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Nonlinear Poiseuille flow in a gas
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The nonlinear Boltzmann equation for the steady planar Poiseuille flow generated by an external
field g is exactly solved through orderg2. It is shown that the pressure and temperature profiles, as
well as the momentum and heat fluxes, are in qualitative disagreement with the Navier–Stokes
predictions. For instance, the temperature has a local minimum at the middle layer instead of a
maximum. Also, a longitudinal component of the heat flux exists in the absence of gradients along
that direction and normal stress differences appear although the flow is incompressible. To account
for theseg2-order effects, which are relevant when the hydrodynamic quantities change over a
characteristic length of the order of the mean free path, it is shown that the Chapman–Enskog
expansion should be carried out three steps beyond the Navier–Stokes level. ©1998 American
Institute of Physics.@S1070-6631~98!01404-4#
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I. INTRODUCTION

One of the most well-known textbook examples in flu
dynamics is the Poiseuille flow,1 first studied by Poiseuille
and Hagen in the past century. It consists of the steady fl
along a channel of constant cross section produced by a p
sure difference at the distant ends of the channel. The s
effect is obtained if the pressure is constant along the cha
but a longitudinal force~e.g., gravitation! exists.2–4 To fix
ideas, let us consider a fluid enclosed between two infi
parallel plates normal to they axis and located aty56H,
which are kept at rest. A constant external force per u
massg5gx̂ is applied along a directionx̂ parallel to the
plates. After a certain transient stage, a steady state
gradients along they direction is reached. Under these co
ditions, the conservation equations for momentum and
ergy reduce to

]Pxy

]y
5rg, ~1.1a!

]Pyy

]y
50, ~1.1b!

Pxy

]ux

]y
1

]qy

]y
50, ~1.2!

wherer is the mass density,u is the flow velocity,P is the
pressure tensor, andq is the heat flux. Equations~1.1! and
~1.2! become a closed set if one assumes the validity of
Navier–Stokes~NS! constitutive equations, namely

Pxx5Pyy5p, ~1.3a!

Pxy52h
]ux

]y
, ~1.3b!

qx50, ~1.4a!
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qy52k
]

]y
T, ~1.4b!

where p5 1
3 Tr P is the hydrostatic pressure,T is the tem-

perature, andh andk are the shear viscosity and the therm
conductivity, respectively. Combination of Eqs.~1.1!–~1.4!
yield

]p

]y
50, ~1.5!

]

]y
h

]ux

]y
52rg, ~1.6!

]

]y
k

]T

]y
52h S ]ux

]y D 2

. ~1.7!

Equation~1.6! gives a paraboliclike velocity profile, that i
characteristic of the Poiseuille flow. The temperature pro
has, according to Eq.~1.7!, a quarticlike shape. Strictly
speaking, these NS profiles are more complicated than
polynomials due to the temperature dependence of the tr
port coefficients. Since the hydrodynamic profiles must
symmetric with respect to the planey50, their odd deriva-
tives must vanish aty50. Thus from Eqs.~1.6! and~1.7! we
have

]2ux

]y2 U
y50

52
r0g

h0
, ~1.8!

]2T

]y2U
y50

50 ~1.9!

]4T

]y4U
y50

522
r0

2g2

h0k0
, ~1.10!
1 © 1998 American Institute of Physics
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where henceforth the subscript 0 will denote quantit
evaluated aty50. Therefore, Eqs.~1.8!–~1.10! imply that
both the flow velocity and the temperature have a maxim
at the middle layery50.

It must be kept in mind that, while Eqs.~1.1! and ~1.2!
are exact, Eqs.~1.3!–~1.10! are consequences of the NS a
proximation. The NS constitutive relations are expected
hold outside the boundary layers~i.e., for distances from the
boundaries much larger than a relevant microscopic scall ,
such as the mean free path in the case of gases! and for small
gradients~i.e., small relative variations of the hydrodynam
quantities over a distance equal tol !. The first limitation can
be dealt with ifH@l and appropriate slip boundary cond
tions are applied. On the other hand, the second const
implies the assumption of a sufficiently weak fieldg. In view
of Eqs.~1.6! and~1.7!, one could expect that the NS profile
are valid at least through orderg2. Nevertheless, this expec
tation fails in the simple case of a dilute gas, according t
recent perturbation solution5 of the Bhatnagar–Gross–Kroo
~BGK! model kinetic equation6 through orderg5. While the
corrections to the velocity profile, Eq.~1.6!, are indeed of
order g3 ~due to symmetry reasons!, deviations from Eq.
~1.7! are already of orderg2. In particular, Eq.~1.9! is re-
placed by (]2T/]y2)uy505(38/25)g2r0

2T0 /p0
2.0. The main

qualitative change is thatT(y) has now a local minimum a
y50 rather than a maximum. Analogously, the pressure
not constant, but (]2p/]y2)uy505(12/5)g2r0

2/p0 . Recent
simulations of the Boltzmann equation for hard spher7

have shown a qualitative and semi-quantitative agreem
with these theoretical predictions.

The aim of this paper is to use a more fundamental
scription to investigate the limitations of the NS equations
the planar Poiseuille flow.8 To that end, we solve the Boltz
mann equation6,9,10 for Maxwell molecules@i.e., particles in-
teracting via a potentialf(r )5K/r 4# through second orde
in the external field. The results agree with those obtai
from the BGK model,5 except for changes in the numeric
coefficients. We have chosen Maxwell molecules beca
they lend themselves to a more detailed analysis in the c
text of the Boltzmann equation.10,11 Nevertheless, the simu
lation results of Ref. 7 show that the effects we want
analyze are not an artifact of the Maxwell interaction.

II. BOLTZMANN EQUATION

In a dilute gas, all the relevant physical information
contained in the one-particle velocity distribution functio
f (r ,v,t). The hydrodynamic quantities and their fluxes c
be expressed in terms of moments off :

r[mn5mE dvf , ~2.1!

nu5E dvvf , ~2.2!

3

2
nkBT5

m

2 E dvV2f , ~2.3!
s
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P5mE dvVV f , ~2.4!

q5
m

2 E dvV2V f . ~2.5!

In these equations,m is the mass of a particle,n is the
number density,kB is the Boltzmann constant, andV[v
2u is the peculiar velocity. The equation of state is that
an ideal gas, namelyp5nkBT. The time evolution off is
governed by the nonlinear Boltzmann equation,6,9,10which in
standard notation reads

]

]t
f 1v–¹f 1

F

m
•

]

]v
f 5E dv1 E dVuv2v1u

3s~ uv2v1u, cosu!@ f 8 f 182 f f 1#

[J@ f , f #, ~2.6!

whereF is an external force. The influence of the interacti
potentialf(r ) appears through the dependence of the cr
sections on the relative velocityuv2v1u and the scattering
angleu.

In the steady planar Poiseuille flow the distribution fun
tion is expected to depend on space only through the c
dinatey, i.e., f 5 f (y,v). In that case, the Boltzmann equ
tion, Eq. ~2.6!, becomes

vy

]

]y
f 1g

]

]vx
f 5J@ f , f #, ~2.7!

that must be complemented by the adequate boundary
ditions aty56H. The balance equations~1.1! and~1.2! can
be easily obtained from Eq.~2.7!. They are just the first few
members of the infinite hierarchy of equations for the velo
ity moments off . Let us introduce the moments

Mk1 ,k2 ,k3
~y!5E dvVx

k1Vy
k2Vz

k3f ~y,v!. ~2.8!

From Eq.~2.7! one gets

]

]y
Mk1 ,k211,k3

1
]ux

]y
k1Mk121 ,k211 ,k3

2gk1Mk121 ,k2 ,k3

5Jk1 ,k2 ,k3
, ~2.9!

where

Jk1 ,k2 ,k3
~y!5E dvVx

k1Vy
k2Vz

k3J@ f , f #. ~2.10!

In the sequel, we will use the roman boldfacek to denote the
triad $k1 ,k2 ,k3% and the italic lightfacek to denote the sum
k11k21k3 . Thus Mk[Mk1 ,k2,k3

is a moment of orderk
[k11k21k3 . Because of the symmetry properties of t
problem, Mk1 ,k2 ,k3

is an even~odd! function of y if k2

5even ~odd!. Seen as a function ofg, Mk1 ,k2 ,k3
is even

~odd! if k15even~odd!. Finally, Mk1 ,k2 ,k3
50 if k35odd.

In the special case of Maxwell molecules,f(r )5K/r 4,
the collision rate is independent of the velocity, i.e
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uv2v1us(uv2v1u,cosu)5s0(cosu), andJk can be expresse
as a bilinear combination of moments of order equal to
smaller thank:10

Jk5 (
k8,k9

†Ck8,k9
k M k8M k9 , ~2.11!

where the dagger denotes the constraintk81k95k. The co-
efficients Ck8,k9

k are linear combinations of th
eigenvalues10,12

l r l 5E dVs0~cosu!F11d r0d l 02cos2r 1l
u

2

3Pl S cos
u

2D2sin2r 1l
u

2
Pl S sin

u

2D G ~2.12!

of the linearized collision operator. The explicit expressio
of Jk through orderk55 are given in Ref. 11. The therma
conductivity and shear viscosity for Maxwell molecules a9

k~T!5
5kB

2m

p

nl11
, ~2.13a!

h~T!5
p

nl02
, ~2.13b!

wherel025
3
2 l1150.43633pA2K/m.

Let us define an effective collision frequency as

n5nl02 ~2.14!

and introduce the scaled space variable

s~y!5~kBT0 /m!21/2E
0

y

dy8n~y8!, ~2.15!

where the subscript 0 refers to quantities aty50. The vari-
ables essentially measures distance in units of a local m
free path. Thus the values(H) represents an inverse Knud
sen number. It is convenient to introduce other dimension
quantities:

g* 5~kBT0 /m!21/2n0
21g, ~2.16!

ux* ~s!5~kBT0 /m!21/2ux~y!, ~2.17!

T* ~s!5T0
21T~y!, ~2.18!

P* ~s!5p0
21P~y!, ~2.19!

M k* ~s!5n0
21~kBT0 /m!2k/2M k~y!, ~2.20!

Jk* ~s!5n0
21~kBT0 /m!2k/2

1

n~y!
Jk~y!. ~2.21!

A compelling argument in favor of usings rather thany as
space variable is that the profiles can have a simpler form
terms of the former, as happens, for instance, in the cas
the Couette flow.13 In the case of the Poiseuille flow, Eq
~1.1a! can be integrated to give the simple resultPxy* 5g* s
exactly. Of course, once the density profile is known, o
can go back to the actual variabley by means of Eq.~2.15!.
In terms of dimensionless quantities, Eq.~2.9! can be rewrit-
ten as
r

s

n

ss

in
of

e

]

]s
Mk1 ,k211,k3

* 1
]ux*

]s
k1Mk121,k211,k3

*

2g*
T*

p*
k1Mk121,k2k3

* 5Jk1 ,k2 ,k3
* , ~2.22!

where M000* 5p* /T* , M100* 5M010* 50, and M200* 1M020*
1M002* 53p* .

The scaled fieldg* can be expressed as the ratiog*
5l 0 /&h0 , wherel 05(2kBT0 /m)1/2h0 /p0 is an effective
mean free path andh05(kBT0 /m)/g represents the charac
teristic length over which the gravitational field would pr
duce a velocity increment of the order of the thermal veloc
on a free particle. The quantityg* and the Knudsen numbe
Kn5l 0/2H are the only parameters characterizing the n
equilibrium state. At a hydrodynamic level, it is common
gravity related problems to introduce the Froude number1,8

Fr5S 5kBT0

4mgHD 1/2

. ~2.23!

While Fr;(h0 /H)1/2 is a measure of the field strength on th
scale of the system size,g* measures the strength on th
scale of the mean free path. The three parameters are re
by g* 5 5

2Kn/Fr2.
The task of solving the infinite hierarchy~2.22! ~plus the

corresponding boundary conditions! for arbitrary values of
Kn andg* ~or, equivalently, Fr! is an unsurmountable one
In order to get explicit results, we make here two assum
tions. First, we assume that the system is sufficiently lar
so that we can focus on the bulk region of the system,
2H1d,y,H2d, whered;l 0 is the width of the bound-
ary layers. The existence of such a region implies that
Knudsen number must be small enough, say Kn,0.1. Our
second assumption is that the external field is weak eno
as to make Fr*1. Taking together both assumptions, we c
restrict ourselves to small values ofg* and perform a per-
turbation expansion in powers ofg* , neglecting terms of
third and higher order. Since this series expansion is poss
only asymptotic,5 it is not useful from a practical point o
view to consider those higher order terms.

III. PERTURBATION EXPANSION

Let us expand the moments in powers ofg* :

M k* ~s!5M k
~0!1M k

~1!~s!g* 1M k
~2!~s!g* 21O ~g* 3!,

~3.1!

ux* ~s!5ux
~1!~s!g* 1O ~g* 3!, ~3.2!

p* ~s!511p~2!~s!g* 21O ~g* 4!, ~3.3!

T* ~s!511T~2!~s!g* 21O ~g* 4!. ~3.4!

In Eq. ~3.1!, M k
(0) are the reduced moments at equilibrium

i.e., Mk1,k2 ,k3

(0) 5(k121)!!(k221)!!(k321)!! if k1 ,k2 ,k3

5even, being zero otherwise. Because of our choice of un
p(2)(0)5T(2)(0)50. We also choose a reference frame s
tionary with the fluid ats50, so thatux

(1)(0)50. The corre-
sponding expansion of the collisional moments is

Jk* ~s!5Jk
~1!~s!g* 1Jk

~2!~s!g* 21O ~g* 3! ~3.5!
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where

Jk
~1!5 (

k8,k9

†
Ck8,k9

k

l02
~M k8

~0!M k9
~1!

1M k8
~1!M k9

~0!
!, ~3.6!

Jk
~2!5 (

k8,k9

†
Ck8,k9

k

l02
~M k8

~0!M k9
~2!

1M k8
~1!M k9

~1!
1M k8

~2!M k9
~0!

!.

~3.7!

Insertion of the above expansions into the hierarc
~2.22! gives

]

]s
Mk1 ,k211,k3

~1! 1
]ux

~1!

]s
k1Mk121,k211,k3

~0! 2k1Mk121,k2 ,k3

~0!

5Jk1 ,k2 ,k3

~1! , ~k15odd!, ~3.8!

]

]s
Mk1 ,k211,k3

~2! 1
]ux

~1!

]s
k1Mk121,k211,k3

~1! 2k1Mk121,k2 ,k3

~1!

5Jk1 ,k2 ,k3

~2! , ~k15even!. ~3.9!

Let us first consider Eq.~3.8!. Its structure and the solutio
of the BGK model5 suggest thatMk1 ,k2 ,k3

(1) is a linear function

of s:

Mk1 ,k2 ,k3

~1! 5H mk1 ,k2 ,k3

~1,0! , k25even,

mk1 ,k2 ,k3

~1,1! s, k25odd .
~3.10!

By making (k1 ,k2 ,k3)5(1,0,0) in Eq.~3.8!, we getm110
(1,1)

51, which is equivalent to the known resultPxy* 5g* s.
Next, we make (k1 ,k2 ,k3)5(1,1,0) to obtain ]ux

(1)/]s
52M110

(1) , which givesux
(1)(s)52 1

2s
2. Thus Eq.~3.8! de-

couples into the following two hierarchies:

2k1Mk121,k211,k3

~0! s5Jk1 ,k2 ,k3

~1! , ~k15odd, k25odd!,

~3.11!

mk1 ,k211,k3

~1,1! 2k1Mk121,k2 ,k3

~0! 5Jk1 ,k2 ,k3

~1! ,

~k15odd, k25even!. ~3.12!

Equation ~3.11! can be recursively solved to obta
mk1 ,k2 ,k3

(1,1) . Once those coefficients are known, Eq.~3.12! al-

TABLE I. Coefficientsmk
(1,a) as obtained from the Boltzmann equation (B)

and the Bhatnagar–Gross–Krook model~BGK!.

k

mk
(1,1) mk

(1,0)

B BGK B BGK

100 – – 0 0

110 1 1 – –

102 – – 2
1
3 0

120 – – 2
5
3 22

300 – – 21 0

112 1 1 – –

130 3 3 – –

310 3 3 – –
y

lows one to getmk1 ,k2 ,k3

(1,0) . The first few coefficients are given

in Table I. For the sake of comparison, the values obtai
from the BGK model5 are also listed.

The second-order hierarchy, Eq.~3.9!, is more difficult
to handle. According to the analysis of Sec. I and the BG
solution,5 T(2) must be a quartic function ofs. In general, we
assume

Mk1 ,k2 ,k3

~2!

5H mk1 ,k2 ,k3

~2,0! 1mk1 ,k2 ,k3

~2,2! s21mk1 ,k2 ,k3

~2,4! s4, k25even,

mk1 ,k2 ,k3

~2,1! s1mk1 ,k2 ,k3

~2,3! s3, k25odd.

~3.13!

Consequently, Eq.~3.9! decouples into

3mk1 ,k211,k3

~2,3! s21mk1 ,k211,k3

~2,1! 2k1mk121,k211,k3

~1,1! s2

2k1mk121,k2 ,k3

~1,0! 5Jk1 ,k2 ,k3

~2! , ~k15even,k25even!,

~3.14!

4mk1 ,k211,k3

~2,4! s312mk1 ,k211,k3

~2,2! s2k1mk121,k211,k3

~1,0! s

2k1mk121,k2 ,k3

~1,1! s5Jk1 ,k2 ,k3

~2! , ~k15even,k25odd!.

~3.15!

The left-hand side of Eq.~3.14! is a polynomial of second
degree, while the right-hand side is of fourth degree. Th
the coefficient of the fourth-degree term on the right-ha
side must vanish and this allows us to obtainmk1 ,k2 ,k3

(2,4) recur-

sively. Once those coefficients are known, Eq.~3.15! can be
used to getmk1 ,k2 ,k3

(2,3) . In general, the solution scheme pr

ceeds as follows:

$mk
~2,4!% ——→

~3.15!

$mk21
~2,3!% ——→

~3.14!

$mk22
~2,2!%

——→
~3.15!

$mk23
~2,1!% ——→

~3.14!

$mk24
~2,0!%, ~3.16!

where $mk
(2,a)% denotes the set$mk1 ,k2 ,k3

(2,a) ; k11k21k35k%.

In order to determine$m2
(2,0)% we need to start from Eq

~3.14! with k11k21k356. Since, to the best of our knowl
edge, the collisional moments of sixth order are not availa
in the literature, here we have used a recent evaluation
those moments.14 The coefficients obtained by following th
scheme~3.16! are listed in Table II. The blank entries corre
spond to coefficients not evaluated, since they are not nee
for the complete determination of the hydrodynamic quan
ties and their fluxes. Comparison with the BGK model sho
that the latter gives values formk

(2,4) that are3
2 times larger

than the correct ones; this is a consequence of the inco
Prandtl number given by the BGK model.6 On the other
hand, the BGK values ofmk

(2,3) are correct.

IV. SUMMARY AND DISCUSSION

From a physical point of view, the most important outp
of our analysis is the knowledge of the hydrodynamic qu
tities and their fluxes, to second order in the external fie
Let us express them in real units. First, we notice that
relationship betweens andy can be obtained from Eq.~2.15!
and the first line of Table II with the result
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TABLE II. Coefficientsmk
(2,a) as obtained from the Boltzmann equation (B) and the Bhatnagar–Gross–Kroo

model ~BGK!.

k

mk
(2,4) mk

(2,3) mk
(2,2) mk

(2,1) mk
(2,0)

B BGK B BGK B BGK B BGK B BGK

000
1
45

1
30 – – 0.1847

11
25 – – 0 0

010 – – 0 0 – – 0 0 – –

002 0 0 – –
4
5

4
5 – – 20.2175 2

22
25

020 0 0 – – 0 0 – – 26.2602 2
306
25

200 0 0 – –
14
5

14
5 – – 6.4777

328
25

012 – –
2
15

2
15 – – 0.2175

22
25 – –

030 – –
2
5

2
5 – – 6.2602

306
25 – –

210 – –
2
15

2
15 – – 26.4777 2

328
25 – –

004 2
1
15 2

1
10 – – 3.7166

87
25 – – 2

132
25

022 2
1
45 2

1
30 – – 20.1631 2

11
25 – – 2

492
25

040 2
1
15 2

1
10 – – 24.6952 2

153
25 – – 2

852
5

202 2
1
45 2

1
30 – – 3.3226

79
25 – –

306
25

220 2
1
45 2

1
30 – – 4.1916

139
25 – –

1358
25

400 2
1
15 2

1
10 – – 16.2190

387
25 – –

1968
25

014 – –
4
5

4
5 – –

132
25 – –

032 – –
4
5

4
5 – –

492
25 – –

050 – – 4 4 – –
852
5 – –

212 – –
4
15

4
15 – – 2

306
25 – –

230 – –
4
5

4
5 – – 2

1458
25 – –

410 – –
4
5

4
5 – – 2

1968
25 – –

006 2
2
3 21 – –

114
5 – – 2

198
5

024 2
2
15 2

1
5 – – 2

66
25 – – 2

2034
25

042 2
2
15 2

1
5 – – 2

246
25 – – 2

1158
5

060 2
2
3 21 – – 2

426
5 – – 2

11466
5

204 2
2
15 2

1
5 – –

264
25 – –

852
25

222 2
2
45 2

1
15 – –

128
25 – –

1172
25

240 2
2
15 2

1
5 – –

504
25 – –

1572
5

402 2
2
15 2

1
5 – –

414
25 – –

1902
25

420 2
2
15 2

1
5 – –

834
25 – –

9066
25

600 2
2
3 21 – –

564
5 – –

2952
5

s~y!5y* 1S 1

225
y* 51

0.1847

3
y* 3Dg* 21O ~g* 4!,

~4.1!

where y* [yn0 /(kBT0 /m)1/25&y/ l 0 . The profiles of the
hydrodynamic quantities are

ux~y!52
r0gy2

2h0
1O ~g3!, ~4.2a!

p~y!5p0F11
6

5 S mgy

kBT0
D 2G1O ~g4!, ~4.2b!

T~y!5T0F12
r0

2g2y4

12h0k0T0
11.0153S mgy

kBT0
D 2G1O ~g4!.

~4.2c!
The nonzero elements of the pressure tensor are

Pxx~y!5p0F11
14

5 S mgy

kBT0
D 2

16.4777
mh0

2g2

kBT0p0
2G

1O ~g4!, ~4.3a!

Pyy~y!5p0S 126.2602
mh0

2g2

kBT0p0
2D 1O ~g4!, ~4.3b!

Pzz~y!5p0F11
4

5 S mgy

kBT0
D 2

20.2175
mh0

2g2

kBT0p0
2G1O ~g4!,

~4.3c!
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Pxy~y!5r0gyF11
r0

2g2y4

60h0k0T0
1

0.1847

3 S mgy

kBT0
D 2G

1O ~g5!. ~4.3d!

The fact thatPxy* 5g* s exactly has allowed us to determin
Pxy through fourth order in the field. Finally, the nonze
components of the heat flux vector are

qx52
3

2
h0g1O ~g3!, ~4.4a!

qy5
r0

2g2y3

3h0
1O ~g4!. ~4.4b!

Comparison with the NS constitutive relations, Eq
~1.3! and~1.4!, shows that the latter are not self-consistent
second order in the field, with the exception of Eq.~1.3b!.
The most important qualitative difference from the NS p
files arises in the case of the temperature. Although
~1.10! is correct, Eq. ~1.9! must be replaced by
(]2T/]y2)uy5052.0306g2r0

2T0 /p0
2. Consequently,T(y) has

a local minimum aty50 surrounded by two maxima (Tmax)
at y56A6.092h0k0T0/p0.63.4l 0 . The relative difference
between the maxima and the minimum is of the same o
as the temperature variations over a few mean free pa
namely (Tmax2T0)/T0.11.60g* 2. The ratio third to second
term in Eq.~4.2c! is of order (l 0 /y)2. This means that the
correction to the NS temperature profile is only noticea
for distances from the middle layer of the order of or sma
than the mean free path. In the continuum limit (Kn→0),
this represents a vanishing portion of the bulk region. On
other hand, ifH comprises a decade or so of mean free pa
the deviations from the NS profiles are relevant over mos
the bulk domain.

It is worthwhile to point out that Eq.~1.4a! fails even to
first order. The presence of a longitudinal component of
heat flux is indeed a Burnett (B) order effect:9,10

qx
B5u3

h2

2rp

]ux

]y

]p

]y
1u5

3h2

2rT

]ux

]y

]T

]y
1u4

h2

2r

]2ux

]y2 ,

~4.5!

where, for Maxwell molecules,u3523, u453, and u5

539/4. While the first two terms are of orderg3, the last
term is of first order and agrees with Eq.~4.4a!. Neverthe-
less, the discrepancies between Eqs.~1.3!, ~1.4! and Eqs.
~4.3!, ~4.4! go well beyond the Burnett order. On the on
hand,Pii

B contains terms of the form]2T/]y2 ~thermal tran-
spiration!, ]2p/]y2, and (]ux /]y)2, which are of orderg2,
plus terms of the form (]T/]y)2, (]p/]y)2, and (]T/]y)
3(]p/]y), which are of orderg4. On the other hand, con
tributions of orderg2 to qy and Pii also come from the
super-Burnett term ]3T/]y3 and the super-super-Burnet
term]4T/]y4, respectively. In general, in order to obtain th
fluxes through orderg2n one would need to consider th
Chapman–Enskog expansion9 through order 2(n11) in the
gradients; but this also would provide many extra terms
order higher thang2n, that should be discarded.

The Chapman–Enskog expansion, of which the
equations are the first approximation, is formally differe
.
o

-
q.

er
s,

e
r

e
s
f

e

f

S
t

from the perturbation expansion performed in this paper. T
former is an expansion in the gradients, while the latter is
expansion in the field strength. Although it is the field wh
induces the gradients, both expansions are not equivalen
have different domains of applicability. The Chapman
Enskog expansion holds if the hydrodynamic quantities
practically constant over distances of the order of the m
free pathl 0 , what implies small values of a uniformity pa
rametere and, in addition,4 g* ;e2. On the other hand, the
series expansion in powers of the field is useful even
significant changes over distances close tol 0 , i.e., e;1,
provided that the scaled fieldg* is small. Therefore, it is
important to emphasize that the results obtained in this pa
extend but do not invalidate the NS description of the P
seuille flow in its expected range of applicability. This co
trasts with recent studies15 demonstrating the invalidity of
the NS system in the continuum limit when the boundar
have a nonuniform temperature distribution.

As said in Sec. I, recent Monte Carlo simulations7 prove
the correctness of the pressure and temperature profiles
dicted by our perturbation analysis. In their simulations
the Boltzmann equation for hard spheres, Malek Mans
et al. considered the cases~a! Kn.0.1, Fr.2.2 (g*
.0.05), ~b! Kn.0.05, Fr.3.1 (g* .0.01), and ~c! Kn
.0.025, Fr.4.3 (g* .0.003). They compared the simula
tion results with the BGK predictions,5 which coincide with
Eqs.~4.2! except that the coefficient 1.0153 in Eq.~4.2c! is
replaced by 19/25. In case~c! the external field was so wea
that the temperature profile was sufficiently well describ
by the NS equations. This contrasts with what happene
cases~b! and~c!, where a ‘‘dimple’’ in the temperature pro
file was clearly seen, in agreement with the kinetic theo
prediction. In case~b! the quantitative agreement was hi
dered by the fact that the series expansion in powers ofg* is
only asymptotic5 and g* .0.05 is not small enough to ne
glect terms of orderO (g* 4). On the other hand, the agree
ment in case~b! was very good, even at a quantitative lev

In summary, the planar Poiseuille flow induced by
external force provides a nice and simple example to ill
trate the limitations of a purely hydrodynamic~Navier–
Stokes! description and the need of kinetic theory metho
whenever the hydrodynamic quantities change on the me
free-path scale. Last but not least, the problem addres
here confirms the usefulness of the BGK kinetic model
pinpoint the correct qualitative behavior exhibited by t
much more complicated Boltzmann equation.
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