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Influence of gravity on nonlinear transport in the planar Couette flow
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The effect of gravity on a dilute gas subjected to the steady planar Couette flow with arbitrarily large
velocity and temperature gradients is analyzed. The results are obtained from the Bhatnagar—Gross—
Krook kinetic model by means of a perturbation expansion in powers of the external field. The
reference state corresponds to the p(enlineaj Couette flow solution, which retains all the
hydrodynamic orders in the shear rate and the thermal gradient. To first order in the gravity field, we
explicitly obtain the hydrodynamic profiles and the five relevant nonlinear transport coefficients; the
shear viscosityy, the two viscometric function¥’, ,, and the two nonzero elements,, and«,,

of the thermal conductivity tensor. The results show that, in general, the influence of gravity on the
rheological propertiesy and ¥, , tend to decrease as the shear rate increases, while this influence
is especially important in the case of the thermal conductivity coefficignt, which measures the

heat flux parallel to the temperature gradient. 1899 American Institute of Physics.
[S1070-663(199)00204-4

I. INTRODUCTION from above (below). This analysis has been extended

higher orders ing by using the Bhatnagar—Gross—Krook
It is usual to ignore the effect of gravity on the properties(BGK) model.

of gases under ordinary conditions. This is justified by the  The aim of this paper is to analyze the influence of grav-

fact that the action of gravity between two successive colliity on a more complex state than the Fourier flow. Specifi-

sions of a molecule is negligible, i.ev<h, where\ is the  cally, we will consider the steady planar Couette flow, which

mean free path andzvglg is the distance over which a corresponds tg a gas .enclosed_between two |nf|n|te,_ parallel

particle feels the action of gravity,, being the thermal ve- plates in relative motion and, in general, kept at different

locity and a being the aravity acceleration. At most one temperatures. This state reduces to the Fourier flow in the
y 9 9 9 y ' ' special case where the gas is at rest. In the steady Couette

mtrodu_cesg in the balance equations for momentum, butflow, momentum as well as heat transport are present and the
otherwise one assumes that the dependence of the momerWdrodynamic balance equations become

tum and heat fluxes on the hydrodynamic fields and their

gradients is unchangéd-or instance, in the case of air under ip -0 (1)
terrestrial conditions and at room temperatwéh~ 10" 1%, ay 7

On the other hand, it is appealing to investigate if and how 3

the transport equations are modified in situations where the —Py,+pg=0, 2
role of gravity is not so tiny, say for example values of

rarefaction and/og for which \/h~10"3. To the best of our , 9

knowledge, this problem has not been sufficiently studied. ny@*‘ WQFO, 3

Recently, we have evaluated the corrections to the Navier—

Stokes(NS) equations due to gravity in a dilute gas sub-WhereP;; is the pressure tensag,is the heat fluxp is the
jected to the planar Fourier flofvThis study was made from Mass densityy is the flow velocity, thex-axis is parallel to

an exact perturbation solution of the Boltzmann equation fOIIhe direction of motion, ahd thg-axis is orthogonal to the
Maxwell molecules through orde?. The zeroth order solu- plates. In the above equations we have assumed that there are

tion leads t SOtrODI ' d to the f hc_“gradients only along theg-axis and that gravity is anti-
Ion leads fo an isotropic pressure tensor and to the Tuff ‘parallel to that axis. According to Eql), the viscous pres-
ment of the linear Fourier law, even for large thermal

sure is uniform across the system; otherwise, the state would
gradients** We found that, because of gravity, the pressurénot pe a steady one. Equatié®) implies that the normal
tensor becomes anisotropic and the heat flux incre@®s pressure at the bottom plate exceeds the one at the top plate
creasepwith respect to its NS value when the gas is heatedn an amount equal to the weight of a fluid column of unit
area. Finally, Eq(3) expresses the fact that the rate of me-
3Electronic mail: vicenteg@unex.es chanical work introduced by the plates equal the rate of heat
YElectronic mail: andres@unex.es lost through the two surfaces. Note that gravity does not
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appear explicitly in Eqs(1) and (3). The balance equations tion, for which an exact solution wheg=0 is known®!

(1)-(3) do not constitute a closed set. Nevertheless, if theRecent comparisons between the BGK results and those ob-
hydrodynamic gradients are weak, the fluxes are well detained from molecular dynamitsas well as Monte Carld
scribed by the NS relations, namely the Newton and Fouriesimulations show a very good agreement. This gives us con-
laws, fidence in the use of the BGK approximation to describe the
steady Couette flow in the presence of gravity. We solve the
BGK kinetic equation by performing a perturbation expan-
sion in powers ofj, taking the purgnonlineaj Couette flow
JT solution as the zeroth order approximation. As a conse-
Ux=0, Q,=-— Kns s (5) guence, the successive approximations depend in a nonlinear
y way on the hydrodynamic gradients. Here, we will restrict
where p=nkgT is the hydrostatic pressuren (being the ourselves to the first order corrections, what is justified by
number densityks being the Boltzmann constant, add the fact that in practical applications the valuegis very
being the temperatureand 7ys and «ys are the NS shear small.
viscosity and thermal conductivity, respectively. On the  The paper is organized as follows. In Sec. Il we describe
other hand, when the strength of the gradients is not smalthe problem and give a brief summary of the main known
the NS constitutive equations are not expected to apply antesults in the absence of gravity. The first order corrections
the transport must be described by nonlinear equations. are worked out in Sec. lll, the mathematical details being
In the absence of gravity, the nonlinear regime has beegiven in the Appendices. By taking a given example, we
studied in the past from different methods. For dense gaseglustrate the influence of gravity on the five relevant trans-
the problem has been studied by molecular dynamic®ort properties in Sec. IV. We close the paper with some
simulation§ and by a modified moment methédor dilute ~ concluding remarks in Sec. V.
gases, studies have been carried out by molecular dynamics
simulz_;\tions% by a perturbation solution of the _Boltzmann Il DESCRIPTION OF THE PROBLEM
equatior® by the Grad methofiand by exact solutions of the
BGK model®!*and related modef€~*1n all these works, Let us consider a dilute gas described by the BGK ki-
the main motivation is to study the breakdown of the NSnetic equatiort®
relations(4) and (5), what means that normal stress differ- E g
ences exist, the viscous pressig, is not just proportional —f+v- Vit — —f=—p(f—f), (11)
to the shear ratdu,/dy, and the heat fluxy is no longer m ov
proportional to the thermal gradient vect®iT. In order to  wheref(r,v;t) is the one-particle velocity distribution func-
characterize these deviations from the NS relations, it ision, F is an external force, anty is the local equilibrium
usual to introduc@eneralizedransport coefficients, namely distribution function given by
the viscometric function®; and¥,, the generalized shear

Jduy
Pyux= Pyy: P..=p, ny: - WNSW: (4)

3/2 Y4
visco_si_ty 7, the general_ized thermal conductivigy, , and a f (r,v;t)=n L) exr{—m(v u) ] (12)
coefficient ,, measuring cross effects. These nonlinear 27kgT 2kgT
transport coefficients are defined by Here,mis the mass of a particle. The local quantitigs, ),
U, |2 u(r,t), andT(r,t) are defined in terms of the distribution
Pyy— |:>XX:\p1<W , (6)  function as
auy\ 2 n=J dvf, (13
P, Pyy:\PZ W ) (7)
1
au, u= ﬁf dwvf, (14
ny= - ﬂWv (8)
L f dv(v—u)?f (15)
aT = 3nkg v(v—u)“f.
qQx=— ny[?_! ©) . o
y Furthermore, Eq(11) introduces a velocity-independent col-
T lision frequency,v, which is proportional to the density and
qy=— Kyyw. (10  whose dependence on the temperature models the interaction

potential. For instanceyxn for Maxwell molecules, while
In general, all these coefficients are functions of the hydrov=nT¥2 for hard spheres. Apart from the densities of con-
dynamic gradientsu, /dy and dT/dy. When the gradients served quantities, one can define the pressure téredated
become small, the NS coefficients are recovered, ¥g., to the transport of momentum
—0,¥,—0, n— nns, Kyy— Kns, andk,,—0.

As said above, we are interested in evaluating the effect p= mf dv(v—u)(v—u)f (16)

of gravity on the coefficients defined by Eq$)—(10). To
this end, we will use the BGK model of the Boltzmann equa-and the heat fluxrelated to the transport of enengy
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m ) steady planar Couette flow, i.e., wheg#i =0. In this case,
q= Ef dv(v—u)“(v—u)f. (17 Eq.(19) admits anexactsolution characterized by a constant

pressurg* =1, and “linear” velocity and “parabolic” tem-
The main motivation of this paper is to analyze the in-perature profile$:!

fluence of gravity on the heat and momentum transport . .

across a fluid. The physical situation is that of a dilute gas  Ux (8)=Ux(0)+as, (20
englpsed between two parallel plates _moving at different ve- T*(s)=1+ eS— yo(a)S?, (21)
locities (planar Couette floyvand subjected to a constant

gravitational field perpendicular to the plates. Let thaxis  Wherea ande are independent constants fixed by the bound-
be parallel to the direction of motion and tlyeaxis be or- ~ ary conditions. These two quantities measure the departure
thogonal to the walls. We want to study a steady state witlPf the system from equilibrium. The dimensionless param-
Ve|0city and temperature gradients a|0ng Mrection co- eteryo(a) is anonlinearfunction of the reduced shear rate

existing with a fieldF=—mgy, whereg is the acceleration 9iven implicitly through the equatidf

due to gravity. In anition, we are interested in a situatipn 2F (o) +3F1(70)

where the external field does not generate convective motion, a“= Yo F1(7vo) ) (22
so that the flow velocity profile is only due to the relative 1o

motion of the plates enclosing the gémundary conditions ~ where

This implies that the correspondiripcal) Rayleigh number d r

Ra, which is proportional tg(—JT/dy), must be less than Fi(yo)= (d—yo> Fo(vo) (23
a certain critical value Ra=17002’ In addition, we are in- Yo

terested in the properties of the gas in the bulk region rathesnd

than close to the walls. Thus, we will assume that the Knud- 2 o

sen numbetwhich is defined as the ratio between the mean g (., )— _J' dt texp( — t2/2)Ko( 2y Y422, (24)
free path and the separation between the plaiessuffi- YoJo

ciently small to identify such a region. In other words, we

il 100k f o P soluti FEa. (11 wh I th Ko being the zeroth-order modified Bessel function. The rel-
will look for a “normal” solution of Eq. (11) where all the evant transport coefficients of the steady Couette flow are

space dependence bfs given trough Its functional depen- ,paineq from the pressure tensor and the heat flux. They are
dence on the pressure, the flow velocity and the temperatur@,inaar functions of the reduced shear rategiven
In order to simplify the analysis, it is convenient to in- by10:13.14

troduce dimensionless quantities. To do so, we choose a
arbitrary pointy, belonging to the bulk domain as the origin Py =1+4yy(F1+F,), (25
and take the quantities at that poihenceforth denoted by a

subscript 0 as reference units. Therefore, we defihé P;yzl_ZVO(FlJFZFZ)' (26)
=T/Ty, p*=p/py, U*=Ulvg, V*=Vlv,y, f*=ngyv3f, P* —1_2 F 27)
andg* =g/vgv,. Herewo=(kgTo/m)*2is a thermal veloc- 2z Yol
ity. One can define a mean free pafht y=y,) as \g PX,= P;‘Z:O, (29
=vglvy and a characteristic Iengtho=v§/g. Thus, g* .
=MAo/hg represents the ratio between the mean free path and  , _ = duy 29)
the distance over which a typical particle feels the action of Xy 0 s
the field. In the same way as in previous ) .
descriptiong?121318the spatial variabley must be conve- o &FodT (30)
niently rescaled in a nonlinear way that takes into account y 2yy ds’
the local dependence of the collision frequency. Thus, we "
define O =[5F 2+ 2F 3+ 2a%(F,+ 5F3+8F 4+ 4F5) Ja——.
1(y
s=— | dy'u(y'). (18 _ . . @D
VoJyg Here, we have introduced the dimensionless fluggs

=P/p, and g*=q/pgvg. In Egs. (25-(31), F,=F,(yy).
Notice that although the temperature gradient is only di-

L 0 . ™ 9 o ex rected along the-axis (so that there is a response in this
1+v %‘9 Y To* =f. (19 direction throughq’y‘), the shear flow induces a nonzexo
™ dvy component of the heat fldd31* Furthermore, an explicit
where, for the sake of concreteness, we have restricted ouexpression for the velocity distribution functidif has also
selves to the case of Maxwell molecules. been derived?

A trivial solution of Eq.(19) corresponds to thequilib- The presence of the term proportionalgd in Eq. (19)
rium state characterized by*=0, T*=1 and p*=1  complicates the problem significantly and we have not been
—g*s. The latter equation leads to the well-known baromet-able to get an explicit solution for arbitrary values of the
ric formula p(y)=pgexd —mgy—Yyo)/ksgT]. A much more gravity. However, given that the value of the gravity accel-
interesting and nontrivial situation corresponds to (iere  eration is small enough, for practical purposes it is sufficient

Under the above conditions, the BGK equatiét) becomes
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to perform a perturbation analysis in the same way as in thevhered,=d/ds. This is only aformal solution since‘(Ll) isa
case of the Fourier flok.More specifically, we will carry  functional of f(*) through its dependence on the fiejold),
out a perturbation expansion in powers®# eg*, ul®, andT®. In order to convert Eq(41) into an explicit
fr=fO4+fDst.... (32) equation that can be solved, one nee_ds to know .the spatial
dependence of the above hydrodynamic fields. As in the case
where the reference stat€” represents the pure steady Cou-of the Fourier flow? we will follow a heuristic method,
ette flow corresponding to the actual values of pressure, flowiamely, we first guess simple profiles and then verify their
velocity, temperature, and both velocity and thermal gradiconsistency. Inspection of E(#1) suggests that the structure
ents at the point of interest=y,. The use ofé as the per- of the solution corresponding to the pure Couette flow, Egs.
turbation parameter rather thaf is due to the fact that the (20) and(21) can be extended to the solution of first order.
producteg* appears in a natural way, so that the final ex-Therefore, we assume thpt?, u&l), andT® are polyno-
pressions are more compact. The paramétexpresents the mials ins of degree 1, 2, and 3, respectively, whose coeffi-
combination\/lghg, wherel*=aInT/ayl,—, is the in-  cients are nonlinear functions of the reduced sheararated
verse of a characteristic hydrodynamic length. In consistencgf the reduced thermal gradieat
with the expansiori32), we expand the hydrodynamic fields

and the dissipative fluxes as pt=as, (42
* 0 pDgy...
p p+p ot (33 ug(l):ﬁSZ' (43
uf =uP+uM s+, (34)
TW=y,8%+ y,8% (44)
T =TO+TDs+.. (35

The unknown coefficients, B, y;, andy, are determined
* — p(0) (1) 1 2

Pr=P T+ P o+, (36 by requiring the self-consistency of the soluti@tl) charac-
g =qO+qV s+ (37)  terized by the profileg42)—(44). This means thaf™™) and

() possess the same first five moments,
Here, p@=1, u®=u*(0)+as, TO=1+es—yys? and - P

the fluxesP(® and q(© are given by Eqs(25—(31). By

definition, p®(0)=u®(0)=T®(0)=au®/ss|._, f dv{1V, V3 (fV— 1Y) ={00,0}. (45)

=gTW/gs|s_o=0 for k=1. According to the spirit of our

expansion, the terms of ordék are nonlinearfunctions of  The fulfillment of these conditions leadsee Appendix Ato

the shear rata and the thermal gradiert This is the main 3 system of four linear equations for the §at3,y1,7,} as

feature of the method. In this paper we will only consider thefunctions of a and €. The Corresponding solution, Egs.

first order correction to the pure Couette flow. (A53)—(A59), provides the explicit form of the profiles. In
particular, for small shear rates, these coefficients behave as
a=—(1-2%/e, B~=(al2e)(1+%Fa%), y1~3(1+%a%),

Ill. STEADY COUETTE FLOW IN THE PRESENCE OF andy,~ —a?/5e. These results are consistent with those ob-

A WEAK GRAVITATIONAL FIELD tained from the BGK equation in the Fourier flow problem

In this section we evaluate the hydrodynamic profiles ag!nder gravitatior(i.e., whena=0).° o _
well as the momentum and heat fluxes to first ordes.iBy Once the explicit form of the hydrodynamic fields is

substituting the expansiori82)—(35) into Eq.(19), one gets known, the goal now is to get the influence of gravity on the
transport properties when only terms through first ordes in

1+V i)f(l)_ 10) if(O):f(l) 39 ae considered in the momentum and heat fluxes. Since the

Yo € dVy Lo reduced parameters €, and 5= eg* are defined at théar-
bitrary) points= 0, we evaluate the fluxes at that point, with-
out loss of generality. The idea is to express the fluxesgt

whereV=v* —u©®, {1 is given by

) Vel vz o o5\Th] point (represented bg=0 or, equivalently,y=y,) in the
fiV=p®+ To 510 2|70 © (39  bulk domain of the system in terms of the values of the
hydrodynamic quantities and their gradients at that very
and point.
V2 The xy element of the pressure tensor defines the non-
f<L°>=(277)‘3/2T(°)‘5’2exp( _ _ (40) linear shear viscosityy, according to Eq(8). In reduced
27O units,
It is convenient to recast E¢38) into the form PO, ps
*(a, ,5):_u ] (46)
D=(1+V,95 1 f(1)+lmif<°) T a =0
f _( + y s) L € (7Vy s=

) Normal stresses are measured through the viscometric func-
f£1)+ T_ ifm)) ' (41) tionsV¥,; andV, defined by Eqs(6) and(7). To first order in
aVy the field, they are

> (—a9hvh
k=0
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p(O)_p(0)+(p(1)_p(l))5 1.05 T T T T
Yy XX yy XX
Vi(a€d)= ") : (47) 100k
s=0 0.95
PO—-PO+(PL-PY) 6 0.90
Vi(a,e8) =t 22 W . (48)
a2 . 085
s=0 n
. . 0.80
As said before, in the Couette flow the heat flux vector de-
fines a thermal conductivity tensor rather than a scalar due to 0.75
the anisotropy of the problem. According to Ed9) and 0.70
(10), the nonzero elements are 0.65 . . . .
©) 1 (1) 0.0 0.1 0.2 0.3 04 0.5
Ox +0x 0
Kyl d)=-——"— | (49) ‘
s=0 FIG. 1. Shear-rate dependence of the reduced shear visogsigt e=1
q(0)+ q(l)éi andg* =0 (solid line) andg* =0.002(dashed ling
Kh(a,€,8)=———"— . (50)
€ s=0

Equations(46)—(50) define the five relevant transport coef-  Equations(51)—(53) and (55) show that, in the limit of
ficients in the problem. The explicit calculation of the non- Z€r0 shear rate, the gravitational field induces a decr@ase
zero elements oP™™) andg®) is made in Appendix B. They creasgof the wsgqsny, the norma! stress differences, and the
are given by Eqs(B4)—(B7), (B9) and(B10). The nonlinear thermal conductivity on those points where the thermal gra-
dependence of these quantities on the shear rate is very a@ient is parallel(antiparalle] to the field. A subtler effect

parent. From the above expressions, one can get the transpgRP€ars on the heat flux vectgr In the absence of gravita-
coefficients 7, Wy, W,, Ky, and x,,. For small shear tion, the vectorq rotates anticlockwise with respect to the

rates, these coefficients behave as direction of — VT a small angled= ¥'a for small shear rates.
In the presence of gravitation, this angle becomgs

958 =~ Ua(1+Deg*), i.e., it decreasedincreasekif the ther-
* I - 2 5 35 s 1.C.y
7 ~1+86 5 1+ 5 s)a, (51) mal gradient(here assumed to be smab parallel(antipar-
allel) to the field. All these effects become much more in-
P~ — E( 1+ 15165) n 7_92( 1+ 245 0835 a2 (52 volved when the shear rgte and/or the th_ermal conductivity
5 35 25 550 are not small, as shown in the example given below.
- 4 N 3585> 288( 1+ 65 1795 5 53
~ — _ _— _ a“,
5 5 25 100 IV. AN ILLUSTRATIVE EXAMPLE
Kky,~—al7+2(67¢+81) 5] Thus far, all the results are valid for arbitrary values of
23 168 969 the reduced shear rageand the reduced thermal gradient
+ = 468+ 6| 6090 + +3162) 5}, (54)  andto first order in the reduced gravitational figld While,

a’.

(59

The dependence on the reduced thermal graciesyp-

. O 58 8 35296 1549 _,
KVYNE 1+€5_€1+ E‘F 816 1)

without loss of generalitya andg* can be chosen as posi-
tive, the sign ofe denotes two distinct situationg<<0 (e
>0) corresponds to points that are “heated from below
(above,” i.e., points where the thermal gradient is parallel
(antiparalle) to the field. For illustrative purposes, we féx
=1 and consideg* =0 andg* =0.002. Then we can get the

pearing in Eqs.(51)—(55) is not restricted to small shear five transport coefficients as nonlinear functions of the shear
rates. The five transport coefficients are independertiaf  rate only. Figures 1-5 display*, V7, W3 , «y,, andky,,
the absence of gravitygl =0), but this is not true when respectively, in the ranges9a<0.5. In general, we see that
g* #0. According to the results of Appendix BV is inde-  the presence of the field does not change the trends observed
pendent of e, while q(M=-.-€*+.-.e+---e 1, q{® for the transport coefficients in the absence of gravitation. In
=...e+---e 1, where the ellipses denote nonlinear func- particular, the shear viscosity* and the thermal conductiv-
tions of the shear rate. This behavior of the heat flux givesty K§y are smaller than their corresponding values at zero
rise to an interesting effect. Let us consider the layer whershear rate and they monotonically decrease as the shear rate
the temperature reaches its maximum valee-Q). In the increases. We also observe that, given a value of the shear
absence of gravity, the heat flux across that layer vanishesate, the gravitation increases the values)df —¥75 , %,
i.e., 0*[gr=0e-0=0. On the other hand, the coupling be- and — «j, if €>0. On the other hand, the rheological prop-
tween shear flow and gravity induces a nonzero heat flux irrties (shear viscosity and viscometric functionsith and
spite of the fact that thdocal) thermal gradient is zero, i.e., without gravitational field tend to overlap as the shear rate
=— 188 increases so that the effect of the gravitation is practically

q*| g 20.-0#0. More specifically, g} |._o= — *2°g* a¥ 1
+0(a%)] andqy|.-o=%"g*a?[ 1+ O(a%)]. negligible for large shear rates. This effect is especially sig-
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0.0 0.1 02 03 04 0.5 12 : . : \ N
0.0 0.1 0.2 0.3 04 0.5

FIG. 2. Shear-rate dependence of the reduced first viscometric function
— VP71 ate=1 andg* =0 (solid line) andg* =0.002(dashed ling FIG. 4. Shear-rate dependence of the reduced diagonal thermal conductivity
K;y at e=1 andg* =0 (solid line) andg* =0.002(dashed ling

nificant in the case of the viscometric functions, where the . B . .
influence of the field is quite remarkable for small shearP€havior aw=0.002, since higher order terms could also be

rates. important, especially in the cases of the viscometric func-

The most interesting influence of the gravitational ﬁe|dtions and of the diagonal thermal conductivity coefficient.

on the transport properties appears in the case of the thermai'® Main objective of Figs. 1-5 was to highlight the trends
conductivity coefficientc’, . In contrast to what happened in © be expected in the presence of nonzero gravity.

Figs. 1-3, the effect of the field is now more notorious as the

shear rate becomes larger. In addition, whi§,|s;., V. DISCUSSION

* .
> K| 5=0 at small shear rates, th*e opposite happens for large ¢ aim of this paper has been to analyze the influence
has increased by about

shear rates. In particular, at=0xy, cd! of gravitation on the transport properties of a dilute gas far
a 2% with respect to its zero-field value, while it has de-g,, oquilibrium. Specifically, we have considered the
creaseddby a 17% at= ofk;rh'ﬁ' crzlossov?r effegt IS ag UN" steady planar Couette flow described by the BGK model
expected consequence of the highly nonlinear dependence Rhetic equation. In the absence of gravity, the exact solution
the transport coefficienky,, on the shear rate. CONCeMING ¢ e proplem is known for arbitrary values of the local
the heat transport along the flow direction, we observe thafheay rate and thermal gradient. Taking this solution as a
the magnitude of the associated off-diagonal elemein-  otorance state, we have performed a perturbation expansion
creases witf, its value being larger with than without grav- , howers of the external field, the successive coefficients
'iy' Fron: E|gs. 4 andf It foIIows_that when going frogf being nonlinear functions of both gradients. Here we have
=0tog __0'002 at_a—0.5 ande=1, the heat flux vector oqyicted ourselves to the first-order correction, although the
decreases its magnitude by a 7.5% and rotates from an anglgaihod could be extended to higher orders. On the other
6=45° with the —y direction to 6=50°. . _hand, not only the algebraic complexity increases dramati-
Given that our results are restricted to the first order iNcally as one considers higher-order approximations, but for

the field, it must be pointed out that the dashed curves ipractical purposes the first-order approximation should be
Figs. 1-5 do not intend to represent strictly the completeyyfficient.

1.0 T T T T T T T T T 1.6 T T T T T T T T

S |
12 - }’/ ..... -
1O} |
0.8} |
0.6} |
04F |
02} |

00 " Il N 1 " Il N 1 L
0.0 0.1 0.2 03 0.4 05

a a

FIG. 3. Shear-rate dependence of the reduced second viscometric functidfiG. 5. Shear-rate dependence of the reduced off-diagonal thermal conduc-
T3 ate=1 andg* =0 (solid line) andg* =0.002(dashed ling tivity — K;‘y at e=1 andg* =0 (solid line) andg* =0.002 (dashed ling
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In the pure Couette flowg=0), the solution is charac-
terized by a uniform pressure, a linear velocity profile, anda  fM—f(V=> (—a9)*vkf(V
guadratic temperature profile, the latter two with respect to a k=1
conveniently scaled space variable. The results reported here

show that, to first order iy, the pressure, the velocity, and 12 (— as)kT(O)Vk f<°)
the temperature become linear, quadratic, and cubic func-
tions, respectively. The most important quantities of the =Al4+ e AN (A1)

problem are the five independent transport coefficients, mea-
suring the heat and momentum fluxes across the system.
Apart from generalizations of the shear viscosify,and the
thermal conductivity,x,,, coefficients, one can define the
viscometric functions¥; and ¥,, measuring normal o o= j dVV21V32V23A'

stresses, and a new coefficient, that measures a compo-

nent of the heat flux parallel to the flow and orthogonal to the

temperature gradient. All of these coefficients have been ex- =2 (—a)" J dVV:1V;2+kV;3fI(_l)
plicitly obtained in terms of the shear rate and the thermal k=1
gradient. In the case of the rheological propertigs ¥, ,),

Let us introduce the integrals

23 0

HMH

we have found that the influence of gravity tends to decrease ) ———(—a)l (a9~

as the shear rate increases, i.e., in the non-Newtonian regime.

The quantity where the effect of gravity is the largest one is =1\ Mgk e (1)

the thermal conductivity xyy. In addition, yylq-o Xf dVV,t V2V AR, (A2)

- Kyy|g:0 changes sign as one goes from small to large shear

rates. where in the last step we have made use of the identities
Although the results reported in this paper have been

obtained from the BGK model, we expect that most of the k

main trends will also be present in a more detailed descrip-  p(— g, 2 )(— 39 '(dLA)B, (A3)

tion in the framework of the Boltzmann equation. In fact, =0

this is what happens in the pure Couette flaand in the

Fourier flow under gravitatioh.A more quantitative agree- n,! neel

ment could be expected if one conveniently defines reduced d. sVx o= m(_a)lvxl . (A4)

units in order to get the correct Prandtl number. This strategy

has proven to be useful in the pure Couette tband in the

Poiseuille flow*® More specifically, we propose to defie

=(7nns/P)duyldy, e= (\/kBT/mKNS/pcp)aInT/ay andg*

= (7ns/PVKsT/m)g, wherec,=3kg/m and nys and ks f dVV21V§2V23f(L°):KannansT(°)<“1+“z+n3—2>/2,

are, respectively, the correct Navier—Stokes shear viscosity (A5)

and thermal conductivity coefficients. Thus, we conjecture

that a good approximation to the nonlinear Boltzmann trans;

port coefficients(to first order ing) could be obtained by

making 7— nnsn*(a,€,0%), ¥i—(nidp) Vi (a,€e,9%),

and kjj— §xnski (a,€,g%), where the dimensionless trans-

port coefficients are those explicitly derived here from the f dvv:1V;2V;3f<L1>

By taking into account that

where K,=(n—1)!! if n=even (with the convention
(=11 —1), beingK,,=0 otherwise, Eq(39) yields

BGK model.
— (1)
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HYDRODYNAMIC EIELDS the right-hand side of EGA6) is a polynomial ins of degree

| . .
In this Appendix we prove the consistency between the Mt np+ng—1. Consequentlycpn_lnzna is also a polynomial
hydrodynamic profiles42)—(44) and the solution given by Of degreen;+n,+ns—1.In particular,
Eqg. (41). To this end, it is convenient to rewrite the formal | \
solution (41) as @ o5= Poo1=0, (A7)
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- * TD
Phoo= > (2k—1)1 G2 uBTOR L4120 Kk(2k—1)!1 92 p<1>+(|<—1)W TOk-1
k=1 k=1
=/3k21 (2K)!(2k= 1)1 (= yo)* 1+ 2612l k(2k—1)!(2k— )11 [a(—70)* *+ (k= 1) v2(— 70)* 2], (A8)
| " 2k+1 T(l)
Dpyo= —go (2k+1)!1 42 p<1>+|<W T(OKk
== 2, (2k+ D12kt D [a(= yo)*+kyal = 70 M, (A9)

o

Dhoo= 2, (2k—1)11 52
k=1

)

TOK+4a>, k(2k—1)!1 2 Ly TOk-1
k=1

T
Wy gk—
p +k-|—(0)

o

+2a2>, k(2k—1)(2k—1)!1 §2k2
k=1

(1)

;
P (k=1)

(0)k—1
T T

=k21 (2K)1(2k—1)1{(2k+ 1)[ y2k(— 70)* T+ a(— 7o) Is+ K[ (71 + €a)(— y0)*+ eya(k—1)(— v0) 2]}

o

+4a3k21 k(2k— 1)1 (2k— 1)1 [2K(— y0)* L5+ (k— 1) e( — y0)* ]

+2a2k2 k(2k—1)(2k—2)! (2k— )11 {(2k— 1) yo(k— 1) (— 1) 2+ a(— yo)* 1s
=1

+(k=D)[(72+ €a)(— y0)**+ eya(k—2)(— y0)* 1}, (A10)

T
(

(1) —___ |10k
p +k_|_0) T

Dlop= >, (2k+1)11 5%
k=1

=k§=jl (2K)1(2k+ 1)1 {(2K+ 1) 72K (= 7)< 1+ a(— 0)Is+ K[ (71 + €@)(— 70) 1+ eya(k—1)(— 7o) 2T,

(A11)

o

T
D= >, (2k—1)11 g2
k=1

P k—— | TOK

(
TO

=k§1 (2K)! (2k—= 1)1 {(2K+ 1)[ y2k(— ¥0)* 1+ a(— yo) XIS+ K[ (y1+ €a)(— yo)* 1+ eya(k—1)(— yo)* 21}

(A12)

The series expansions appearing in E48)—(A12) are
asymptotic. They can be expressed in terms of the function53:8—70(1— Fo)—Fo— 7 F1, (A14)
F.(yo) defined by Egs(23) and(24) by taking into account
their asymptotic expansiotts 1 '3 1
Fr=gys 2 (m N Fn=Foi=gFo 124

S k (A15)
Fi=F.(yy)= Z (k+1)"(2k+ 1) (2k+ )M (= yp) .

k=0 Making use of Eq(A13), one can rewrite EqgA8)—(A12)
(A13) as

It must be qoticed that the functiofiB, ,r =3} can be easily D} 0= 2(,8+aa)Fl—2a£(F2— Fl), (A16)
expressed in terms dfy, F;, andF, as Yo
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Y2
q)lom:_a':o*'y_o(':l_':o), (AL17)

Dhog=2[ y2(2F 3+ F2) — ayo(2F,+ F1)]s+2(y, + €a)F;
+deyy(4F g+ 12F g+ 13F 4+ 6F 5+ Fyp)
+8aB[FyS+ €(4F 5+ 8F ;+5F5+Fy)]

+2a2| a(ZFZ—Fl)—$(2F3—3F2+F1) s
0
+ea
— B (R Fo)+ 2 e(Fa—3F,+ 2Fy) |
Yo Yo

(A18)
D= 2[ v2(4F 4+ 4F 3+ F2) — ayo(4F g+ 4Fp+ Fy) s
+2(y1+ea)(2F3+F5) +4ey,(8F,+36F g+ 62F5
+51F 4+ 20F 3+ 3F ), (A19)
oo™ 2 ¥2(2F 3+ Fo) — ayo(2F,+F 1) |s+2(y, + €a)F,
+4ey,(4Fg+ 12F5+ 13F,+6F3+F),). (A20)

Now let us consider the term" defined in the last line
of Eq. (Al). By taking into account that(®) is a quadratic
function of s and considering an identity similar t&3), we
can carry out the decomposition

A'=TOAMO— (G TO)AM+ (ZTO)ANZ, (A21)
where
* J
I,m_ k+ _ ky/kt+m_~" ¢(0
A m_z (K7™ (= ag) KV m&V £, (A22)

To proceed, we need the expression of the distribution func-

tion in the absence of gravitatiori(’). While its explicit

form is known!! here it is more convenient to make use of

the formal solutiof’

f(°>=|:20 (—d9)' Vi f{”

(A23)
Substitution into Eq(A22) yields
- 3 m+1
Ih,m_ ktm+1y _ 7 \; _
AMT= 2 () N, T 2k
XV (= gg) k5 (2, (A24)
where we have made use of the identities
k
;0 (ko1rmy = (krmel) (A25)
K m+1
2 (KM (k=1 +m) = (ﬁm“)(mmk. (A26)

In the same way as in E@GA2), we define the integrals
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Ih,m N1y /N2y /N3 A I,
D, 1Ny J'dVV)(lVyZVZ?'A m
ng o
_2 2 ( )(k+m+l nl!
= 1/7\m+1 (n1_|)!
m+1k | .
Nyt m+ ——=k|(—a)(—ds)
x [avvprtvie s aa)

where in the last step we have used again E48) and
(A4). The evaluation oﬁ)'r: r,?n is now straightforward by

using Eq.(A5) and it is easy to see thdlﬂ ’r?zn is in general

a polynomial of degreen;+n,+nz+m—3. The most im-
portant integrals are

Dhop=—3sTO 7L, Dgg=TO71 D=0, (A28)

ol2=aT® 1 @ll=0, (A29)

© 160~ 242 (6k-+11)(2k+4)! (2k+ 1)1 (= 0)"
(A30)
Cojo=—TO™ Pgio=0, (A31)
Dyd=— % g,o (2k+4)!(2k+ 1)1 (— yo)¥, (A32)
D= Pgps= oty =0 (A33)
2000, (A34)
DYoo= — % kgo (4k+3)(k+1)(2K)1(2k+ 1)1 (= yo)¥
2 o
-— Z (4k+7)(2k+4)1 (2k+ 1)1 (— o)X,
(A35)
D 55— 24(aT )Z (6k+11)(k+1)(2k+4)!

oo

2
X (2K+ 1)1 (= yo)k+ a—(aST<°>)2 (6k+17)
24 “h

X (k+1)(2k+6)! (2k+3)!1 (—yo)¥,  (A36)
D50 (A37)
Dgo= — 2 (4k+9)(2k+2)!1 (2k+ 1)1 (— yo)¥,

(A38)

D 50— 24(aT )Z (6k+19)(k+1)(2k+4)!
X (2k+3)!1 (= y0)", (A39)
®5=0, (A40)
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17> Since the left-hand side of EGA52) is a linear function o8,
3012 ~3; 2 4k+3)(k+1)(2k)! (2k+ 1)1 (— y0)%, Egs.(A50)—(A52) constitute a closed set of four linear equa-
k= tions for the unknownsy, B8, y;, andy,. The solution for

(A4 T
Ph2= (a T<°>)2 (6k+11)(k+1)(2k+4)! Yo R
002 24 Y= 35 (A53)
k
X(2k+ ! (= 70" (A42)  \where we have introduced the coefficients
If we define R=a%{2F oF o[ yo( 12F 4+ 28F 5+ 21F , + 5F ;) — 3]
- f AV ~3F4(2F o+ F)[ yo(2F 3+ 3F,+ F1)— 11}
=T(O)(D',:’On . _(193T(0))q)lr:’ln ] —3F1¥o{Foh —[1— ¥o(2F3+3F,+Fy)]
v X (4F 3+ 8F ,+3F )}, (A54)
S CARDLEAY (A43) o,
S=a2{Fo[Fy(F,—2F3)+4F2)] - F2(2F,+F,)}
we easily get
+F170{F0[4(F4+3F3)+11F2+3F1)]
Pl =Dh=0, A44
000~ 001 (Ad4) —F,(4F3+8F,+3F,)}, (A55)
ol =a 1—?(12F4+28F3+21F2+5F1) . (Ad5)  with
I 4 S) Yo
(D010=_1+ 70(2F3+3F2+ Fl), (A46) }\:2+ §F2+ §F1_ ?[24F6+124F5+222:4
DUo= (€= 27,8)| 1— 22 (12F g+ 44F 4+ 5TF 5+ 31F 2
200~ (€= 2708)| 1= == (12Fs 4 3 2 +185F 3+ 75, + 12F 1]+ 7a%(8F 4+ 18F 5+ 13,
az 2
+6F 1)+ 5 (16F,+36F5+26F, + 6F ) +3F;) - za 2 yo(48F g+ 352F;+ 1024 ¢+ 150CF
2
— S a%yo48F g+ 352F ,+ 1024F 5+ 1500F 5 + 1157, +443 5+ 66F,). (AS6)
The remaining parameters are
+1157F ,+ 4433+ 66F2)} , (A4T) 1 Y2
a= — 70(2F3+3F2+ F1)+€_(F1_F0)_1 y (A57)
€Fo Yo
S) Yo
D= (€= 2%9) 3Pt 3Fi— 5 B v2 Fo—F1 o 12F ,+28F 3+ 21F ,+ 5F,
R > F
><(24F6+10CF5+134F4+71F3+13F2)}, 1
Sl (A58)
(A48) €1
1
_ Yo
2vaS =—ae+
Do (e~ 2708 15 & 2a2(F,~F1)l yo~ 4F 5~ 6F,
X (12F 5+ 44F 4, +57F 3+ 31F,+6F) |.  (A49) X| N+4ey,(8F;+44F g+ 86F 5+ 77F 4+ 32F 3+ 5F )

Once the integral$dy , , and®p , , associated with the

L i . . +8aﬁ€(4F5+8F4+5F3+ Fz)
collisional invariants have been expressed in terms, d,

yo(a), a, B, v1, andy,, the consistency conditions, Eq. Vo
0
—1g !
P00+ € " Pog=0, (AS0) Equations(A53)—(A59) show the highly nonlinear depen-
Dyt e 1D =0 (A51)  dence of the profiles on the shear rate. On the other hand, the
dependence on the reduced thermal gradienis quite
D oot Phoot <I>})OZ+ € H DYoot Doyt Poop) =0. simple; a, 8, andy, are inversely proportional te, while

(A52) v, does not depend oa
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APPENDIX B: CALCULATION OF THE FLUXES

This appendix is concerned with the evaluation of the
momentum and heat fluxes at ttebitrary point of interest
s=0.

Let us start with thexy element of the pressure tensor. In
the first order approximation, it is defined as

T A S N
(B1)
From Egs.(A2) and (A6) we have

o

D ds0= —gego k(2k+ 1)1 (2k+ 1)1 (= o)k L

)

—aKZO k(2k+ 1)1 (2k+ 1)U [(y1+ ae)

X (= yo)* (k= 1) eya( — ¥0) 2]
_ €(ptaa)tay;

(Fy—
Yo !

Fo)

Y2
—ae—Z(Fz— (B2)

Yo

3F+2F).
Next, by taking into account EqA27), we get

D Jemo=— aekZO (2K+4)1(2K+ 1)1 (— yo)¥

w| =

1 o
+ 72702 (k+1)(2k+6)!(2k+3)!! (= 70)*
k=0
=ae 2'}’0(8F7+44F6+ 9OF5+ 85F4+ 37F3

4

Inserting Eqs(B2) and(B3) into Eq. (B1), one finally gets

2
+—(

Yo

(1)|s 0= &

(5+ 18a2) — 18y,(7+100a2%) — Ba| 2
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Bet+a(ae+ yq)

(1) _
Piyls=0= Yo (F1—Fo)
—ae 2 (F,~3F,+2F)
Yo

a 2'}/0(8F7+44F6+ 9(]:5+ 85F4+ 37F3

4
+6F2)—§(2F3+3F2+F1) . (B4)

The diagonal elements of the pressure tensor have al-
ready been evaluated in Appendix A,

Py ls=0=Poads-0T € ' Ppods-o
=2(ae+ y,)(2F3+F,)+4y,6(8F;+ 36F;
+62F5+51F ,+20F 3+ 3F,)
+ 3(4F,+5F ;) — 3yo(24F s+ 100F 5+ 134F
+71F5;+13F,), (B5)
P(l)|s 0~ q)ooﬂs ote 1CI)oo s=0
=2(aet y)Fot4y,e(4F g+ 12F5+ 13F,
+6F3+F,)+1— 5yo(12F 5+ 44F 4+ 57F 5

+31F,+6F,), (B6)
(l)|s 0= — P |s 0 (zlz)|s:0- (87)
The heat flux vector is defined at this order as
1
=3 f dvvavid (B8)

In the same way as in the pure Couette flow problem, the two
nonzero components of the heat flux af®’ andq(" . They
require the evaluation by, \ with ny+n,+n3=3, which

can be obtained from Eq$§A2) and (A27). After rather te-
dious algebra, one obtains the expressions

2+2‘)/16

F
4vyo

,—3F;+2F) |+ [2F53+F,—3F,

+282(4F ;— 3F ,— Fq)]— 25 [2|:4 3F3;—5F,+6F,+2a%(4F5—8F,— 3F 3+ 5F ,+2F ;)]
7’0

3+2F; o 2 1 47 25 23

— 26 +?(2F3+5F2+3F1+17)__ F3+ §F2+ §F1_270 — € F6+6F5+ ZF4+ ?Fg"’ 1_2F2
175 43

—a’e| 4Fg+26F;+67F g+ ——F5+61F ;+ —F3+3F, |, (B9)

2 2
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1
a%(F,+4F3+3F,— 4F5—4F¢) + 5 (5F2—3F5—2F,) |+ yol@%(8F s+ 16F ,+ 10F 5

aua
1 _ 2
qg( )|s:o_ '}’O{ €

+2F,)+2F 3+ 5F,]

B
+ —{272 €’[3a%(F3—3F,+2F )+ yo(5F ,— 3F3— 2F ;) |+ yo[ 6a%(F 1 — F»)
0
aE’yl 2
+27v5(2F3+5F,) ]} + y—[Za (Fo+4F 3+ 3F,—4Fs— 4F¢) + 5F ,— 3F 3— 2F ]
0

a
+ 2—y§{ez[2a2(2F2+ 7F 3+ 2F ;— 11F5— AF g+ 4F ;) + 10F — 11F 3 F 4 + 2F ]
Yo

a
+ '}/0[2a2(6F4+ 8F3+ 2F2_8F5_8F6)+ 1(]:2_6F3_4F4]}+ Z(2F2+3F1+ 2F0)

a ad ad
- %(2412(# LAF 5+ 246F ;+ 155 3 +33F ) +— (4F 4 +8F 3+ 5F p+ F ) — 3—10(48F8+ 350F ,+ 1024

a ad
+1500F s+ L15TF 4 + 443 5+ 66F ) — | 15(33F » + 122 5+ O1F ,— 98F 5 — 124F g~ 24F ) + = (66

2
€
+37TF o+ T14F 4+ 34F 5 — 4T6F — 672 ;— 304Fg— 48F o) | + 5 [a(16F g+ 100F 5+ 164F 4+ 101F g+ 21F )

+a3(64F g+ 464F ,+ 1336F g+ 194CF 5+ 1486F 4+ 566F 5+ 84F,)]. (B10)
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