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We present a modification of a recently proposed Monte Carlo simulation method@J. M. Montanero
and A. Santos, Phys. Rev. E54, 438 ~1996!# to numerically solve the Enskog equation for a dense
hard-sphere fluid. While in the original method momentum and energy are conserved by collisions
only on average@as happens with Nanbu’s scheme of the direct simulation Monte Carlo~DSMC!
method for solving the Boltzmann equation#, the modified algorithm~that extends Bird’s
null-time-counter version of the DSMC method! preserves exactly the conservation laws. Both
methods are applied to fluids under shear for a wide range of densities. The agreement with the
theoretical predictions for the shear viscosity and the viscometric coefficients is found to be
excellent. ©1997 American Institute of Physics.@S1070-6631~97!00507-2#
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In the context of dilute gases, the Boltzmann equat
~BE! ~Ref. 1! provides an adequate description for states
bitrarily far from equilibrium. In this low-density regime, th
information contained in the BE is valid even for large gr
dients of the hydrodynamic fields, beyond the range of
plicability of the hydrodynamic equations. Nevertheless,
cause of the mathematical complexity of the BE, only
limited number of exact solutions are known.2 If one is
mainly interested in a semiquantitative description, the ab
difficulty can be overcome by the use of simplified kine
models.3 Otherwise, one must resort to numerical metho
the favorite of which is the so-called direct simulation Mon
Carlo ~DSMC! method,4 first introduced by Bird in 1963.
The DSMC method has proven to be a very reliable a
useful tool to analyze nonequilibrium states of dilute gas
A number of different schemes of this algorithm have be
proposed, two of the most widely used ones being Bir
null-time-counter~NTC!,4 and Nanbu’s.5

In 1992, Enskog6 modified the BE for hard spheres in a
attempt to incorporate finite-density effects. He introduc
two significant changes:~a! the finite distance between th
centers of a colliding pair, and~b! the increase of the colli-
sion frequency due to excluded volume effects. More spe
cally, the Enskog equation~EE! for the distribution function
f reads1,6

S ]

]t
1v•

]

]r D f ~r ,v,t !5s2E dv1E dŝQ~ŝ•g!~ŝ•g!

3@x~r ,r2s! f ~r ,v8,t !

3 f ~r2s,v18 ,t !2x~r ,r1s!

3 f ~r ,v,t ! f ~r1s,v1 ,t !#. ~1!

Here,Q(x) is the Heaviside function,s5sŝ ~s being the
diameter of a sphere!, g[v2v1 , v85v2(ŝ•g)ŝ, and v18
5v11(ŝ•g)ŝ. In the standard Enskog theory~SET!,1

a!Electronic mail: jmm@unex.es
b!Electronic mail: andres@unex.es Fax:1342242275428.
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x(r ,r6s)5x„n(r6 1
2s)…, where x(n) is the equilibrium

pair correlation function at contact andn(r ) is the number
density field. In the revised Enskog theory~RET!,7 devel-
oped by van Beijeren and Ernst,x(r ,r6s) is identified with
the local equilibrium pair correlation function in a nonun
form state, so that it is a functional of the density field. Fro
Eq. ~1! one can obtain the balance equations for the dens
of mass,mn(r ,t), momentum,mn(r ,t)u(r ,t), and kinetic
energy, 32n(r ,t)kBT(r ,t), with explicit expressions for the
kinetic and collisional transfer parts of the correspond
fluxes. By means of the standard Chapman–Ens
method,1 one gets the Navier–Stokes constitutive equatio
and identifies the transport coefficients.

Needless to say, the EE is even more difficult to so
than the BE. Recently, simplified kinetic models that ke
the essential features of the EE have been proposed.8 As in
the case of the BE, a different approach consists of solv
the EE by means of a numerical Monte Carlo algorithm
the same spirit as the DSMC method of solving the BE. T
implementation of this objective is not straightforward.
first attempt by Alexander, Garcia, and Alder9 gives the cor-
rect equation of state but does not reproduce the Ens
transport coefficients. We have recently developed an ex
sion of the DSMC method, the Enskog simulation Mon
Carlo ~ESMC! method,10 that is fully consistent with the
transport coefficients derived from the EE.11,12 In the low-
density limit, this ESMC method reduces to Nanbu’s sche
of the DSMC method.5 The key difference between Bird’
and Nanbu’s schemes is that, in the latter, only one of
two particles involved in a collision changes its velocity,
that momentum and energy are conserved only on aver
This might lead to a bias in the statistical errors,13 forcing the
use of very large values for the numberN of simulated mol-
ecules. Although we have not observed any problem ass
ated with the lack of detailed conservation of momentum a
energy in our ESMC methodà la Nanbu~hereafter, referred
to as the ESMC1 method!, it is highly desirable to adapt it to
preserve the exact conservation laws. The objective of
paper is to describe this modified ESMC methodà la Bird
205710.00 © 1997 American Institute of Physics
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~hereafter, referred to as the ESMC2 method! and compare
both of them with analytical results obtained from the EE
the uniform shear flow~USF! state.

As in DSMC,4 in the ESMC methodN simulated par-
ticles are contained in a volumeV split into cells with a
typical sizeDL much smaller than both the mean-free pa
and the characteristic hydrodynamic length. The numbeN
has a statistical meaning, so that the ratioN/V does not co-
incide, in general, with the physical average density of int
est, n̄; consequently, the ration[n̄/(N/V) is a technical
parameter that can be chosen independent of the phy
density n̄. The ‘‘local’’ density of cell I is nI5(NI /VI)n,
whereNI andVI are the number of particles and volume
cell I , respectively. The positions and velocities are upda
in two stages~convection and collisions! that are decoupled
for a time stepDt much smaller than both the mean tim
between collisions and the hydrodynamic time. In the c
vection stage, the particles move freely~under the possible
action of an external force! and those leaving the volume a
reentered in accordance with the boundary conditions.
only distinction between the ESMC1 and the ESMC2 me
ods appears in the treatment of the collision stage.
ESMC1,10 the following steps are taken for every particlei
51,...,N: ~1! a given directionŝi is chosen at random with
equiprobability;~2! a test particlej belonging to the cellJ
that contains the pointr i1sŝi is chosen at random with
equiprobability;~3! the collision between particlesi and j is
accepted with a probability equal toQ(ŝi•gi j )v i j , where
gi j[vi2vj andv i j[s24p(ŝi•gi j )x(r i ,r i1sŝi)nJDt; and
~4! if the collision is accepted, the postcollision velocityvi8
5vi2(ŝi•gi j )ŝi is assigned to particlei , once the collision
stagehas finishedfor all the particles. Notice that the role o
particle j is to sample the velocity distribution in the ce
J, so that its velocity is not changed. In the modified meth
~ESMC2! we propose here, the collision stage is inspired
Bird’s NTC algorithm.4 For each cell I , a sample of
1
2NIvmax particles are chosen at random with equiprobabil

FIG. 1. Plot ofxh/h0 ~circles and solid line! and ofxhk/h0 ~triangles and
dashed line! as functions ofn* x. The open and solid symbols are the resu
obtained from the ESMC1 and ESMC2 methods, respectively. The lines
the theoretical predictions. The upper scale corresponds to the reduced
sity n* , according to the Carnahan–Starling equation of state.
2058 Phys. Fluids, Vol. 9, No. 7, July 1997
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wherevmax is an upper bound of the set$vkl%, k being any
particle of cellI and l any particle of those cells separated
distances from I . For each particlei of this sample, the
following steps are taken:~1! a given directionŝi is chosen
at random with equiprobability;~2! a particlej belonging to
the cellJ that contains the pointr i1sŝi is chosen at random
with equiprobability;~3! the collision between particlesi and
j is accepted with a probability equal toQ(ŝi

•gi j )v i j /vmax; and ~4! if the collision is accepted, the pos
collision velocities vi85vi2(ŝi•gi j )ŝi and vj85vj1(ŝi

•gi j )ŝi areimmediatelyassigned to particlesi and j , respec-
tively. In both methods, the physical quantities are evalua
in every cell by averaging over the particles inside that c
and also over an ensemble ofN different realizations. In
particular, the kinetic and collisional transfer contributions
the local pressure tensor are obtained, in each realization

PI
k5

n

VI
m(

iPI
~vi2uI !~vi2uI !, ~2!

PI
c52c

ns

VIDt
m(

iPI
~vi82vi !ŝi . ~3!

In Eq. ~2!, uI5NI
21( iPIvi is the local velocity. In Eq.~3!,

the summation restricts to particles involved in accepted c
lisions andc5 1

2 ~ESMC1! or c51 ~ESMC2!. Finally, the
SET is implemented by makingx(r i ,r i1sŝi)5x(nI 8),
where the cellI 8 is the one containing the pointr i1

1
2sŝi ; in

the RET,x(r i ,r i1sŝi) must be computed from the know
edge of the density in al cells,$nK%.

The ESMC1 method has been shown to reproduce
rectly the shear viscosity,10,11 the viscometric coefficients,11

and the thermal conductivity12 given by the EE. To check the
validity of the ESMC2 method proposed in this paper, w
have applied it to the USF state. This nonequilibrium state
characterized by a constant density, a uniform temperat
and a linear velocity profile:u(r )5ayx̂, wherea is the con-
stant shear rate. The appropriate boundary conditions lea
to this state are Lees–Edwards’s,14 which can be seen a
periodic boundary conditions in the local Lagrangi
frame.15 Since the density is uniform, there is no distinctio

re
en-

FIG. 2. The same as in Fig. 1, but for2C1 and2C1
k .
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between the SET and the RET in this state. We have so
the EE for USF by means of the ESMC2 method for 0.
<n* x<4.5, that, according to the Carnahan–Starling eq
tion of state,16 is equivalent to the range 0.047<n*[ns3

<0.891. In all the cases, the system had a sizeL520l
~where l5s/&pn* x is the generalized mean-free pat!
along they axis and was split into 100 layers of equal wid
~i.e., DL50.2l!. We have consideredN5105 particles, a
time stepDt51022t ~where t5h0/xnkBT is an effective
mean time between collisions,h0 being the Boltzmann vis-
cosity!, and N 520 replicas. Since the temperature i
creases due to viscous heating effects,Dt decreases with
time ~roughly ast21! and so does the reduced shear r
a*[at.

In the simulations, the kinetic and collisional parts of t
pressure tensorP have been evaluated as functions of tim
From them, we have obtained the~Navier–Stokes! shear vis-
cosity

x
h

h0
5 lim

a*→0

2Pxy

nkBTa*
, ~4!

and the~Burnett! viscometric coefficients

C15 lim
a*→0

Pyy2Pxx

nkBTa*
2 , C25 lim

a*→0

Pzz2Pyy

nkBTa*
2 ,

g5 lim
a*→0

p2p0
nkBTa*

2 . ~5!

The coefficientsC1,2 measure normal stress effects, whileg
measures the increase of the nonequilibrium hydrost
pressurep5 1

3 TrP from its equilibrium valuep0 . In prac-
tice, the limita*→0 has been replaced by an average o
the interval 0.04,a*,0.06. Figures 1–4 show the compa
son between the simulation data and the theoretical pre
tions; in addition to the total values of the shear viscosity a
viscometric coefficients, their kinetic contributions~denoted
with the superscriptk and defined in Ref. 10! are also shown.
In the case of the viscometric coefficients, the theoret
results correspond to a recent perturbative solution of the
through second order in the shear rate and fourth order in

FIG. 3. The same as in Fig. 1, but for2C2 and2C2
k .
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velocity moments.17 Also shown are the simulation data ob
tained in Ref. 11 with the ESMC1 method. As one can s
the agreement is very good in both cases.

In summary, the two simulation Monte Carlo metho
~ESMC1 and ESMC2! are equally useful to solve numer
cally the EE. While the ESMC1 method proposed in Ref.
reduces to Nanbu’s DSMC method5 in the limit of dilute
gases, the ESMC2 method proposed in this paper beco
Bird’s NTC version of the DSMC method4 in the same limit.
Apart from the problems that Nanbu’s method might pres
if N is not sufficiently large,13 the choice between both algo
rithms is mainly a matter of taste. A key factor to prefer o
over the other is computational efficiency. In our applicati
to the USF state, we have found the ESMC2 method to
typically twice as efficient as the ESMC1 method.
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