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The infinite hierarchy of moment equations derived from the Boltzmann equation for Maxwell 
molecules is analyzed in the case of steady planar Couette flow. It is proved that a solution exists 
that is consistent with the following hydrodynamic profiles: p = nk,T = const, Tdu, lay = const, 
( Td/dy)2T= const. In general, the velocity moments of order k are polynomials of degree k-2 in 
a scaled space variable s 0~ ST- ‘dy . The momentum and energy transport are described by a 
nonlinear shear viscosity ~(a) = v( 0)F ,(a> and a nonlinear thermal conductivity 
K(U) = K(O)F,(U), respectively, where a= du,lds is the (constant) reduced shear rate. By 
performing a perturbation expansion in powers of a, it is found that F,(u) = 1 - 1 .472u2 + @a”) 
and F,(u) = 1 - 3.226~~ + @[ u4). These numerical values are compared with those obtained from 
the BGK and the Liu kinetic models. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The steady planar Couette flow is one of the most inter- 
esting states to analyze transport phenomena. It corresponds 
to a fluid enclosed between two infinite parallel plates main- 
tained in relative motion. The plates can be kept at the same 
temperature or at two different temperatures. In either case, a 
temperature profile is expected to exist across the system, in 
addition to a velocity profile and a density profile. 

Let x and y denote the coordinate parallel to the flow 
and the coordinate normal to the plates, respectively. The 
steady-state hydrodynamic balance equations are 

; pxy=; P,,=O, 

; q,+p -5 Ikx=o, xy ay (1’4 

where u=u$ is the flow velocity, P is the pressure tensor, 
and q=qs+ qYj is the heat flux. Equation (lb) shows that 
the existence of a velocity field induces the presence of a 
heat flux. Consequently, a thermal gradient aTl~?y is present, 
even though both plates are kept at the same temperature. 
For small gradients (Navier-Stokes order), the constitutive 
equations are 

qy=-+,T); T, (24 

where K,, and 7s are the thermal conductivity and shear vis- 
cosity, respectively. They are functions of the local density n 
and temperature T, which are connected by the (local) equi- 
librium equation of state p=i tr P=pq(n,T> and the con- 
dition 

p = const. 

Substitution of Eqs. (2) into Eqs. (1) yields the velocity and 
temperature profiles at Navier-Stokes order: 

d 
ao(n,T) ar U,=const, CW 

i I Kd%T)~ T]=- vdn,T)( i ux)l. (3c) 

The planar Couette flow described here must not be con- 
fused with the so-called uniform shear tlow. In the latter, 
du, ldy = const is the only non-zero gradient and the unifor- 
mity of the temperature is achieved at the expense of viscous 
heating, which can be controlled by the application of a non- 
conservative thermostat force.‘*2 Both kinds of shear flow are 
generated in computer simulations by means of different 
boundary conditions3 and give rise to different transport co- 
efficients beyond the Navier-Stokes regime.4 

As a prototype fluid to investigate transport phenomena 
beyond the scope of the Navier-Stokes order, it is useful to 
consider a monatomic low-density gas with short-range in- 
teractions. The state of the system is then specified by the 
one-particle velocity distribution function f(r, v, t), which is 
the solution of the nonlinear Boltzmann equation5 

$+v.vf=] dv,] d~nga(g,cosBjLf'fl-ffll 

-JLffl (4) 
with appropriate initial and boundary conditions. The hydro- 
dynamic quantities and their fluxes can be expressed in terms 
of moments off: 

is) 

05) 

(7) 
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(8) 

q= ; dvV2Vf. 
-I 

(9) 

In Eqs. (7j-(9), V=v-u is the peculiar velocity, m is the 
mass of a particle, and kB is the Boltzmann constant. The 
equation of state is that of an ideal gas, namely p = nksT. 

Most of the known solutions to Eq. (4) for spatially in- 
homogeneous states correspond to Maxwell molecules (i.e., 
particles interacting via an re4 repulsive potential), for 
which the collision rate ga(g,co~~j=~~(cos~) is indepen- 
dent of the relative velocity g. About 40 years ago, Ikenberry 
and Truesdell obtained the exact expression of the pressure 
tensor for a gas of Maxwell molecules under uniform shear 
flow. This solution has been recently extended to the fourth 
order moments7 In the case of steady p1ana.r Fourier how, 
Asmolov et uZ.*~~ analyzed Eq. (4) for Maxwell molecules. 
The planar Fourier flow can be seen as a particularization of 
the planar Couette flow to du,ld~~=O, i.e., the plates have 
different temperatures but both are at rest. It was shown the 
existence of a self-consistent solution where the kth order 
moments are polynomials of degree k - 2 in the temperature 
gradient. In particular, the heat flux is proportional to the 
temperature gradient, so that the Fourier law, Eq. (2a) holds 
exactly for arbitrarily large temperature gradients. 

To the best of our knowledge, no solution of the Boltz- 
mann equation for the planar Couette flow with arbitrary 
temperature and velocity gradients is known. Such a solution 
exists, however, in the case of the Bhatnagar-Gross-Krook 
(BGK) model kinetic equation.“*” In the BGK model,” the 
Boltzmann collision operator Jlff] is replaced by a single- 
time relaxation term: 

J[f,fl+- v(f-fLE)r (10) 
where u(a,T) is an effective collision frequency and 

f LE(&v,t)=n ( &)3Rexp[ -m G] (11) 

is the local equilibrium distribution function. The exact so- 
lution of the BGK model for the steady planar Couette flow” 
is characterized by the following hydrodynamic profiles: 

p = const, 

1 d 

(124 

- - ILL= a = const, 
dn,T) dy 

1 d * i 1 -- 
4n.T) Jy 

T=- 90iT) F,(a) 2 
KO(T)F,(a)- 

(12cj 

where ~o=plv, ~~=5k~p/2rnv, and F,(u) and F,(u) are 
nonlinear functions of the reduced shear rate a, whose ex- 
pressions can be found in Ref. 10. These functions define a 
generalized thermal conductivity and a generalized shear vis- 
cosity through the relations 

yy= - dT>F,(a> 4 T> (134 

P,,= - M’V’,(4 $ u,t. 

For the purpose of this paper, it is convenient to give here the 
behaviors of F, and F, for small a. They are 

F,(a) = 1 + F~)a”+ dQz4), (144 

F rl (a)= 1 + F(2’u2+@u4), 17 Il4b) 

witi F(*) = - % and Fc2’ = - f. It has been recently 
provedt’that a solution coisistent with the profiles (12) and 
(13) also holds for the Liu model,14 an extension of the BGK 
model which introduces two independent collision frequen- 
cies (v and b) and gives the correct value of the Prandtl 
number; in the case of the Liu model,13 F’,2’ = - g( u/C)~ and 
Ff’== - F(v/c)“. Notice that in the limit u+O, Eqs. (12) 
become Eqs. (3) and Eqs. (13) become Eqs. (2). 

The aim of this paper is to prove that the steady-state 
Boltzmann equation admits a solution characterized by Eqs. 
(12j and (13) in the particular case of Maxwell molecules. 
This generalizes the known solution for the Fourier How.sYy 
The proof is carried out in Sec. II, where the hierarchy of 
moment equations is considered. This hierarchy consists of 
an infinite number of first-order differential equations with 
respect to the reduced thermal gradient. The solutions are 
polynomials in the thermal gradient with coefficients that are 
nonlinear functions of the shear rate and satisfy an infinite 
hierarchy of algebraic equations. The exact expressions for 
those coefficients cannot be found in closed form, so that a 
perturbation expansion in powers of the shear rate is per- 
formed in Sec. III. This allows us to obtain the (super- 
Burnett) coefficients F, (2) and Fc2’. The results are discussed * 
in Sec. IV. 

II. HIERARCHY OF MOMENT EQUATIONS 

In the steady planar Couette flow the distribution func- 
tion is expected to depend on space only through the coordi- 
nate y, i.e., f=f(,v,v). The Boltzmann equation, Eq. (4), 
then becomes 

The balance equations (1) can be easily obtained from Eq. 
(15). They are just the fist few members of the infinite hi- 
erarchy of equations for the velocity moments off. Let us 
introduce the moments 

&,,k2.k3(~)= dvV~‘~2~7~fhv). I 
From Eq. (15) one gets 

au, 
f Wx,,k2+I,k3+ - k~~~I-v2+~,~3=J~ k k 

dY 1’ 2’ 3’ (17) 

where 

Jk, ,k2,1i3(~)= dvV:‘V;~J[f~fl. I (18) 
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In the sequel, we will use the roman boldface k to denote the 
triad {k, ,kz ,Ks} and the italic lightface k to denote the sum 
k,+k,+k,. Thus, A4k=Mk,,kz,k, is a moment of order 
k=k,+k,+k,. 

In the special case of Maxwell molecules, the collision 
rate is independent of the velocity, i.e., ga(g,cosg) 
= oa(cos@ and Jk can be expressed as a bilinear combina- 
tion of moments of order equal to or smaller than k:15 

Jk= 2 ?C;, &l,,M,,r , 
k’,d’ ’ 

(19) 

where the dagger denotes the constraint k’ + k”= k. The co- 
efficients CE,,k,, are linear combinations of the eigenvalues 

A,,= 
I 

df-lcr(J(cose) 1+ &as,, 
[ 

e 
-cos~‘+~~ P/ 

I9 
i i 

-6 
COST -sin2’+Py Pf 

I9 
( iI sin5 

@O) 
of the linearized collision operator.‘5**6 The explicit expres- 
sions for Jk through order k =4 are given in Appendix A. 
The Navier-Stokes thermal conductivity and shear viscosity 
for Maxwell molecules are5 

5ks P 
Ko(T) = - - 

2m nXll ’ 
(Zla) 

where Xo2/X11= f. Let us define an effective collision fre- 
quency as 

v=nX,, (22) 

and introduce the scaled space variable 

(23) 

Now we make the assumption, to be confirmed by con- 
sistency, that a solution to Eq. (15) or, equivalently, to Eq. 
(17) exists compatible with Eqs. (12), where now v is given 
by Eq. (22) and ~o/Ko=4m/i5kB. Equations (12b) and 
(12~) imply that the flow velocity is a linear function of s, 
while the temperature is a quadratic function of s. If we 
choose y = 0 as the plane where the temperature T(0) = I!‘, is 
a maximum, then 

T(s)=T()- fi y(a)s2, 
kB 

where 

(24) 

From Eqs. (12a) and (22)-(24) one gets the relationship be- 
tween s and y: 

(26) 

So far, the space dependence of the hydrodynamic fields is 
established but the coefficients F,(a) and F,(a) remain un- 
known. 

The thermal gradient is a function of space. In dimen- 
sionless form, it can be represented by the parameter 

(27) 

This parameter measures the relative variation of tempera- 
ture along the y direction over a distance equal to the (local) 
mean free path. The reduced shear rate a measures the varia- 
tion of flow velocity relative to the thermal velocity over the 
same distance. Both dimensionless parameters are indepen- 
dent and describe how far the system is from equihbrium at 
each point. Far from the boundaries, the solution to Eq. (15) 
is expected to adopt the form 

2kBT(y) -W 
fb,v)=nly) ---g--- 1 1 +(44Y);S(Yj), (284 

where 

2k,T(y j -“2 
txy>= m [ 1 [v-u(Y)1 W W  

is the peculiar velocity relative to the thermal velocity. Ac- 
cording to the symmetry properties of the problem, the re- 
duced distribution function 4 must be invariant under the 
transformations 

6-z+-&, (294 

&s;--S& -+-L$,E4-~, (29b) 

~x-+-&,u4-a. (29~) 
Equation (28aj represents a normal solution,‘5 since it de- 
pends on space only through its dependence on the hydrody- 
namic fields and their gradients. Thus, it does not necessarily 
satisfy the specific boundary conditions of the problem. On 
the other hand, the solution (28a) should apply in a “bulk” 
domain, outside the boundary layers. From a technical point 
of view, it can be seen as a particular solution to Eq. (15) 
corresponding to homogeneous boundary conditions (half 
distributions vanishing at the boundaries).” These are (ide- 
alized) conditions for planar Couette flow between very cold 
walls. 

Equation (28a) implies that the velocity moments, Eq. 
(16), have the form 

k/2 

.-/&(a, E(y > 1, 

where 

-~k,,k,,k,(d= GY~15~2t~3cb(a94. 
J‘ 

As a consequence, 
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where use has been made of Eqs. (12), (25), and (27). Then 
Eq. (17) becomes 

k-l 
- “Hk, ,k2f I.k, - 2 

=- x’ 2 iC;,,,,..&k!,&kt!. 
llk’,k” 

The hierarchy (33) is equivalent to the hierarchy (17) (for 
Maxwell molecules), provided that the profiles (12) are self- 
consistent. The consistency conditions are 

..“&oc)o= 1, (344 

.As*()~=.,&(),~= wd5~o~ = 0, Wb) 

J&0() + &3(320 + Az(j~2 = $. (34c) 

Insertion into Eq. (33) yields 

[; -(;++‘) ~]i-d?lo+-itoiof-aai2) 

i3.W 

= -2a,&110. (35b) 

Equations (35) are equivalent to Eqs. (1). Equation (35a) 
shows that ~G?tt~ does not depend on E. This is consistent 
with the generalized Newton law, Eq. (13b). The physically 
meaningful solution of Eq. (35b) is 

The left-hand side is proportional to the component qY of the 
heat lIux. The fact that it depends linearly on E indicates that 
the generalized Fourier law, Eq. (13aj, holds for arbitrary 
thermal gradients. 

In order to complete the proof of the consistency of Eqs. 
(12), we need to show that the hierarchy (33), seen as an 
h&rite set of first-order differential equations with respect to 
E, admits a solution. By inspection, it is easy to realize that 
such a solution does exist. In it, the moments of order k are 
polynomials in E of degree k - 2, the coefficients being func- 
tions of the shear rate a. More specifically, 

k-2 

.,i%k(a,ej= c ,t.$‘(aji. 
c-o (37) 

The symmetry properties (29a) and (29b) imply that 
pk (‘j = 0 if k3 or k, + k2 + L’ are odd numbers. The key point 
is that, according to Eq. (37), (k-2 - ed/&)&& is a poly- 
nomial of degree k-4, so that both sides of Eq. (33) are 
polynomials of degree k - 2. By equating the coefficients of 
the same degree, one has 

Thus, we have proved in this section that the Boltzmann 
equation (15) for Maxwell molecules admits a solution with 
the space dependence expressed by Eqs. (12) and, more gen- 
erally, Eq. (37). In fact, Eqs. (24), (27), (30), and (37) show 
that the moments Mk are polynomials in s of degree k - 2. 
By inverting the relationship (26) one can get the depen- 
dence on y. On the other hand, the numerical coefficients 
y(a) and &&)(a) are still unknown. They obey the algebraic 
hierarchy (38), which cannot be solved in a recursive way, 
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k-f 

-,&f,fk, .k, (38) I 

with the convention that ,u&“)= 0 if /<O or di> k-- 2, ex- 
cept ,u$;= S,,, on account of Eq. (34aj. 

The coefficients F,(a) and F,(a), defined by Eqs. (13), 
are expressed as 

F’,ia) = - $bU:%a> + &$a> + b&WI, (39i) 

&bia 1 
F,(a)= -3--- 

a ’ i39b) 

In addition to the shear-rate dependent thermal conductivity 
and shear viscosity, other transport coefficients are also im- 
portant. The viscometric functions *t(a) and **(a j mea- 
sure normal stress effects. They are defined as 

, (4Oa) 

(40bj 

. (4ocj 

In terms of the coefficients ,uL’), the viscometric functions 
are 

~l(a)=~I~~~b(a)-cLIOoB(ajl 2a- 9 

q2ia)= ~b&(~~-&~(a)l~ 2a- 

Although the temperature gradient is 

@la) 

(41bj 

directed along the y 
direction, the presence of a profile of the x component of the 
flow velocity induces a non-zero x component of the heat 
flux. It is characterized by a transport coefficient 9(a) de- 
fined by 

4x= &+(a):$. 

Consequently, 

(42) 

@(a)= %rdbbcuj+pi~~iaj+p~~~iajl. (43) 
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since the coefficients of order k and degree / are coupled to 
those of order k-l- 1 and degree L+ 1. However, the hierar- 
chy can be solved step by step if one performs a perturbation 
expansion in powers of the shear rate. 

III. EXPANSION IN POWERS OF THE SHEAR RATE 

We assume now that the shear rate a is small and expand 
the coefficients ,@‘I in powers of a: 

&f)@) =&w +&%+pu, V;2),2+ . . . . (44) 

On account of the last identity in Eq. (38), one also has 
xk~)(a)=xk~;0)+xkt:l).a+x~~.;2)a2+. . . . (45) 

According to the invariance (29~) ,uhPJ) = xi&j) = 0 if 
kl +j = odd. Notice that L+j indicates the hydrodynamic 
order. Thus, pp) is a Navier-Stokes coefficient if 
L+j= 1, .a Burnett coefficient if L+j=2, a super-Burnett 
coefficient if $+ j = 3, and so on. Insertion of the expansion 
(44) into Eq. (38) gives rise to a set of hierarchies, one for 
each power of a. The first four hierarchies are 

It--& (k-1;O) _ (c;O) 
2 pkl .kZ+ I.k3 - Xk, ,k? ,kg ’ (46) 

k-b 
2 ~j$;i’;,k~ + k&$?,k2+ l,k, = Xi$;.k3 1 

k-t’ 
y- LLj;$;& - iw;+ 1 L4$;T!,k, 

+/l’,/*~;li,k,+,.kg=S~~:~,k~) 

(47) 

(48) 

+k,p(/2{k +Ik rev;;’ k 
1 ’ 2 ‘3 ,I 2% 3’ (49) 

In these equations we have taken into account that, according 
to Eq. (25), y(u)=& a2+&a4). Equation (46) is the hier- 
archy corresponding to the case of pure heat flow (a = 0, E 
arbitrary). It can be solved recursivelys.’ by following the 
scheme 

b$ (b’;O),kr~k+l,kr+~.r~k+&‘),(~~~;o)}, (50) 

i.e., the knowledge of ph”;‘) requires the previous knowl- 
(f’;O, edge of the coefficients puk, with k’Gk+l and 

k’ + 6” 6 k + 6. The explicit expressions for the moments at 
a = 0 through order k = 5 are’ 

.&&E,O) = *&!&2( E,O) = 3, (514 

. 4320( E,O) = 4, (51b) 

“~is,,oiE,O)=..-~o~2(E,O)= - &, (52a) 

. &030( E,O) = - $E, Wb) 

..,&400( e,O) =..&Too4( E,O) = L&202( e,O) = $+ $$c2, (53a) 

.&& E,O) = ./~cA!&( E.0) = $+ g2, (53b) 

.‘&(& E,O) = $+ $62, (53c) 

E3, 

(54a) 

“s&30( $0) = es &032( E,O) 

(54b) 

15 9 1163 2 2 
&z()50( $0) = - 

4 E--yy 378 
-k----- E3. 

(54c) 
In Eqs. (54), o’=X,,/X1t==2.0133 and w”=ht3/X,t-2.3555. 

Once the coefficients pp”O’ are known, the remaining 
coefficients pi?) are obtained from Eqs. (47), (48), and (49) 
if j= 1, 2, and 3, respectively, by generalizing the scheme 
(50) to 

f$$‘;j’) ,k’~k+l,k’+$‘+j’=%k+L;+j}+{,uf”i’}. 
(55) 

According to Eqs. (39). the coefficients Fr) and F$’ defined 
in Eqs. (14) are 

F(2) = _ g&a + #a + &)) K 3 (56a) 

Fi2),_~y~~~~ 
0 - (56b) 

The’ calculations leading to these coefficients are rather 
straightforward but tedious and are done in Appendix B. In- 
sertion of Eqs. (BlO) and (B14) into Eqs. (56) yields 

$?=-($&&++-3226 h . 9 674 

p(2) = - g.6, 
7 (57b) 

where ~=X~~/Xt~=2.8097. These are super-Burnett coeffi- 
cients that, according to Eqs. (13) and (14), measure how the 
thermal conductivity and the shear viscosity tend to decrease 
with respect to their Navier-Stokes values as the shear rate a 
increases. The parameter y(a) defined in Eqs. (24) and (25) 
behaves as 

y(a)=&a”[l+(F, (2)_Fjc29a2f~~a4)l. 

Since Ft2)> Fc2’ 

(58) 

The7/resulL 
y tends to increase with a. 

df Appendix B allow us also to obtain the 
viscometric functions, Eqs. (41), and the function @, Eq. 
(43) in the limit a-+0. From Eqs. (B6) and (B7) one gets 
*t(O) = - y, V1(0) = 5, and Q,(O) = y. These are Burnett 
coefficients and coincide with the ones obtained from the 
Burnett constitutive equations for Maxwell molecules5 if one 
particularizes to the profiles (12). In this respect, when mak- 
ing such a comparison, it is important to realize that, accord- 
ing to Eqs. (12), d”7’/dy2+T-‘(dT/dy)“= -(4m/15kB) 
X(d~,~/dy)~ and d2uXlay2= -(&,ldy)(d lnT/a). 

IV. DISCUSSION 

We have considered in this paper the state of a dilute gas 
subject to steady planar Couette flow. The gas is enclosed 
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between two infinite parallel plates kept in relative motion 
and, in general, at different temperatures. In the particular 
case of plates at rest but with different temperatures, the state 
becomes that of steady planar Fourier flow. By analyzing the 
exact infinite hierarchy of moment equations derived from 
the Boltzmann equation for Maxwell molecules, we have 
proved that the solution has a quite simple spatial structure. 
More specifically, the hydrodynamic profiles are p=const, 
&lc,lds=a=const, a”Tlds’=--(2m/k,)y(a)=const, where s 
is a scaled space variable, Eqs. (23) and (26). In general, the 
velocity moments of order k are polynomials of degree 
k-2 in s. In dimensionless form, the moments of order k 
are polynomials of degree k - 2 in the reduced thermal gra- 
dient E(S) = [2kBT(s jlm]‘“d InTlds, the coefficients being 
nonlinear functions of the reduced shear rate a. The two 
independent parameters E and a are arbitrary and character- 
ize the departure of the system from equilibrium. In the so- 
lution found here, the pressure tensor, and hence the nonlin- 
ear shear viscosity v(a) = ~(0) F?(a), is independent of E, 
while the heat flux is proportional to e. The latter allows one 
to define a nonlinear thermal conductivity 
~(a)=~(o)F,(a). The coefficients F,(a) and F,(a) are 
related to the curvature of the temperature profile through the 
identity y(a)=2a’F,(ajllSF,(a). 

In the particular case of the Fourier flow (a = 0, E arbi- 
trary), the exact solution of Asmolov et al.* is recovered. For 
arbitrary shear rates, the coefficients such as Fq(a) and 
F,(a) obey an infinite hierarchy of coupled algebraic equa- 
tions. By performing a perturbation expansion in powers of a 
around the Fourier flow state, the hierarchy can be soIved in 
a recursive way. In particular, Fv(f) = 1 + F’,2)a’+&(a”), 
F,(a) = l-l-F’,2)a”+&i(a4), where F$?= --$$, F’,2)=-3.226 
are super-Burnett coefficients. The BGK and Liu model ki- 
netic equations admit a solution analogous to the one ana- 
lyzed here but, obviously, with different values for the nu- 
merical coefficients. For instance, the BGK equation” yields 
F;*‘= - ~vlvgGK)*, F’,2’= - ~zJIv~~K)~, where vsGK is 
the only collision frequency contained in the BGK equation. 
It can be adjusted as to reproduce either the exact Navier- 
Stokes shear viscosity (V~GK= %v) or the exact Navier- 
Stokes thermal conductivity ( VBGK= v). In the former case, 
the coefficients FF’ and F$’ agree within about 10% with 
the exact values. In the case of the Liu model, one has13 
FYI = - y( v/[>~, F’,2’= - 3 v/[>~, where j is an additional 
collision frequency and the exact Navier-Stokes transport 
coefficients are obtained with independence of the choice for 
the ratio c/v. I4 If one chooses c= v, the exact constitutive 
equation for the heat flux to Burnett order is obtained,17 
while that happens for the pressure tensor if one chooses 
l- iv. In the first case, F’*’ is estimated with a deviation of 
22%, while in the secondKcase Fy’ is estimated with a de- 
viation of 4%. In either case the ratio Fp!lF$f) is underesti- 
mated in a 44% by the Liu model and, paradoxically, in an 
18% by the BGK model. Higher order coefficients, such as 
FC4’ and Fz’, can also be obtained, but the algebra involved 
be>omes much less manageable. 

It must be pointed out that the solution we have obtained 
for the Couette flow describes an infinite system (i.e., both 
moving plates are separated by an infinite distance), so that 

boundary effects are absent. Thus, the solution cannot be 
extrapolated inside the boundary layers and boundary effects 
[such as the velocity slip and the temperature jumps at the 
walls) may not be predicted. Instead, the solution corre- 
sponds to what is usually referred to as a “normal” solution 
to the Boltzmann equation. I5 This point, in the context of the 
BGK equation, is thoroughly discussed in Ref. 11. When the 
separation between the plates is measured in terms of the 
scaled variable s, it becomes finite, say 2~~. The normal 
solution can then be interpreted as the solution to the Boltz- 
mann equation with boundary conditions at s = fs, corre 
sponding to plates moving with velocities tuw= *us,,, and 
kept at zero temperature, T, = 0. The Boltzmann equation 
could be numerically solved by means of the DSMC 
method’s with values of T, sufficiently small to get the ve- 
locity moments, as well as the velocity distribution function 
itself. In order to minimize the boundary effects, one could 
apply boundary conditions corresponding to a gas enclosed 
between two baths described by the BGK solution of the 
steady planar Couette flow, following the same procedure as 
in the case of the Fourier How.‘g Since we have proved here 
that the moments are polynomials in s, simple tits outside 
the boundary layers would provide transport coefficients 
such as F,(a) and F,(a) for arbitrary values of the shear 
rate a. 

Finally, it is worth remarking how important exact solu- 
tions of the Boltzmann equation are, especially in non- 
homogeneous situations. They are useful to improve our un- 
derstanding of nonequilibrium phenomena and also to assess 
the reliability of approximate methods or kinetic models. The 
solution we have dealt with in this paper has been inspired 
and suggested by a solution to the BGK equation having a 
similar structure. This shows the interest of using kinetic 
models as a means to explore the possibility of finding exact 
solutions of the Boltzmann equation. 
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APPENDIX A: COLLISIONAL MOMENTS 

In this appendix we list the collisional moments Jk , Eq. 
(19), for Maxwell molecules through order k= 4. They are 

J, 10= - SVM, 10, (Ala) 

@lb) 

J111= - $vM*11, (A24 
Jzlo= - 2 v[MzIo -b'f0,2+"030)l~ 

J3~=-$v[M BOO- Oh20+~~02j19 

(A2b) 
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15 2P200 * (B6c) 

Thus, &$) = - &. ,I..&$~’ = - 2, ,u,$%~’ = 2. These are Bur- 
nett coefficients related to the viscometric functions. 

Let us consider now Eq. (47) with J’=O and 
k={310), {130}, and (112): 

$-(g+))p ug+(~w-~)(pyy f/.&q-& 
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The solution of this set of 
ml)- (o;1)=3P~~~)= -4. 

equations is 
P310 --PI30 

Next, we make $= 1 and k={300}t { 120)) and { 102) in 
Eq. (47): 
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The super-Burnett coefficient ,u$!;~’ is now easily ob- 
tained from Eq. (49) with %=O and k={llO}: 

p\p s 0310) 

We are going now to determine the coefficients leading 
to the heat flux. Let us take Eq. (48) with /=O and 
k={400}, (0401, {004}, (2201, {202}, and (022): 

- $= - ($+ &))&p f(&-i%)(CL220 ma + p~w&f’) 

+(~-~w)(~~~~,2’t-2~LL(oo2~)+~~~~))+(~0--), 

(Blla) 

2= -($+ &)/Lgg) -i- ( g6J - &) (/&h2) + p$i?“‘) 

+(~-~w)(~~2)+2~~~i?2)+~~~z))-(~-~w), 

@  llb) 

+ ( $- &w)(&&2)~t 2&j;)+ ,u)$f’) - &w, (B 

-2- 5 --GT+%4P220 (k2) -t ( $- gp)&;2) + ( j&J - hii> 

x(/u~y+&p) . - 

llc) 

+(&I- $J)(p$;~2) -I- putppj + ( ;- &o), 
Phys. Fluids, Vol. 7, No. 11, November 1995 

(Blld) 
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The solution of this set of six coupled equations is 
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c- 1.091, (B 12$) 
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PO40 - 8575~ = - 1.232, (B 12b) 
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(B12cj 

f&p= 18w2- 10591w+79233 
771750.l 

- 0.229, (B 12d) 

#&;‘= 13802+ 12719w- 8232 
77175w 

-0.132, (B12e) 

VW)- _ - 1380’+ 171710+8232 
PO22 - 77175w = - 0.255. 

(B12f) 

Finally, from Eq. (48) with /= 1 and k={210}, {030}, and 
{012}, one gets 

(0;2) 
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The solution is 

c1.2)- _ 1692m2-207389wf 1901592 
P2lb - 4167450~ 

z-0.114, 

(B14a) 

i1;2)= - 1692w” -I- 4336129w + 568008 
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-3.264, 

(B 14b) 

11;2)= -4572~“+3623809w+ 197568 
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-0.883, 

(B 14cj 
where use has been made of Eqs. (B12b), (B12d), and 
(B12f). 
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