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We present a modification of a recently proposed Monte Carlo simulation mgthbd Montanero

and A. Santos, Phys. Rev.5, 438(1996] to numerically solve the Enskog equation for a dense
hard-sphere fluid. While in the original method momentum and energy are conserved by collisions
only on averagg¢as happens with Nanbu's scheme of the direct simulation Monte Ca8MC)

method for solving the Boltzmann equatijpnthe modified algorithm(that extends Bird's
null-time-counter version of the DSMC methogdreserves exactly the conservation laws. Both
methods are applied to fluids under shear for a wide range of densities. The agreement with the
theoretical predictions for the shear viscosity and the viscometric coefficients is found to be
excellent. ©1997 American Institute of Physids$$1070-663(97)00507-2

In the context of dilute gases, the Boltzmann equationy(r,r + o) = x(n(r + 30)), where x(n) is the equilibrium
(BE) (Ref. 1) provides an adequate description for states arpair correlation function at contact amr) is the number
bitrarily far from equilibrium. In this low-density regime, the density field. In the revised Enskog theofRET),” devel-
information contained in the BE is valid even for large gra-oped by van Beijeren and Erngt(r,r + o) is identified with
dients of the hydrodynamic fields, beyond the range of apthe local equilibrium pair correlation function in a nonuni-
plicability of the hydrodynamic equations. Nevertheless, beform state, so that it is a functional of the density field. From
cause of the mathematical complexity of the BE, only agq. (1) one can obtain the balance equations for the densities
limited number of exact solutions are knO\%/rIf one is of mass’mn(r't)’ momentum,mn(r,t)u(r,t)' and kinetic
mainly interested in a semiquantitative description, the abovenergy, 3n(r,t)kgT(r,t), with explicit expressions for the

difficulty can be overcome by the use of simplified kinetic kinetic and collisional transfer parts of the corresponding
models® Otherwise, one must resort to numerical methodsgxes. By means of the standard Chapman—Enskog

the favorite of which is the so-called direct simulation Monte method! one gets the Navier—Stokes constitutive equations
Carlo (DSMC) method”? first introduced by Bird in 1963. and identifies the transport coefficients.
The DSMC method has proven to be a very reliable and  Needless to say, the EE is even more difficult to solve
useful tool to analyze nonequilibrium states of dilute gasesihan the BE. Recently, simplified kinetic models that keep
A number of different schemes of this algorithm have beenne essential features of the EE have been propbaedin
proposed, two of the most widely used ones being Bird'sne case of the BE, a different approach consists of solving
null-time-counter(NTC),* and Nanbu’s the EE by means of a numerical Monte Carlo algorithm in
In 1992, Enskofymodified the BE for hard spheres in an the same spirit as the DSMC method of solving the BE. The
attempt to incorporate finite-density effects. He i”tmduceqmplementation of this objective is not straightforward. A
two significant changeda) the finite distance between the fst attempt by Alexander, Garcia, and Aldgives the cor-
centers of a colliding pair, antb) the increase of the colli- gct equation of state but does not reproduce the Enskog
sion frequency due to excluded volume effects. More specifiyransport coefficients. We have recently developed an exten-
cally, the Enskog equatiofEE) for the distribution function  gjon of the DSMC method, the Enskog simulation Monte
f readd® Carlo (ESMC) method!® that is fully consistent with the
P o i transport coefficients derived from the EE? In the low-
V- 5) f(r,v,t)zozf dvlf do®(o-g)(o-Q) density limit, this ESMC method reduces to Nanbu’'s scheme
of the DSMC method. The key difference between Bird's
X[ x(r,r—o)f(r,v',t) and Nanbu’'s schemes is that, in the latter, only one of the
two particles involved in a collision changes its velocity, so
Xf(r—ovy,)—x(r,r+o) that momentum and energy are conserved only on average.
XE(r v, O f(r+ovy,b)]. (1) This might lead to a bias in the statistical errb?ﬁorcing the
A use of very large values for the numbérof simulated mol-
Here, ©(x) is the Heaviside functiong=oo (o being the  ecules. Although we have not observed any problem associ-
diameter of a sphejeg=v—v,, V'=v—(o-g)o, andv;  ated with the lack of detailed conservation of momentum and
=v,+(0-g)o. In the standard Enskog theor$SET),'  energy in our ESMC method la Nanbu(hereafter, referred
to as the ESMC1 methgdit is highly desirable to adapt it to
3Electronic mail: jmm@unex.es preserve the exact conservation laws. The objective of this
PElectronic mail: andres@unex.es Fax34—24—275428. paper is to describe this modified ESMC methoth Bird
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FIG. 1. Plot ofx/° (circles and sold lineand of 7'/ ° (triangles and FIG. 2. The same as in Fig. 1, but fer¥, and — W% .

dashed lingas functions oh* . The open and solid symbols are the results
obtained from the ESMC1 and ESMC2 methods, respectively. The lines are
the theoretical predictions. The upper scale corresponds to the reduced den-

sity n*, according to the Carnahan—Starling equation of state. wherewpa, is an upper bound of the s}, k being any
particle of celll andl any particle of those cells separated a

distanceo from |. For each particle of this sample, the
(hereafter, referred to as the ESMC2 methadd compare following steps are taker(1) a given directiono; is chosen
both of them with analytical results obtained from the EE forat random with equiprobability2) a particlej belonging to

the uniform shear floWUSH state. the cellJ that contains the poimt + oo is chosen at random
As in DSMC? in the ESMC methodN simulated par- With equiprobability;(3) the collision between particlesand
ticles are contained in a volumé split into cells with a ] is accepted with a probability equal to® (o,

typical sizeAL much smaller than both the mean-free path" gij) @ij / @max; and(4) if the collision is accepted the post-
and the characteristic hydrodynamic length. The nuntber collision velocities v/ =v;—(o;-g;j)o; and vj=v;+(o;

has a statistical meaning, so that the rafi/ does not co- - Jij) 0 are|mmed|atelya53|gned to part|clesandj, respec-
incide, in general, with the physical average density of interdively. In both methods, the physical quantities are evaluated
est, n; consequently, the ratie=n/(N/V) is a technical in every cell by averaging over the particles inside that cell
parameter that can be chosen independent of the physicand also over an ensemble .of" different realizations. In
densityn. The “local” density of celll is n;=(N,/V,)v, particular, the kinetic and collisional transfer contributions of
whereN, andV, are the number of particles and volume of the local pressure tensor are obtained, in each realization, as
cell I, respectively. The positions and velocities are updated

in two stagegconvection and collisionshat are decoupled | v mE (vi—u)(v;—up), (2

for a time stepAt much smaller than both the mean time Lodel

between collisions and the hydrodynamic time. In the con-
vection stage, the particles move fredéiynder the possible Py=—
action of an external forgeand those leaving the volume are
reentered in accordance with the boundary conditions. Thén Eq. (2), u, =N, 'Z;_v; is the local velocity. In Eq(3),

only distinction between the ESMC1 and the ESMC2 meththe summation restricts to particles involved in accepted col-
ods appears in the treatment of the collision stage. Inisions andc=3 (ESMCJ) or c=1 (ESMC2. Finally, the
ESMC11° the following steps are taken for every particle SET is |mplemented by making(r;,ri+oo)= X(n,,)
=1,...N: (1) a given directiono; is chosen at random with where the cell’ is the one containing the point+ 300, ; in
equiprobability;(2) a test particlg] belonging to the cell  the RET,x(r;,r;+ oo;) must be computed from the knowl-
that contains the point;+oa; is chosen at random with edge of the density in al cell$ny}.

equiprobability;(3) the collision between particlesand] is The ESMC1 method has been shown to reproduce cor-
accepted with a probab|I|ty equal ©(a;-g;)w;;, where rectly the shear viscosityf:** the viscometric coefficients,
gj=Vi—vV; and wjj=o 247 (0 Gij) x(ri,r +00)n;At; and  and the thermal conductivitygiven by the EE. To check the
(4) if the collision is accepted, the postcollision velocity  validity of the ESMC2 method proposed in this paper, we
=v,—(0o;- gij){ri is assigned to particle once the collision have applied it to the USF state. This nonequilibrium state is
stagehas finishedor all the patrticles. Notice that the role of characterized by a constant density, a uniform temperature,
particle j is to sample the velocity distribution in the cell and a linear velocity profileu(r) =ayX, wherea is the con-

J, so that its velocity is not changed. In the modified methodstant shear rate. The appropriate boundary conditions leading
(ESMC2 we propose here, the collision stage is inspired into this state are Lees—Edward&‘swhich can be seen as
Bird's NTC algorithm?* For each celll, a sample of periodic boundary conditions in the local Lagrangian
3N, wmay Particles are chosen at random with equiprobability,framel® Since the density is uniform, there is no distinction

VAt 2 —Vj) 0. (3
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FIG. 3. The same as in Fig. 1, but fer¥, and—\If‘g, FIG. 4. The same as in Fig. 1, but for

between the SET and the RET in this state. We have solvedelocity moments” Also shown are the simulation data ob-
the EE for USF by means of the ESMC2 method for 0.05tained in Ref. 11 with the ESMC1 method. As one can see,
<n* y=<4.5, that, according to the Carnahan—Starling equathe agreement is very good in both cases.
tion of state'® is equivalent to the range 0.04h* =no*° In summary, the two simulation Monte Carlo methods
<0.891. In all the cases, the system had a dize20\ (ESMC1 and ESMCRare equally useful to solve numeri-
(where A\=o/v27n* x is the generalized mean-free path cally the EE. While the ESMC1 method proposed in Ref. 10
along they axis and was split into 100 layers of equal width reduces to Nanbu’s DSMC mettiih the limit of dilute
(i.e., AL=0.2\). We have considereti=10 particles, a gases, the ESMC2 method proposed in this paper becomes
time stepAt=10"27 (where 7= %/ ynkgT is an effective  Bird’s NTC version of the DSMC methddn the same limit.
mean time between collisions;’ being the Boltzmann vis- Apart from the problems that Nanbu’s method might present
cosity), and . /=20 replicas. Since the temperature in- if N is not sufficiently largé? the choice between both algo-
creases due to viscous heating effedts, decreases with rithms is mainly a matter of taste. A key factor to prefer one
time (roughly ast™!) and so does the reduced shear rateover the other is computational efficiency. In our application
a*=ar. to the USF state, we have found the ESMC2 method to be
In the simulations, the kinetic and collisional parts of thetypically twice as efficient as the ESMC1 method.
pressure tensd? have been evaluated as functions of time.
From them, we have obtained tti¢avier—Stokesshear vis- ACKNOWLEDGMENTS
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