.8097.® The remaining collisional mo-
ments {such as J g, or Jgo4) can be easily obtained from Egs.
{A1)-(A3) by the adequate permutation of indices.

APPENDIX B: EVALUATION OF pf/

In this appendix we are going to work out the first few
solutions of Egs. (47)- (49) First, we make use of Egs.
(A1)-(A3) to express X/k defined by the last identity in
Eq. (38), in terms of ,u .

x=-3u%, (Bla)
X(O) - —(,u,(o) — _ (B1b)

2864 Phys. Fluids, Vol. 7, No. 11, November 1995

X5=— ~[#%— F b+ 151, (B2a)
Xsoo=— L psip— Hp$sh+ i1, (B2b)

0) _ 0 0 0
K= O i )

760)#1 pH Go— (a5t psiyt il
+(3— o) i Pul— (1 - 30) w9+ 1)
+(5—20) Qi uil, (B3a)

0 3 0 v (0 0
xsh=—(&+ o) u9)+ (15— F0) (i — 8 uid)?

—8 i+ 2 it + 56l -6 uin)?)
+(%w zo)(lf«g(()))z 63)2)4‘(3560 00)(/*04(1(())2)
+ piah) + (3 ) pShuinh+ Go— D pi)
+ pigh) + (2—Fo) ui, (B3b)
M= = G fo) i+ Go— DD+ wih+ 3uil
= (3~ 50) (nihuih+ wiQuill
—(Bo—6)uihui), (B3c)

X0= = (4+ Fo) &+ (Zo— 2 (uD+ 19

: 0 0 0
+ (5 o) (mih+ 2+ i+ 2 ui)?

+ 260+ 3+ 2p60)7 - 1600 — 16145)7)
~(Fo— Py’ + (Fo—Diul, (B3d)

XH=— Gt 5o P+ Go—H(uR+pd),  (Bia)

2
X3h=— (F5+ Bo) pBh+ (55— o) ull)

+(Fo— ) (s + uid) + (o —5)

X (pelgh+ 1) (B4b)
K=~ GHio)ufit Go—Dui+ u),  Bdo)
Xiob=— (§+ Fo) u§gh+ (Bo— 15) (uh+ us3)

+ (5= o) s+ 2mGh+ . (B4d)

In the remainder of this appendix we are going to evalu-
ate all the coefficients ,u(/’ ) such that k<S5, j<3, and
k+ 727+ j=<6. We will proceed in a sequential way, so that at
each step use will be made of results derived in previous
steps, as well as of Egs. (B1)—(B3). Of course, the coeffi-
cients with j=0 are given by Egs. (51)-(54) and will be
taken as a starting point. First, we take Eq. {47) with #=0
and k={110}:

%= - ‘#'(1?01) ’ (BS)

so that /1,(1({01)——3. In fact, this is a well-known Navier—

Stokes coefficient. Next, we take ¢=0 and k={002},
{020}, and {200} in Eq. (48):

2 (0;2)

5= = 3uigy . (B6a)
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d=—3ul (B6b)

2 -
~ = hull (869
Thus, uigi=— &, ni =~ 1% wShD =18 These are Bur-

nett coefficients related to the viscometric tunctions.
Let us consider now Eq. (47) with /=0 and
k={310}, {130}, and {112}:

b= (b )+ o= D (P + w3 -

(B7a)
=-Gtio)udy +Go— DB+ u) -4

(B7b)
==+ %‘0)#1121)"‘(760"‘)(#(1%01)"‘#31 V)~ %

(B7c)

The  solution of thlS set  of

0;1) _ ,,(051) _ 0;1)
#g ) //«(30) 3//«( ) *?

Next, we make /— 1 and k={300}, {120}, and {102} in
Eq. (47):

equations s

— 3=~ 2+ Kl + i), (B8)
— == 2u5+ Kl + ule), (B8b)
—5= 2/-’»1(1)21)'*‘4(#11201)4'/1«%1 Y. (B8c)

The solution is
IL:(;&;)I)= =3 (B9a)
piliD = 25 (BYb)
“(16;21)= x: 3 (B9c)

The super-Burnett coefficient /.L(l%3) is now easily ob-

tained from Eq. (49) with /=0 and k={110}:

(0;3) =

Kt = T35 (B10)

We are going now to determine the coefficients leading
to the heat flux. Let us take Eq. (48) with #=0 and
k={400}, {040}, {004}, {220}, {202}, and {022}:

—§=— 3+ Fo) i + (Bo- ) (i) + pi95)
+(F— Fo) (i +2u0 + pig?) + (Fo— ),
(Bl1a)

2= “( + 3560)/1'(0 2+ (3560 1o)(ﬂ2202)+#(0 2))

+ (o= 550) (dgh” + 205057 + pGP) ~ (B~ sw),
(B11b)
i=—(§+ S0 iR + (Bo— 5 (us + uis?)
(5= Fo) (uP +2uD + uG) — o,  (Bllc)
—d=— (5t Ho) P + (5= 50) uig? + (Fo— %
X( o)+ n3s)
+ (o= ) (i + nle) + (- So), (B11d)
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—5=—({%+% ‘U)ﬂmozz) + (15— —w),ué?;oz“r (o~ 1)

X(uS + uii?)

+(“w— zo)(#4002)+#(()%42))+(105w 310) (Blie)
%:‘(10"" w)ﬂ'ozzz +(1o 350’)#(0 2)+(%w—'216
X (95 + u$p?)
+(§é§w 20)(#0?102)4'#"%)%42))4'( msw’“*) (B11f)
The solution of this set of six coupled equations is
(0:2)_ 180?+364490— 23667 1051 Bl2a
Fraoo = 257250 w7 (B122)
©02)_ 60> +7777w+17889 1232, (B12b
Hrod 85750 =TS )
0y ~2580°+105210— 5488 0,305
#oo4 "= 257250 o
(B12c)
(0:2)_ 180’ —10591w+79233 0220 B12d
Hao = 711750 o )
(©0:2)_ 13802 +127190 - 8232 0132 B12
a0 = 7175w U (B12¢)
o2 13807+ 171710+8232 0255
Ho2 75w s
(B12f)

Finally, from Eq. (48) with =1 and k={210}, {030}, and
{012}, one gets

PP+ 1= =205 + HulP + nisP),  (Bl13a)
Bog) — = =3l + WS+ uli), (B13b)
ﬁbf)gz ) foe=— 2u5)+ HpSiE + + pbs). (B13c)
The solution is
12y 16920 — 20738900+ 1901592
o = ~—0.114
210 41674500 ’
(Bl4a)
1.2y~ 16920° +4336129w + 568008
mss = ~3.264,
1389150
(B14b)
12y, 457207+ 36238090+ 197568 0.883
Koz = 41674500 =085,
{Bl4c)

where use has been made of Egs. (B12b), (B12d), and
(B121).
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