Monte Carlo simulation of the Boltzmann equation for uniform shear flow
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The Boltzmann equation is numerically solved by means of the Direct Simulation Monte Carlo
method for molecules interacting via repulsive*-potentials under uniform shear flow far from
equilibrium. The non-Newtonian shear viscosity is found to be rather insensitive to the interaction
model. The results show that the divergence of velocity moments of degree equal to or larger than
four obtained from an exact solution for Maxwell molecul@bys. Rev. Lett71, 3971(1993] is

also present for other interaction potentials. 1®96 American Institute of Physics.
[S1070-663(196)03307-1

One of the rare cases for which the nonlinear Boltzmannhijrd term represents the thermostat fore®. Since the
equation allows an exact analysis is the uniform shear flovproblem is spatially homogeneous in the Lagrangian frame,
(USP. In this state’ the only non-zero hydrodynamic gradi- only the velocities/;,i=1, ... N of a system oN particles
ent isdu,/dy=a, whereu(r) is the flow velocity anda is  need to be stored. The main quantities are the pressure ten-
the constant shear rate. Moreover, this state becomes spgor,
tially homogeneous in the Lagrangian frame, i.e.
f(r,v,t)="f(V,t), wheref is the velocity distribution func- mn
tion andV=v—u is the peculiar velocity. In principle the P= N
USF state is not steady since the temperature increases in
time (ViSCOUS heating In order to prevent this effect, an and, more genera”y, Ve|0city moments of the form
artificial “drag” force of the form F"=—maV is usually
introduced? 1 N

In 1956, Ikenberry and Truesdébbtained explicitly the (V)=% Z v/ 3
second-degree momer{fgessure tenspfor arbitrary values =t
of the shear rate as a function of time, in the special case afye have also computed the marginal distributig(V,),
Maxwell molecules, namely particles interacting via anwhered (V,)AV, is the fraction of particles having veloci-

r ~“4-potential. Recently, the fourth-degree moments havgjeg V; such thatV;,>0 andV,— AV, <V, <V,+AV,.
also been obtainelt In contrast to the regular behavior of ag usually done in the DSMC method, the above quantities
the pressure tensor, the fourth-degree moments diverge bgre averaged over an ensemble tf replicas. In our simu-
yond a critical shear rata,=6.84% (v being an effective |ations, we have takeN=5x 10" particles and a time-step
collision frequency. This singular behavior extends to At=0.003 "1, wherev=nksT/7ns, 7ns being the Navier-
higher-degree moments, the values of the critical shear rat§iokes shear viscosity. Henceforth, we takeé! and
being a decreasing function of the degrek.natural ques- J2kgT/m/v as the unit of time and the unit of length, re-
tion is whether the above singular behavior also appears fafpectively. In the analysis of the time evolution of second-
other interaction potentials. Except for Maxwell molecules,gegree moments the number of replicas has béen25 for

the moment hierarchy cannot be solved exactly, so that the, . 4 and /=100 for = 4; in the case of higher moments,
problem becomes untractable from an analytical point of ;=70 and 200, respectively. In the evaluation of the distri-
view. In order to overcome these difficulties, in this Brief pytion function we have takenV,=0.012 and instead of
Communication we use the Direct Simulation Monte Carlogyeraging over different replicas, we have averaged over
(DSMC) method to numerically solve the Boltzmann equa- time intervals.

tion for repulsive interactions of the forgh(r) =« r~#, with The main transport coefficient is the nonlinear shear vis-
©=4,6,8,12, ande. This method has proved to exhibit & cosjty =—P,,/a. Although the hydrodynamic definition
good agreement with the exact solution for Maxwell mol-of this coefficient is only meaningful in the long-time limit
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ecules under USF? _ . (steady-state it is interesting to introduce a time-dependent
Under the assumptions established above for the USF, iy order to analyze its transient regime. In Fig. 1, we plot
the Boltzmann equation can be writtert as the reduced shear viscosity = 5/ 7ys as a function of time
p P for a=6. Also shown is the exact curve for Maxwell mol-
Ef_avya_vxf B (VHy=J[f,f]. (1) ecules, although it is hardly distinguishable from the simula-

tion data for this interaction. It is clear that most of the in-
The second term on the left-hand side represents an inertifllence of the potential has been scaled out by the choice of
force F"=— maVy§< due to the Lagrangian frame, while the the reduced quantities. This is particularly remarkable if one
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FIG. 1. Time evolution of the reduced shear viscosity, obtained by simulaFIG. 3. Time evolution of(V®), obtained by simulation, at shear rate
tion, at shear rate=6 and for(from bottom to top x«=4,6,8,12, and» a=7.33 and for(@ u=4, (b) ©=8, () u=12, and(d) u=-<°.

(solid lineg. The dashed line corresponds to the exact solution for Maxwell

molecules p=4).

2.346<a<6.845. The evolution ofV®) is shown in Fig. 3.
takes into account that at= 6 the non-Newtonian effects are This moment seems to diverge in time far=12, while it
very important ¢* ~0.1). This hydrodynamic value slightly - still reaches a stationary value for hard spheres. The absence
increases as the interaction becomes harder. of divergence of the moment&/#) and(V®) ata=7.33 for

Figure 2 shows the time evolution of the fourth-degreehard spheresy =) might be due to the fact that the shear

moment(V*) ata=7.33 and foru=4,8,12, ande. We ob-  rate is not sufficiently large and/or the degree of the mo-
serve again a good agreement between éeatt simulation  ments is not sufficiently high. In order to shed light on this
results for Maxwell molecules. The fact that the data forpoint, in Fig. 4 we p|01(v/), /=46,8,and 10, aa=10 and
u=6 (not shown in Fig. 2 for the sake of clariyand  for hard spheres. It is evident that the moments considered
n=28 practically overlap with those fou=4 indicates that reach steady-state values after a few collision times. These
(V%) ata=7.33 diverges for those cases as well. Neverthevalues are, on the other hand, much larger than the equilib-
less, the data fop=12 andu = seem to reach stationary rium ones. For instance{V%~10® at a=10, while
values. The interesting question is whether this is also trugy,10, _ 10395 ilibri i
for moments of a degree higher than 4. As a matter of fact, ig\éo(\?vn instig_atAheﬁglgg:ughjgcqu:ztir;ﬁsri \(/)(falct)gﬁy r;ilflts

: 4
the par'gcula_r case of Maxwell moleculegV*) converges ments are convergent for any shear rate in the case of hard
but (V°) diverges for shear rates within the range spheres.
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FIG. 2. Time evolution of(V%), obtained by simulation, at shear rate
a=7.33 and for(@ u=4, (b) ©=8, (c) u=12, and(d) u=. The dashed  FIG. 4. Time evolution ofV*), //=4,6,8,and10 at shear rade=10 and for

line is the exact solution for Maxwell moleculeg €4). hard spheresy=).
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. . . , limit of hard spheres. A possible physical scenario is the
following one. The viscous heatidgvhich is produced in the
Lagrangian frame by the nonconservative fofé® in Eq.
(1)] is only globally controlled by the thermostat forde".
This means that theelatively smallhigh-velocity population
may increase in time. This increase can be compensated for
if collisions involving high-velocity particles are sufficiently
frequent, so that the energy is redistributed. As the interac-
tion becomes harder, the collision frequency for high-
velocity particles increases and the energy redistribution is
more efficient. This is consistent with a stationary high-
. velocity tail of the form f(V)~V 5 7@n)  where
o \, Ll lima_oo(a,u)=lim, .o(au)== and lim, .o(a,u)
IR ’[, 1 =0. This algebraic decay leads to the divergence of moments
. . . . ! RN of degreek=2+a(a,u). The verification of this scenario
-2 -1 0 ! & by means of simulation is a very hard task, since it requires
the accurate determination of the high-velocity population.
FIG. 5. Plot of the reduced velocity distribution functidR(V,) at In that region, a huge number of particles are needed to
a=7.33foru=4 (—), u=8 (- — 9, andu=2 (- - -). The functions have ~ achieve a small noise/signal ratio. We plan to undertake this

been averaged over the time intervakit3<14.5. The dotted line represents study in the near future.
the stationary solution of the BGK kinetic equation.
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ciently large shear ratd&is also present for other interac- dilute gas,” Physica AL74 355(1991). In this paper, the BGK equation is
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tions. O_n the O_ther_ hand, this phenomenon iS_ less nthriOusl\llalxwell molecules also apply for any potential in the presence of the
as the interaction is harder and seems to disappear in thehermostat.
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