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Nonlinear Poiseuille flow in a gas
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The nonlinear Boltzmann equation for the steady planar Poiseuille flow generated by an external
field g is exactly solved through ordegf. It is shown that the pressure and temperature profiles, as
well as the momentum and heat fluxes, are in qualitative disagreement with the Navier—Stokes
predictions. For instance, the temperature has a local minimum at the middle layer instead of a
maximum. Also, a longitudinal component of the heat flux exists in the absence of gradients along
that direction and normal stress differences appear although the flow is incompressible. To account
for theseg?-order effects, which are relevant when the hydrodynamic quantities change over a
characteristic length of the order of the mean free path, it is shown that the Chapman—Enskog
expansion should be carried out three steps beyond the Navier—Stokes leve@98cAmerican
Institute of Physicg.S1070-663198)01404-4

I. INTRODUCTION 9
Qy=—k — T, (1.4b
One of the most well-known textbook examples in fluid ay

dynamics is the Poiseuille flowfirst studied by Poiseuille wherep=1Tr P is the hydrostatic pressurd, is the tem-

er:)dn;chir;rlagl]ifpca:)sr:sctggiucrz).slé ggz;s’;spcr)(f)éti:ctjet?;g g?\?gerature, andy and k are the shear viscosity and the thermal
sure difference at the distant ends of the channel. The sam OndUCtIVIty’ respectively. Combination of Eqd.1)-(1.4

effect is obtained if the pressure is constant along the channg
but a longitudinal force(e.g., gravitatioh exists>™ To fix ap

ideas, let us consider a fluid enclosed between two infinite — =0, (1.5
parallel plates normal to thg axis and located af= +
which are kept at rest. A constant external force per unit P
massg=gx is applied along a directiox parallel to the
plates. After a certain transient stage, a steady state with
gradients along thg direction is reached. Under these con-

AUy

7y ﬂwz—Pg, (1.9

ditions, the conservation equations for momentum and en- J aT:_ ” ('wx (1.7
ergy reduce to ay —dy ay
P, Equation(1.6) gives a paraboliclike velocity profile, that is
ay P9 (1.1@  characteristic of the Poiseuille flow. The temperature profile
has, according to Eq(1.7), a quarticlike shape. Strictly
dPyy speaking, these NS profiles are more complicated than just
W: ' (1.1b polynomials due to the temperature dependence of the trans-
port coefficients. Since the hydrodynamic profiles must be
duy  dqy symmetric with respect to the playe=0, their odd deriva-
Py W + W =0, (1.2 tives must vanish at=0. Thus from Eqs(1.6) and(1.7) we
have

wherep is the mass density is the flow velocity,P is the

pressure tensor, anglis the heat flux. Equationél.1) and J%uy o9
(1.2 become a closed set if one assumes the validity of the ay? =T 7]_0= 18
Navier—StokegNS) constitutive equations, namely y=0
-p T
Pxx=Pyy=p, (1.33 2 =0 (1.9
ayel o
O duy L35 y
Ty ' a7 pog?
— =-2 , (1.10
ax=0, (1.43 W ly—o M0Ko
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where henceforth the subscript O will denote quantities
evaluated aty=0. Therefore, Eqs(1.8)—(1.10 imply that szf dvvVvf, (2.4
boththe flow velocity and the temperature have a maximum
at the middle layey=0. m )

It must be kept in mind that, while Eqél.1) and (1.2) a=7 f dvveviE. 2.9
are exact, Eq9.1.3—(1.10 are consequences of the NS ap-
proximation. The NS constitutive relations are expected tdn these equationsn is the mass of a particlen is the
hold outside the boundary layefise., for distances from the number densitykg is the Boltzmann constant, and=v
boundaries much larger than a relevant microscopic s€ale —U is the peculiar velocity. The equation of state is that of
such as the mean free path in the case of gasebfor small  an ideal gas, namelp=nkgT. The time evolution off is
gradients(i.e., small relative variations of the hydrodynamic governed by the nonlinear Boltzmann equafidrt’which in
quantities over a distance equalA®. The first limitation can  standard notation reads
be dealt with ifH>/" and appropriate slip boundary condi-
tions are applied. On the other hand, the second constrairft f+v.Vi+ F L9 f:f dv, f dQ|v—v,|
implies the assumption of a sufficiently weak figidn view 9t m  oJv
of Egs.(1.6) and(1.7), one could expect that the NS profiles
are valid at least through ordgf. Nevertheless, this expec-
tation fails in the simple case of a dilute gas, according to a =][f,f], (2.6

recent perturbation solutidmf the Bhatnagar—Gross—Krook i ) . )
(BGK) model kinetic equatidhthrough orderg®. While the ~ WhereF is an external force. The influence of the interaction

corrections to the velocity profile, EG1.6), are indeed of Potentialg(r) appears through the dependence of the cross
order g3 (due to symmetry reasopsdeviations from Eq. sectiono on the relative velocityv—v;| and the scattering

(1.7) are already of ordeg?. In particular, Eq.(1.9) is re- angled. o S
placed by (92T/8y2)|y=o= (38/25)g2p(2)To/p3>0. The main In the steady planar Poiseuille flow the distribution func-

qualitative change is that(y) has now a local minimum at tien is expected to depend on space only through the coor-
y=0 rather than a maximum. Analogously, the pressure idinatey, i.e., f=f(y,v). In that case, the Boltzmann equa-
not constant, but @p/ay?)|,-o=(12/50%p3/po. Recent UOM: Eq.(2.6), becomes
simulations of the Boltzmann equation for hard spheres 9
have shown a qualitative and semi-quantitative agreement v, — f+g — f=J[f,f], (2.7
with these theoretical predictions. % U

The aim of this paper is to use a more fundamental dethat must be complemented by the adequate boundary con-
scription to investigate the limitations of the NS equations ingjtions aty=+H. The balance equatiorfs.1) and(1.2) can
the planar Poiseuille flo¥.To that end, we solve the Boltz- be easily obtained from E@2.7). They are just the first few
mann equatich”*°for Maxwell moleculegi.e., particles in-  members of the infinite hierarchy of equations for the veloc-

teracting via a potentiad(r)=K/r*] through second order ity moments off. Let us introduce the moments
in the external field. The results agree with those obtained

X o(|lv—vy|, cos@)[f'fi—ff,]

from the BGK modef, except for changes in the numerical _ Kqy /Koy K3
coefficients. We have chosen Maxwell molecules because Mkika k(Y)= | AW EVAVP(Y,V). 2.8
they lend themselves to a more detailed analysis in the con-
text of the Boltzmann equatidf:'! Nevertheless, the simu- oM Ed.(2.7) one gets
lation results of Ref. 7 show that the effects we want to , au
. . . X
analyze are not an artifact of the Maxwell interaction. W Mkl,k2+l,k3+ W kM klfllkzﬂvks_gklM Ky 1Ko kg
=Jk, ky kg (2.9
II. BOLTZMANN EQUATION
where
In a dilute gas, all the relevant physical information is
contained in the one-particle velocity distribution function 3, (y):f dvvtlvk2vlz(3‘_][f,f]_ (2.10
f(r,v,t). The hydrodynamic quantities and their fluxes can 1 Y
be expressed in terms of momentsfof In the sequel, we will use the roman boldfdceo denote the
triad {kq,k,,ks} and the italic lightfacek to denote the sum
pzmn:mJ dvf, (2.1 ki+ko+ks. Thus MkEMkl,kzk3 is a moment of ordek

=k;,+k,+ks. Because of the symmetry properties of the
problem, My, k, ks is an even(odd function of y if k,
nu=f dwvf, (22 =even (odd. Seen as a function af, M, , , is even
(odd if ky=even(odd). Finally, My x, k,=0 if k3=odd.
In the special case of Maxwell molecules(r)=K/r?,
the collision rate is independent of the velocity, i.e.,

3|<T—mfdv2f 2.3
EnB_E Vv ] ()
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|[v—vi|a(]v—V,|,cosd)=ay(cos6), andJ, can be expressed
as a bhilinear combination of moments of order equal to or

smaller thark:*°

k
‘]k: E TCk, k"M k’Mk”v
k' K" !

(2.1)
where the dagger denotes the constraint k"=k. The co-

efficients C::, w are linear
eigenvalue¥?

0
1+ 8,06,0—cos ™ >

N y= j dQap(cosh)

XP,

(2.12

6 6 6
| —eiprt+s _ Pa
cosz) Sir? > P,(sm 2)

combinations of the
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a . uy .
75 Miq o+ 1ikg T g KiMiq 14,11k
*
—g* — KMy =3 (2.22
p* LM~ Lkoks ™ Yy kg kg .
where M§oo=p*/T*, M35=Mg1=0, and M3+ Mfy
+ Moo= 3p*.

The scaled fieldg* can be expressed as the ratjd
=/IvVZhy, where/ ,=(2kgTo/m)¥?7,/p, is an effective
mean free path anbdy=(kgT,/m)/g represents the charac-
teristic length over which the gravitational field would pro-
duce a velocity increment of the order of the thermal velocity
on a free patrticle. The quantity* and the Knudsen number
Kn=/,/2H are the only parameters characterizing the non-
equilibrium state. At a hydrodynamic level, it is common in

of the linearized collision operator. The explicit expressionsgravity related problems to introduce the Froude nurhber

of Ji through ordetkk=5 are given in Ref. 11. The thermal
conductivity and shear viscosity for Maxwell molecules®are

5kg p
k(M=75- TWE (2.133
P
n(T)= oy’ (2.13b

Where)\02= % )\11: 043®< 377\ 2K/m
Let us define an effective collision frequency as

v= n)\oz (214>
and introduce the scaled space variable
_ -1/2 y ’ ’
s(y)=(kgTo/m) fody v(y'), (2.19

where the subscript O refers to quantitiesyat0. The vari-

5kgTo) M2
B O) 2.23

4mgH

While Fr~ (hy/H)Y?is a measure of the field strength on the
scale of the system sizg* measures the strength on the
scale of the mean free path. The three parameters are related
by g* = 3Kn/Fr?.

The task of solving the infinite hierarct{g.22 (plus the
corresponding boundary conditionfor arbitrary values of
Kn andg* (or, equivalently, Fris an unsurmountable one.
In order to get explicit results, we make here two assump-
tions. First, we assume that the system is sufficiently large,
so that we can focus on the bulk region of the system, i.e.,
—H+ 8<y<H- 8, whered~/ is the width of the bound-
ary layers. The existence of such a region implies that the
Knudsen number must be small enough, say<Kril. Our
second assumption is that the external field is weak enough

ables essentially measures distance in units of a local mea@S {0 make Fe 1. Taking together both assumptions, we can
free path. Thus the valug(H) represents an inverse Knud- "estrict ourselves to small values gf and perform a per-
sen number. It is convenient to introduce other dimensionlesé/'Pation expansion in powers @f*, neglecting terms of

guantities:
g* =(kgTo/m) Y25 1g, (2.16
ux (8)=(kgTo/m)~2u(y), (2.17)
T*(s)=To 'T(y), (2.18
P*(s)=pg ‘P(y), (2.19
M ()=ng “(keTo/m) ~*My(y), (2.20
J¥(s)=ng H(kgTo/m) X2 L J(y). (2.21)

v(y)
A compelling argument in favor of using rather thary as

third and higher order. Since this series expansion is possibly
only asymptotic, it is not useful from a practical point of
view to consider those higher order terms.
Ill. PERTURBATION EXPANSION

Let us expand the moments in powersgdf:

My (s)=MP+MIP(s)g* + M?(s)g* 2+ (g*?),

(3.)
Uz (s)=u(s)g* +(g*?), (3.2
p*(s)=1+p?(s)g* 2+ 7(g**), 33
T*(s)=1+T@(s)g* >+ (g**). (3.4

space variable is that the profiles can have a simpler form itn Eq. (3.2), M(ko) are the reduced moments at equilibrium,
terms of the former, as happens, for instance, in the case ag., M(k(i)kz,kf(kl—l)”(kz—l)”(ks_ DI i Ky ko, ks
the Couette flowt’ In the case of the Poiseuille flow, Eq. —even, being zero otherwise. Because of our choice of units,

(1.13 can be integrated to give the simple reSBLt/: g*s

p®(0)=T@(0)=0. We also choose a reference frame sta-

exactly. Of course, once the density profile is known, ON&jonary with the fluid as=0, so thaiu(xl)(O)=0. The corre-

can go back to the actual variableoy means of Eq(2.15.

In terms of dimensionless quantities, E.9) can be rewrit-

ten as

sponding expansion of the collisional moments is

I (9)=3M(s)g* + 3P (s)g* 2+ A(g*?) 3.5
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TABLE . Coefficientsu () as obtained from the Boltzmann equatids) (
and the Bhatnagar—Gross—Krook mo@GK).

1,1 1,0
i s

BGK

[oy)

BGK

100 - -
110 1 1
102 - -
120 - -
300 - -
112 1 1
130 3 3
310 3 3

o
o

| I |
| P o wie |
| |

where

J(kl): E t

k’,k” )\02

k
C ’ n
L MOMB MM,

( (3.6

k
C
2) k’,k” (0)p(2) (L)pp (1) (2)\(0)
J§(>_§ T—z (MM MM+ MM ).

k// k//
k!’kH )\0
(3.7)
Insertion of the above expansions into the hierarch
(2.22 gives
d ault
1 X 0 0
s '\/|f<1),|<2+1,k3+ s klMﬁl)—l,k2+1,k3_klM(kl)—l,kz,k3
=3k K, (ky=0dd), (3.8
a gu
2 X 1 1
s f<1),k2+1,k3+ s klM(|<l)—1,k2+1,k3_kl'\/'(kl)—l,kz,k3
=3k (ki=even. (3.9

Let us first consider Eq3.8). Its structure and the solution

of the BGK model suggest thail (ki)’kzuks is a linear function
of s:

WD kemeven,
Mk ke=1 10 (3.10
k1o kg '“(kl"‘zzvkss’ k,=odd.

By making (;.k»,ks)=(1,0,0) in Eq.(3.8), we getu{}d
=1, which is equivalent to the known resuR}, =g*s.
Next, we make K;,k,,ks)=(1,1,0) to obtaindu(")/ds
=—M{%), which givesu{*)(s)=—3s?. Thus Eq.(3.8) de-
couples into the following two hierarchies:

—kM ﬁ?)— 1ky+1kgS™ Jf(?,kz ks (ky=odd, k;=odd),
(3.11

1.1 0 11
Mf(l,lzer kg kiM f<1)— 1ky.kg ™ ‘J§<1),k2 Ky

(ky=o0dd, k,=even. (3.12

Equation (3.1) can be recursively solved to obtain

M(ki',llzz,ks- Once those coefficients are known, E8.12) al-

Tij, Sabbane, and Santos

lows one to gen(ki'f’k)zyks . The first few coefficients are given

in Table I. For the sake of comparison, the values obtained
from the BGK model are also listed.

The second-order hierarchy, EQ.9), is more difficult
to handle. According to the analysis of Sec. | and the BGK
solution® T must be a quartic function af In general, we
assume

(2)
Mk ks

20 22

W2
2,1 2,3 3 —

HER kST IR, k8% kp=0dd.

2 2,4 4 —
ST+ R, kSt ko=even,

(3.13
Consequently, E¢3.9) decouples into
23 2 2,1 1,1 2
3#&1,122+ 1kgS +M(kl,lzz+ 1kg ™ kllu(klf)l,szr 1kgS

_ (10 =32 = =
K1t =1k, k= Jk; ky kg »  (K1=eVEN, Ky =even,

(3.19
4Mf<21’,‘22+ 1,k353+ ZM(kzlz £2+ 1kgS™ klﬂﬁe)l,kfr 1kgS
(ky=even,k,=o0dd).

(3.19
The left-hand side of Eq3.14) is a polynomial of second

11 2
- kl/'L;(l—)l,kz kg S= qu),kz kg

)pegree, while the right-hand side is of fourth degree. Thus,

the coefficient of the fourth-degree term on the right-hand
side must vanish and this allows us to Obtﬂlﬁ’%,ka recur-

sively. Once those coefficients are known, E2}15 can be
used to gew(ki*?k)zykg‘. In general, the solution scheme pro-

ceeds as follows:

3.1 3.1
2ay B e O 0
{wt —— {21 —— {32}

(3.19 (3.149

——— & —— {29 (3.16
where {1?*} denotes the se{t/if(i’ff(?ks; ky+ Ko+ kz=Kk}.
In order to determing >} we need to start from Eq.
(3.14 with k;+k,+k;=6. Since, to the best of our knowl-
edge, the collisional moments of sixth order are not available
in the literature, here we have used a recent evaluation of
those moment$?! The coefficients obtained by following the
schemg3.16) are listed in Table Il. The blank entries corre-
spond to coefficients not evaluated, since they are not needed
for the complete determination of the hydrodynamic quanti-
ties and their fluxes. Comparison with the BGK model shows
that the latter gives values fqz(kz'4) that are3 times larger
than the correct ones; this is a consequence of the incorrect
Prandtl number given by the BGK modelOn the other

hand, the BGK values of.{>® are correct.

IV. SUMMARY AND DISCUSSION

From a physical point of view, the most important output
of our analysis is the knowledge of the hydrodynamic quan-
tities and their fluxes, to second order in the external field.
Let us express them in real units. First, we notice that the
relationship betwees andy can be obtained from EqR.15
and the first line of Table Il with the result
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1
*5 *
S(Y)=y*+| gVt —3 Y

where y* =y, /(kgTo/m)Y?=v2yll,. The profiles of the
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TABLE . Coefficients(>®) as obtained from the Boltzmann equatid) (and the Bhatnagar—Gross—Krook

model (BGK).

(2,1)
k

1025

BGK

000
010
002
020
200
012
030
210
004
022
040
202
220
400
014
032
050
212
230
410
006
024
042
060
204
222
240
402
420
600

win G K R B B win B i win

[ e N
ook gk ik Bk gk Pk aie B

Gin o Ko

ais s Bla N ous s

SN g R |

qus ais Gls o ous ous

3.7166
—0.1631
—4.6952

3.3226

4.1916

16.2190

87
25
11
25
153
25
79
25
139
25
387
25

_ a2

264

128
25
504
25
4_14
25
834
25
564

132
25
492
25
852

306
— 25
1458
- 25
1968
- 25

—0.2175
—6.2602
6.4777

25
306

25
328

25

_ 198

2034
25
_ 1158

11466

852
25
1172
25
1572

1902
25
9066
25
2952

0.1847

hydrodynamic quantities are

Pogy

Uy(y)=—

p(y)=po

T(Y)ZTo[ 1

1+

5

+/(g)

mgy)?
keTo

paa2y*

 1270k0To

+1. 015<

+(g%),

gy
kg T

)

*lg*2+ (g,

4.1

(4.29

(4.2b

+(gY).
(4.29

The nonzero elements of the pressure tensor are

14
Pxx(y) = po[ 1+ g (

+(g%),

Pyy(Y)= po(l 6.2602——

zz(y) Po

g |

mgy
keTo

kg

gy|?
kgTo

7709

+6.4771T———
) kBTOpO

7709

+(g%),
Topo (*

-0. 217577_09
kBTopo

(4.39

(4.3b

+(g"),
(4.30
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p2g?y*  0.1847/ mgy)\? from the perturbation expansion performed in this paper. The
607050 o 3 (kBTO) } former is an expansion in the gradients, while the latter is an
expansion in the field strength. Although it is the field what
+(g°). (4.30 induces the gradients, both expansions are not equivalent and
have different domains of applicability. The Chapman-—
Enskog expansion holds if the hydrodynamic quantities are
practically constant over distances of the order of the mean
free path/y, what implies small values of a uniformity pa-

Pyy(Y)=pogy| 1+

The fact thaleyz g* s exactly has allowed us to determine
P,y through fourth order in the field. Finally, the nonzero
components of the heat flux vector are

3 rametere and, in additiorf, g* ~ €2. On the other hand, the
W="73 709+ (g%, (443 series expansion in powers of the field is useful even for
significant changes over distances close/tg i.e., e~1,
pig?y® . provided that the scaled fielg* is small. Therefore, it is
W= 30, +(gY). (440 important to emphasize that the results obtained in this paper

extend but do not invalidate the NS description of the Poi-
Comparison with the NS constitutive relations, Egs.seuille flow in its expected range of applicability. This con-
(1.3) and(1.4), shows that the latter are not self-consistent totrasts with recent studi€sdemonstrating the invalidity of
second order in the field, with the exception of Ef.3D.  the NS system in the continuum limit when the boundaries
The most important qualitative difference from the NS pro-have a nonuniform temperature distribution.
files arises in the case of the temperature. Although Eg. As said in Sec. |, recent Monte Carlo simulatiépsove
(.10 is correct, Eg. (1.9 must be replaced by the correctness of the pressure and temperature profiles pre-
(0%T19y?)|,-o=2.030&)°p3To/p5. ConsequentlyT(y) has  dicted by our perturbation analysis. In their simulations of
a local minimum aty=0 surrounded by two maximal(,,)  the Boltzmann equation for hard spheres, Malek Mansour
aty=*/6.0920k,To/po==3.4,. The relative difference et al. considered the caseéd) Kn=0.1, Fre=2.2 (g*
between the maxima and the minimum is of the same orde&0.05), (b) Kn=0.05, Fe=3.1 (g*=0.01), and(c) Kn
as the temperature variations over a few mean free paths;0.025, F=4.3 (g* =0.003). They compared the simula-
namely (T max—To)/To=11.6Q*2. The ratio third to second tion results with the BGK predictiorfsywhich coincide with
term in Eq.(4.29 is of order ¢4/y)?. This means that the Egs.(4.2) except that the coefficient 1.0153 in Ed-20 is
correction to the NS temperature profile is only noticeablereplaced by 19/25. In cage) the external field was so weak
for distances from the middle layer of the order of or smallerthat the temperature profile was sufficiently well described
than the mean free path. In the continuum limit (K@), by the NS equations. This contrasts with what happened in
this represents a vanishing portion of the bulk region. On theasegb) and(c), where a “dimple” in the temperature pro-
other hand, iH comprises a decade or so of mean free pathsile was clearly seen, in agreement with the kinetic theory
the deviations from the NS profiles are relevant over most oprediction. In casdb) the quantitative agreement was hin-
the bulk domain. dered by the fact that the series expansion in powegs a6
It is worthwhile to point out that Eq1.4a fails even to  only asymptotié and g* =0.05 is not small enough to ne-
first order. The presence of a longitudinal component of theylect terms of order’(g*4). On the other hand, the agree-
heat flux is indeed a BurnetB) order effect'° ment in casdb) was very good, even at a quantitative level.
] 7 Uy op 352 duy oT 72 u, In summary, th_e planar Poiseuill_e flow induced by an
Af=035—— —+bls=— —+6, — —>, external force provides a nice and simple example to illus-
2pp dy dy 2pT dy a9y 2p 9y trate the limitations of a purely hydrodynamitNavier—
(4.5 Stokes description and the need of kinetic theory methods
where, for Maxwell moleculesg;=—3, 6,=3, and 65 whenever the hydrodynamic quantities change on the mean-
=39/4. While the first two terms are of ordgrf, the last free-path scale. Last but not least, the problem addressed
term is of first order and agrees with E@.49. Neverthe- here confirms the usefulness of the BGK kinetic model to
less, the discrepancies between E(s3), (1.4 and Egs. pinpoint the correct qualitative behavior exhibited by the
(4.3, (4.9 go well beyond the Burnett order. On the one much more complicated Boltzmann equation.
hand,PE contains terms of the forn?T/ay? (thermal tran-
spiration), d?p/dy?, and (@u,/dy)?, which are of ordeg?,  ACKNOWLEDGMENTS
plus terms of the form dT/ay)?, (dp/dy)?, and @T/dy)
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