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The Boltzmann equation is numerically solved by means of the Direct Simulation Monte Carlo
method for molecules interacting via repulsiver2m-potentials under uniform shear flow far from
equilibrium. The non-Newtonian shear viscosity is found to be rather insensitive to the interaction
model. The results show that the divergence of velocity moments of degree equal to or larger than
four obtained from an exact solution for Maxwell molecules@Phys. Rev. Lett.71, 3971~1993!# is
also present for other interaction potentials. ©1996 American Institute of Physics.
@S1070-6631~96!03307-7#

One of the rare cases for which the nonlinear Boltzmann
equation allows an exact analysis is the uniform shear flow
~USF!. In this state,1 the only non-zero hydrodynamic gradi-
ent is ]ux /]y5a, whereu(r ) is the flow velocity anda is
the constant shear rate. Moreover, this state becomes spa-
tially homogeneous in the Lagrangian frame, i.e.
f (r ,v,t)5 f (V,t), where f is the velocity distribution func-
tion andV5v2u is the peculiar velocity. In principle the
USF state is not steady since the temperature increases in
time ~viscous heating!. In order to prevent this effect, an
artificial ‘‘drag’’ force of the form Fth52maV is usually
introduced.2

In 1956, Ikenberry and Truesdell3 obtained explicitly the
second-degree moments~pressure tensor! for arbitrary values
of the shear rate as a function of time, in the special case of
Maxwell molecules, namely particles interacting via an
r24-potential. Recently, the fourth-degree moments have
also been obtained.1,4 In contrast to the regular behavior of
the pressure tensor, the fourth-degree moments diverge be-
yond a critical shear rateac.6.845n (n being an effective
collision frequency!. This singular behavior extends to
higher-degree moments, the values of the critical shear rate
being a decreasing function of the degree.5 A natural ques-
tion is whether the above singular behavior also appears for
other interaction potentials. Except for Maxwell molecules,
the moment hierarchy cannot be solved exactly, so that the
problem becomes untractable from an analytical point of
view. In order to overcome these difficulties, in this Brief
Communication we use the Direct Simulation Monte Carlo
~DSMC! method6 to numerically solve the Boltzmann equa-
tion for repulsive interactions of the formf(r ) } r2m, with
m54,6,8,12, and̀ . This method has proved to exhibit a
good agreement with the exact solution for Maxwell mol-
ecules under USF.7,8

Under the assumptions established above for the USF,
the Boltzmann equation can be written as1
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The second term on the left-hand side represents an inertial
forceFin52maVyx̂ due to the Lagrangian frame, while the

third term represents the thermostat forceFth. Since the
problem is spatially homogeneous in the Lagrangian frame,
only the velocitiesV i ,i51, . . . ,N of a system ofN particles
need to be stored. The main quantities are the pressure ten-
sor,
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and, more generally, velocity moments of the form
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We have also computed the marginal distributionFx(Vx),
whereFx(Vx)DVx is the fraction of particles having veloci-
ties V i such thatViy.0 andVx2

1
2DVx,Vix,Vx1

1
2DVx .

As usually done in the DSMC method, the above quantities
are averaged over an ensemble ofN replicas. In our simu-
lations, we have takenN553104 particles and a time-step
Dt50.003n21, wheren5nkBT/hNS, hNS being the Navier-
Stokes shear viscosity. Henceforth, we taken21 and
A2kBT/m/n as the unit of time and the unit of length, re-
spectively. In the analysis of the time evolution of second-
degree moments the number of replicas has beenN 525 for
m Þ 4 andN 5100 form54; in the case of higher moments,
N 570 and 200, respectively. In the evaluation of the distri-
bution function we have takenDVx50.012 and instead of
averaging over different replicas, we have averaged over
time intervals.

The main transport coefficient is the nonlinear shear vis-
cosity h52Pxy /a. Although the hydrodynamic definition
of this coefficient is only meaningful in the long-time limit
~steady-state!, it is interesting to introduce a time-dependent
h in order to analyze its transient regime. In Fig. 1, we plot
the reduced shear viscosityh*5h/hNS as a function of time
for a56. Also shown is the exact curve for Maxwell mol-
ecules, although it is hardly distinguishable from the simula-
tion data for this interaction. It is clear that most of the in-
fluence of the potential has been scaled out by the choice of
the reduced quantities. This is particularly remarkable if one
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takes into account that ata56 the non-Newtonian effects are
very important (h*'0.1). This hydrodynamic value slightly
increases as the interaction becomes harder.

Figure 2 shows the time evolution of the fourth-degree
moment^V4& at a57.33 and form54,8,12, and̀ . We ob-
serve again a good agreement between exact1 and simulation
results for Maxwell molecules. The fact that the data for
m56 ~not shown in Fig. 2 for the sake of clarity! and
m58 practically overlap with those form54 indicates that
^V4& at a57.33 diverges for those cases as well. Neverthe-
less, the data form512 andm5` seem to reach stationary
values. The interesting question is whether this is also true
for moments of a degree higher than 4. As a matter of fact, in
the particular case of Maxwell molecules,5 ^V4& converges
but ^V6& diverges for shear rates within the range

2.346,a,6.845. The evolution of̂V6& is shown in Fig. 3.
This moment seems to diverge in time form512, while it
still reaches a stationary value for hard spheres. The absence
of divergence of the moments^V4& and^V6& at a57.33 for
hard spheres (m5`) might be due to the fact that the shear
rate is not sufficiently large and/or the degree of the mo-
ments is not sufficiently high. In order to shed light on this
point, in Fig. 4 we plot̂ Vl &, l 54,6,8,and 10, ata510 and
for hard spheres. It is evident that the moments considered
reach steady-state values after a few collision times. These
values are, on the other hand, much larger than the equilib-
rium ones. For instance,̂V10&;108 at a510, while

^V10&5 10 395
32 at equilibrium. On the basis of the results

shown in Fig. 4, we can conjecture thatall the velocity mo-
ments are convergent for any shear rate in the case of hard
spheres.

FIG. 1. Time evolution of the reduced shear viscosity, obtained by simula-
tion, at shear ratea56 and for ~from bottom to top! m54,6,8,12, and̀
~solid lines!. The dashed line corresponds to the exact solution for Maxwell
molecules (m54).

FIG. 2. Time evolution of^V4&, obtained by simulation, at shear rate
a57.33 and for~a! m54, ~b! m58, ~c! m512, and~d! m5`. The dashed
line is the exact solution for Maxwell molecules (m54).

FIG. 3. Time evolution of^V6&, obtained by simulation, at shear rate
a57.33 and for~a! m54, ~b! m58, ~c! m512, and~d! m5`.

FIG. 4. Time evolution of̂Vl &, l 54,6,8,and10 at shear ratea510 and for
hard spheres (m5`).
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Apart from the analysis of the velocity moments, a com-
plete description of the state of the system requires the
knowledge of the velocity distribution function. This func-
tion is not explicitly known, even in the case of Maxwell
molecules, but can be obtained from the simulation results.

Figure 5 showsRx(Vx)5Fx(Vx)/(
1
2p

21/2e2Vx
2
) at a57.33

for m54,8, and̀ . We have also included the exact solution
of the BGK kinetic equation.9 The distortion from local equi-
librium is significant in all the cases (Rx Þ 1), but an impor-
tant influence of the interaction potential on the shape of the
distribution function is observed. The BGK distribution,
which is independent of the interaction model, reproduces
fairly well the main qualitative features of the distribution
functions.

In summary, we have solved the Boltzmann equation for
repulsiver2m-potentials in the USF state by means of the
DSMC method. The results show that, by a convenient scal-
ing of the physical quantities, the nonlinear shear viscosity is
rather insensitive to the choice of the interaction potential. In
contrast, the shape of the velocity distribution function is
clearly affected by the interaction considered. In particular,
as the hardness of the interaction increases, so does the con-
centration of particles with velocities close to zero. The main
conclusion of this Brief Communication is that the known
divergence of the moments for Maxwell molecules at suffi-
ciently large shear rates4,5 is also present for other interac-
tions. On the other hand, this phenomenon is less notorious
as the interaction is harder and seems to disappear in the

limit of hard spheres. A possible physical scenario is the
following one. The viscous heating@which is produced in the
Lagrangian frame by the nonconservative forceFin in Eq.
~1!# is only globally controlled by the thermostat forceFth.
This means that therelatively smallhigh-velocity population
may increase in time. This increase can be compensated for
if collisions involving high-velocity particles are sufficiently
frequent, so that the energy is redistributed. As the interac-
tion becomes harder, the collision frequency for high-
velocity particles increases and the energy redistribution is
more efficient. This is consistent with a stationary high-
velocity tail of the form f (V);V252s(a,m), where
lima→0s(a,m)5 limm→`s(a,m)5` and lima→`s(a,m)
50. This algebraic decay leads to the divergence of moments
of degreek>21s(a,m). The verification of this scenario
by means of simulation is a very hard task, since it requires
the accurate determination of the high-velocity population.
In that region, a huge number of particles are needed to
achieve a small noise/signal ratio. We plan to undertake this
study in the near future.
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FIG. 5. Plot of the reduced velocity distribution functionRx(Vx) at
a57.33 form54 ~—!, m58 ~– – –!, andm5` ~- - -!. The functions have
been averaged over the time interval 13,t,14.5. The dotted line represents
the stationary solution of the BGK kinetic equation.
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