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Influence of gravity on nonlinear transport in the planar Couette flow
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The effect of gravity on a dilute gas subjected to the steady planar Couette flow with arbitrarily large
velocity and temperature gradients is analyzed. The results are obtained from the Bhatnagar–Gross–
Krook kinetic model by means of a perturbation expansion in powers of the external field. The
reference state corresponds to the pure~nonlinear! Couette flow solution, which retains all the
hydrodynamic orders in the shear rate and the thermal gradient. To first order in the gravity field, we
explicitly obtain the hydrodynamic profiles and the five relevant nonlinear transport coefficients; the
shear viscosityh, the two viscometric functionsC1,2, and the two nonzero elements,kxy andkyy ,
of the thermal conductivity tensor. The results show that, in general, the influence of gravity on the
rheological propertiesh andC1,2 tend to decrease as the shear rate increases, while this influence
is especially important in the case of the thermal conductivity coefficient,kyy , which measures the
heat flux parallel to the temperature gradient. ©1999 American Institute of Physics.
@S1070-6631~99!00204-4#
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I. INTRODUCTION

It is usual to ignore the effect of gravity on the properti
of gases under ordinary conditions. This is justified by
fact that the action of gravity between two successive co
sions of a molecule is negligible, i.e.,l!h, wherel is the
mean free path andh5v0

2/g is the distance over which
particle feels the action of gravity,v0 being the thermal ve-
locity and g being the gravity acceleration. At most, on
introducesg in the balance equations for momentum, b
otherwise one assumes that the dependence of the mo
tum and heat fluxes on the hydrodynamic fields and th
gradients is unchanged.1 For instance, in the case of air und
terrestrial conditions and at room temperature,l/h;10211.
On the other hand, it is appealing to investigate if and h
the transport equations are modified in situations where
role of gravity is not so tiny, say for example values
rarefaction and/org for which l/h;1023. To the best of our
knowledge, this problem has not been sufficiently studi
Recently, we have evaluated the corrections to the Nav
Stokes~NS! equations due to gravity in a dilute gas su
jected to the planar Fourier flow.2 This study was made from
an exact perturbation solution of the Boltzmann equation
Maxwell molecules through orderg2. The zeroth order solu
tion leads to an isotropic pressure tensor and to the ful
ment of the linear Fourier law, even for large therm
gradients.3,4 We found that, because of gravity, the press
tensor becomes anisotropic and the heat flux increases~de-
creases! with respect to its NS value when the gas is hea

a!Electronic mail: vicenteg@unex.es
b!Electronic mail: andres@unex.es
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from above ~below!. This analysis has been extended5 to
higher orders ing by using the Bhatnagar–Gross–Kroo
~BGK! model.

The aim of this paper is to analyze the influence of gra
ity on a more complex state than the Fourier flow. Spec
cally, we will consider the steady planar Couette flow, whi
corresponds to a gas enclosed between two infinite, par
plates in relative motion and, in general, kept at differe
temperatures. This state reduces to the Fourier flow in
special case where the gas is at rest. In the steady Co
flow, momentum as well as heat transport are present and
hydrodynamic balance equations become

]

]y
Pxy50, ~1!

]

]y
Pyy1rg50, ~2!

Pxy

]ux

]y
1

]

]y
qy50, ~3!

wherePi j is the pressure tensor,q is the heat flux,r is the
mass density,u is the flow velocity, thex-axis is parallel to
the direction of motion, and they-axis is orthogonal to the
plates. In the above equations we have assumed that ther
gradients only along they-axis and that gravity is anti-
parallel to that axis. According to Eq.~1!, the viscous pres-
sure is uniform across the system; otherwise, the state w
not be a steady one. Equation~2! implies that the normal
pressure at the bottom plate exceeds the one at the top
in an amount equal to the weight of a fluid column of un
area. Finally, Eq.~3! expresses the fact that the rate of m
chanical work introduced by the plates equal the rate of h
lost through the two surfaces. Note that gravity does
© 1999 American Institute of Physics
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appear explicitly in Eqs.~1! and ~3!. The balance equation
~1!–~3! do not constitute a closed set. Nevertheless, if
hydrodynamic gradients are weak, the fluxes are well
scribed by the NS relations, namely the Newton and Fou
laws,

Pxx5Pyy5Pzz5p, Pxy52hNS

]ux

]y
, ~4!

qx50, qy52kNS

]T

]y
, ~5!

where p5nkBT is the hydrostatic pressure (n being the
number density,kB being the Boltzmann constant, andT
being the temperature!, and hNS and kNS are the NS shea
viscosity and thermal conductivity, respectively. On t
other hand, when the strength of the gradients is not sm
the NS constitutive equations are not expected to apply
the transport must be described by nonlinear equations.

In the absence of gravity, the nonlinear regime has b
studied in the past from different methods. For dense ga
the problem has been studied by molecular dynam
simulations6 and by a modified moment method;7 for dilute
gases, studies have been carried out by molecular dyna
simulations,8 by a perturbation solution of the Boltzman
equation,9 by the Grad method,8 and by exact solutions of th
BGK model10,11 and related models.12–14 In all these works,
the main motivation is to study the breakdown of the N
relations~4! and ~5!, what means that normal stress diffe
ences exist, the viscous pressurePxy is not just proportional
to the shear rate]ux /]y, and the heat fluxq is no longer
proportional to the thermal gradient vector¹T. In order to
characterize these deviations from the NS relations, i
usual to introducegeneralizedtransport coefficients, namel
the viscometric functionsC1 andC2 , the generalized shea
viscosityh, the generalized thermal conductivitykyy , and a
coefficient kxy measuring cross effects. These nonline
transport coefficients are defined by

Pyy2Pxx5C1S ]ux

]y D 2

, ~6!

Pzz2Pyy5C2S ]ux

]y D 2

, ~7!

Pxy52h
]ux

]y
, ~8!

qx52kxy

]T

]y
, ~9!

qy52kyy

]T

]y
. ~10!

In general, all these coefficients are functions of the hyd
dynamic gradients]ux /]y and ]T/]y. When the gradients
become small, the NS coefficients are recovered, i.e.,C1

→0, C2→0, h→hNS, kyy→kNS, andkxy→0.
As said above, we are interested in evaluating the ef

of gravity on the coefficients defined by Eqs.~6!–~10!. To
this end, we will use the BGK model of the Boltzmann equ
e
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tion, for which an exact solution wheng50 is known.10,11

Recent comparisons between the BGK results and those
tained from molecular dynamics14 as well as Monte Carlo15

simulations show a very good agreement. This gives us c
fidence in the use of the BGK approximation to describe
steady Couette flow in the presence of gravity. We solve
BGK kinetic equation by performing a perturbation expa
sion in powers ofg, taking the pure~nonlinear! Couette flow
solution as the zeroth order approximation. As a con
quence, the successive approximations depend in a nonli
way on the hydrodynamic gradients. Here, we will restr
ourselves to the first order corrections, what is justified
the fact that in practical applications the value ofg is very
small.

The paper is organized as follows. In Sec. II we descr
the problem and give a brief summary of the main kno
results in the absence of gravity. The first order correctio
are worked out in Sec. III, the mathematical details be
given in the Appendices. By taking a given example,
illustrate the influence of gravity on the five relevant tran
port properties in Sec. IV. We close the paper with so
concluding remarks in Sec. V.

II. DESCRIPTION OF THE PROBLEM

Let us consider a dilute gas described by the BGK
netic equation,16

]

]t
f 1v•¹ f 1

F

m
•

]

]v
f 52n~ f 2 f L!, ~11!

where f (r ,v;t) is the one-particle velocity distribution func
tion, F is an external force, andf L is the local equilibrium
distribution function given by

f L~r ,v;t !5nS m

2pkBTD 3/2

expF2m
~v2u!2

2kBT G . ~12!

Here,m is the mass of a particle. The local quantitiesn(r ,t),
u(r ,t), and T(r ,t) are defined in terms of the distributio
function as

n5E dvf , ~13!

u5
1

nE dvvf , ~14!

T5
m

3nkB
E dv~v2u!2f . ~15!

Furthermore, Eq.~11! introduces a velocity-independent co
lision frequency,n, which is proportional to the density an
whose dependence on the temperature models the intera
potential. For instance,n}n for Maxwell molecules, while
n}nT1/2 for hard spheres. Apart from the densities of co
served quantities, one can define the pressure tensor~related
to the transport of momentum!

P5mE dv~v2u!~v2u! f ~16!

and the heat flux~related to the transport of energy!
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q5
m

2 E dv~v2u!2~v2u! f . ~17!

The main motivation of this paper is to analyze the
fluence of gravity on the heat and momentum transp
across a fluid. The physical situation is that of a dilute g
enclosed between two parallel plates moving at different
locities ~planar Couette flow! and subjected to a consta
gravitational field perpendicular to the plates. Let thex-axis
be parallel to the direction of motion and they-axis be or-
thogonal to the walls. We want to study a steady state w
velocity and temperature gradients along they direction co-
existing with a fieldF52mgŷ, whereg is the acceleration
due to gravity. In addition, we are interested in a situat
where the external field does not generate convective mo
so that the flow velocity profile is only due to the relativ
motion of the plates enclosing the gas~boundary conditions!.
This implies that the corresponding~local! Rayleigh number
Ra, which is proportional tog(2]T/]y), must be less than
a certain critical value Rac.1700.17 In addition, we are in-
terested in the properties of the gas in the bulk region ra
than close to the walls. Thus, we will assume that the Kn
sen number~which is defined as the ratio between the me
free path and the separation between the plates! is suffi-
ciently small to identify such a region. In other words, w
will look for a ‘‘normal’’ solution of Eq. ~11! where all the
space dependence off is given trough its functional depen
dence on the pressure, the flow velocity and the tempera

In order to simplify the analysis, it is convenient to in
troduce dimensionless quantities. To do so, we choose
arbitrary point y0 belonging to the bulk domain as the orig
and take the quantities at that point~henceforth denoted by
subscript 0! as reference units. Therefore, we defineT*
[T/T0 , p* [p/p0 , u* [u/v0 , v* [v/v0 , f * [n0

21v0
3f ,

andg* [g/v0n0 . Here,v05(kBT0 /m)1/2 is a thermal veloc-
ity. One can define a mean free path~at y5y0) as l0

5v0 /n0 and a characteristic lengthh05v0
2/g. Thus, g*

5l0 /h0 represents the ratio between the mean free path
the distance over which a typical particle feels the action
the field. In the same way as in previou
descriptions,10,12,13,18the spatial variabley must be conve-
niently rescaled in a nonlinear way that takes into acco
the local dependence of the collision frequency. Thus,
define

s5
1

v0
E

y0

y

dy8n~y8!. ~18!

Under the above conditions, the BGK equation~11! becomes

S 11vy*
]

]s
2g*

T*

p*

]

]vy*
D f * 5 f L* , ~19!

where, for the sake of concreteness, we have restricted
selves to the case of Maxwell molecules.

A trivial solution of Eq.~19! corresponds to theequilib-
rium state characterized byu* 50, T* 51 and p* 51
2g* s. The latter equation leads to the well-known barom
ric formula p(y)5p0 exp@2mg(y2y0)/kBT#. A much more
interesting and nontrivial situation corresponds to the~pure!
-
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steady planar Couette flow, i.e., wheng* 50. In this case,
Eq. ~19! admits anexactsolution characterized by a consta
pressurep* 51, and ‘‘linear’’ velocity and ‘‘parabolic’’ tem-
perature profiles10,11

ux* ~s!5ux* ~0!1as, ~20!

T* ~s!511es2g0~a!s2, ~21!

wherea ande are independent constants fixed by the bou
ary conditions. These two quantities measure the depar
of the system from equilibrium. The dimensionless para
eterg0(a) is anonlinearfunction of the reduced shear ratea
given implicitly through the equation10

a25g0

2F2~g0!13F1~g0!

F1~g0!
, ~22!

where

Fr~g0!5S d

dg0
g0D r

F0~g0! ~23!

and

F0~g0!5
2

g0
E

0

`

dt texp~2t2/2!K0~2g0
21/4t1/2!, ~24!

K0 being the zeroth-order modified Bessel function. The r
evant transport coefficients of the steady Couette flow
obtained from the pressure tensor and the heat flux. They
nonlinear functions of the reduced shear ratea given
by10,13,14

Pxx* 5114g0~F11F2!, ~25!

Pyy* 5122g0~F112F2!, ~26!

Pzz* 5122g0F1 , ~27!

Pxz* 5Pyz* 50, ~28!

Pxy* 52F0

]ux*

]s
, ~29!

qy* 52
a2F0

2g0

]T*

]s
, ~30!

qx* 5@5F212F312a2~F215F318F414F5!#a
]T*

]s
.

~31!

Here, we have introduced the dimensionless fluxesP*
[P/p0 and q* [q/p0v0 . In Eqs. ~25!–~31!, Fr[Fr(g0).
Notice that although the temperature gradient is only
rected along they-axis ~so that there is a response in th
direction throughqy* ), the shear flow induces a nonzerox
component of the heat flux.8,13,14 Furthermore, an explicit
expression for the velocity distribution functionf * has also
been derived.11

The presence of the term proportional tog* in Eq. ~19!
complicates the problem significantly and we have not b
able to get an explicit solution for arbitrary values of th
gravity. However, given that the value of the gravity acc
eration is small enough, for practical purposes it is suffici
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to perform a perturbation analysis in the same way as in
case of the Fourier flow.2 More specifically, we will carry
out a perturbation expansion in powers ofd[eg* ,

f * 5 f ~0!1 f ~1!d1¯, ~32!

where the reference statef (0) represents the pure steady Co
ette flow corresponding to the actual values of pressure, fl
velocity, temperature, and both velocity and thermal gra
ents at the point of interesty5y0 . The use ofd as the per-
turbation parameter rather thang* is due to the fact that the
producteg* appears in a natural way, so that the final e
pressions are more compact. The parameterd represents the
combinationl0

2/ l 0h0 , where l 0
215] ln T/]yuy5y0

is the in-
verse of a characteristic hydrodynamic length. In consiste
with the expansion~32!, we expand the hydrodynamic field
and the dissipative fluxes as

p* 5p~0!1p~1!d1¯, ~33!

ux* 5ux
~0!1ux

~1!d1¯, ~34!

T* 5T~0!1T~1!d1¯, ~35!

P* 5P~0!1P~1!d1¯, ~36!

q* 5q~0!1q~1!d1¯. ~37!

Here, p(0)51, ux
(0)5ux* (0)1as, T(0)511es2g0s2, and

the fluxesP(0) and q(0) are given by Eqs.~25!–~31!. By
definition, p(k)(0)5ux

(k)(0)5T(k)(0)5]ux
(k)/]sus50

5]T(k)/]sus5050 for k>1. According to the spirit of our
expansion, the terms of orderdk are nonlinear functions of
the shear ratea and the thermal gradiente. This is the main
feature of the method. In this paper we will only consider t
first order correction to the pure Couette flow.

III. STEADY COUETTE FLOW IN THE PRESENCE OF
A WEAK GRAVITATIONAL FIELD

In this section we evaluate the hydrodynamic profiles
well as the momentum and heat fluxes to first order ind. By
substituting the expansions~32!–~35! into Eq. ~19!, one gets

S 11Vy

]

]sD f ~1!2
T~0!

e

]

]Vy
f ~0!5 f L

~1! , ~38!

whereV5v* 2u(0), f L
(1) is given by

f L
~1!5F p~1!1

Vxux
~1!

T~0!
1S V2

2T~0!
2

5

2D T~1!

T~0!G f L
~0! ~39!

and

f L
~0!5~2p!23/2T~0!25/2expS 2

V2

2T~0!D . ~40!

It is convenient to recast Eq.~38! into the form

f ~1!5~11Vy]s!
21S f L

~1!1
T~0!

e

]

]Vy
f ~0!D

5 (
k50

`

~2]s!
kVy

kS f L
~1!1

T~0!

e

]

]Vy
f ~0!D , ~41!
e

w
i-

-

y

e

s

where]s[]/]s. This is only aformal solution sincef L
(1) is a

functional of f (1) through its dependence on the fieldsp(1),
ux

(1) , andT(1). In order to convert Eq.~41! into an explicit
equation that can be solved, one needs to know the sp
dependence of the above hydrodynamic fields. As in the c
of the Fourier flow,2 we will follow a heuristic method,
namely, we first guess simple profiles and then verify th
consistency. Inspection of Eq.~41! suggests that the structur
of the solution corresponding to the pure Couette flow, E
~20! and ~21! can be extended to the solution of first orde
Therefore, we assume thatp(1), ux

(1) , andT(1) are polyno-
mials in s of degree 1, 2, and 3, respectively, whose coe
cients are nonlinear functions of the reduced shear ratea and
of the reduced thermal gradiente,

p~1!5as, ~42!

ux
~1!5bs2, ~43!

T~1!5g1s21g2s3. ~44!

The unknown coefficientsa, b, g1 , andg2 are determined
by requiring the self-consistency of the solution~41! charac-
terized by the profiles~42!–~44!. This means thatf (1) and
f L

(1) possess the same first five moments,

E dv$1,V,V2%~ f ~1!2 f L
~1!!5$0,0,0%. ~45!

The fulfillment of these conditions leads~see Appendix A! to
a system of four linear equations for the set$a,b,g1 ,g2% as
functions of a and e. The corresponding solution, Eqs
~A53!–~A59!, provides the explicit form of the profiles. In
particular, for small shear rates, these coefficients behav
a'2(12 6

5a
2)/e, b'(a/2e)(11 46

5 a2), g1' 1
2(11 494

25 a2),
andg2'2a2/5e. These results are consistent with those o
tained from the BGK equation in the Fourier flow proble
under gravitation~i.e., whena50).5

Once the explicit form of the hydrodynamic fields
known, the goal now is to get the influence of gravity on t
transport properties when only terms through first order ind
are considered in the momentum and heat fluxes. Since
reduced parametersa, e, andd5eg* are defined at the~ar-
bitrary! point s50, we evaluate the fluxes at that point, wit
out loss of generality. The idea is to express the fluxes atany
point ~represented bys50 or, equivalently,y5y0) in the
bulk domain of the system in terms of the values of t
hydrodynamic quantities and their gradients at that v
point.

The xy element of the pressure tensor defines the n
linear shear viscosityh, according to Eq.~8!. In reduced
units,

h* ~a,e,d!52
Pxy

~0!1Pxy
~1!d

a
U

s50

. ~46!

Normal stresses are measured through the viscometric f
tionsC1 andC2 defined by Eqs.~6! and~7!. To first order in
the field, they are
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C1* ~a,e,d!5
Pyy

~0!2Pxx
~0!1~Pyy

~1!2Pxx
~1!!d

a2 U
s50

, ~47!

C2* ~a,e,d!5
Pzz

~0!2Pyy
~0!1~Pzz

~1!2Pyy
~1!!d

a2 U
s50

. ~48!

As said before, in the Couette flow the heat flux vector
fines a thermal conductivity tensor rather than a scalar du
the anisotropy of the problem. According to Eqs.~9! and
~10!, the nonzero elements are

kxy* ~a,e,d!52
qx

~0!1qx
~1!d

e
U

s50

, ~49!

kyy* ~a,e,d!52
qy

~0!1qy
~1!d

e
U

s50

. ~50!

Equations~46!–~50! define the five relevant transport coe
ficients in the problem. The explicit calculation of the no
zero elements ofP(1) andq(1) is made in Appendix B. They
are given by Eqs.~B4!–~B7!, ~B9! and~B10!. The nonlinear
dependence of these quantities on the shear rate is ver
parent. From the above expressions, one can get the tran
coefficientsh, C1 , C2 , kxy , and kyy . For small shear
rates, these coefficients behave as

h* '118d2
18

5 S 11
958

5
d Da2, ~51!

C1* '2
14

5 S 11
1516

35
d D1

792

25 S 11
245 083

550
d Da2, ~52!

C2* '
4

5S 11
358

5
d D2

288

25 S 11
65 179

100
d Da2, ~53!

kxy* '2a@712~67e181!d#

1
a3

5 F46816S 6090e1
168 969

5
131e22D dG , ~54!

kyy* '
5

2S 11
58

5
d D2

81

5 F11S 35 296

135
1

1549

81
e22D dGa2.

~55!

The dependence on the reduced thermal gradiente ap-
pearing in Eqs.~51!–~55! is not restricted to small shea
rates. The five transport coefficients are independent ofe in
the absence of gravity (g* 50), but this is not true when
g* Þ0. According to the results of Appendix B,P(1) is inde-
pendent of e, while qx

(1)5•••e21•••e1•••e21, qy
(1)

5•••e1•••e21, where the ellipses denote nonlinear fun
tions of the shear rate. This behavior of the heat flux gi
rise to an interesting effect. Let us consider the layer wh
the temperature reaches its maximum value (e50). In the
absence of gravity, the heat flux across that layer vanis
i.e., q* ug* 50,e5050. On the other hand, the coupling b
tween shear flow and gravity induces a nonzero heat flu
spite of the fact that the~local! thermal gradient is zero, i.e
q* ug* Þ0,e50Þ0. More specifically, qx* ue5052 186

5 g* a3@1
1O(a2)# andqy* ue505 1549

5 g* a2@11O(a2)#.
-
to

ap-
ort

-
s

re

s,

in

Equations~51!–~53! and ~55! show that, in the limit of
zero shear rate, the gravitational field induces a decrease~in-
crease! of the viscosity, the normal stress differences, and
thermal conductivity on those points where the thermal g
dient is parallel~antiparallel! to the field. A subtler effect
appears on the heat flux vectorq. In the absence of gravita
tion, the vectorq rotates anticlockwise with respect to th
direction of2¹T a small angleu. 14

5 a for small shear rates
In the presence of gravitation, this angle becomesu
. 14

5 a(11 404
35 eg* ), i.e., it decreases~increases! if the ther-

mal gradient~here assumed to be small! is parallel~antipar-
allel! to the field. All these effects become much more
volved when the shear rate and/or the thermal conducti
are not small, as shown in the example given below.

IV. AN ILLUSTRATIVE EXAMPLE

Thus far, all the results are valid for arbitrary values
the reduced shear ratea and the reduced thermal gradiente
and to first order in the reduced gravitational fieldg* . While,
without loss of generality,a andg* can be chosen as pos
tive, the sign ofe denotes two distinct situations:e,0 (e
.0) corresponds to points that are ‘‘heated from bel
~above!,’’ i.e., points where the thermal gradient is parall
~antiparallel! to the field. For illustrative purposes, we fixe
51 and considerg* 50 andg* 50.002. Then we can get th
five transport coefficients as nonlinear functions of the sh
rate only. Figures 1–5 displayh* , C1* , C2* , kxy* , andkyy* ,
respectively, in the range 0<a<0.5. In general, we see tha
the presence of the field does not change the trends obse
for the transport coefficients in the absence of gravitation
particular, the shear viscosityh* and the thermal conductiv
ity kyy* are smaller than their corresponding values at z
shear rate and they monotonically decrease as the shea
increases. We also observe that, given a value of the s
rate, the gravitation increases the values ofh* , 2C1* , C2* ,
and2kxy* if e.0. On the other hand, the rheological pro
erties ~shear viscosity and viscometric functions! with and
without gravitational field tend to overlap as the shear r
increases so that the effect of the gravitation is practica
negligible for large shear rates. This effect is especially s

FIG. 1. Shear-rate dependence of the reduced shear viscosityh* at e51
andg* 50 ~solid line! andg* 50.002~dashed line!.
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nificant in the case of the viscometric functions, where
influence of the field is quite remarkable for small she
rates.

The most interesting influence of the gravitational fie
on the transport properties appears in the case of the the
conductivity coefficientkyy* . In contrast to what happened i
Figs. 1–3, the effect of the field is now more notorious as
shear rate becomes larger. In addition, whilekyy* ud.0

.kyy* ud50 at small shear rates, the opposite happens for la
shear rates. In particular, ata50kyy* has increased by abou
a 2% with respect to its zero-field value, while it has d
creased by a 17% ata50.5. This crossover effect is an un
expected consequence of the highly nonlinear dependen
the transport coefficientkyy* on the shear rate. Concernin
the heat transport along the flow direction, we observe
the magnitude of the associated off-diagonal elementkxy* in-
creases witha, its value being larger with than without grav
ity. From Figs. 4 and 5 it follows that when going fromg*
50 to g* 50.002 ata50.5 ande51, the heat flux vector
decreases its magnitude by a 7.5% and rotates from an a
u.45° with the2 ŷ direction tou.50°.

Given that our results are restricted to the first order
the field, it must be pointed out that the dashed curves
Figs. 1–5 do not intend to represent strictly the compl

FIG. 2. Shear-rate dependence of the reduced first viscometric func
2C1* at e51 andg* 50 ~solid line! andg* 50.002~dashed line!.

FIG. 3. Shear-rate dependence of the reduced second viscometric fun
C2* at e51 andg* 50 ~solid line! andg* 50.002~dashed line!.
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behavior atd50.002, since higher order terms could also
important, especially in the cases of the viscometric fu
tions and of the diagonal thermal conductivity coefficie
The main objective of Figs. 1–5 was to highlight the tren
to be expected in the presence of nonzero gravity.

V. DISCUSSION

The aim of this paper has been to analyze the influe
of gravitation on the transport properties of a dilute gas
from equilibrium. Specifically, we have considered t
steady planar Couette flow described by the BGK mo
kinetic equation. In the absence of gravity, the exact solut
of the problem is known for arbitrary values of the loc
shear rate and thermal gradient. Taking this solution a
reference state, we have performed a perturbation expan
in powers of the external field, the successive coefficie
being nonlinear functions of both gradients. Here we ha
restricted ourselves to the first-order correction, although
method could be extended to higher orders. On the o
hand, not only the algebraic complexity increases dram
cally as one considers higher-order approximations, but
practical purposes the first-order approximation should
sufficient.

n

ion

FIG. 4. Shear-rate dependence of the reduced diagonal thermal conduc
kyy* at e51 andg* 50 ~solid line! andg* 50.002~dashed line!.

FIG. 5. Shear-rate dependence of the reduced off-diagonal thermal con
tivity 2kxy* at e51 andg* 50 ~solid line! andg* 50.002~dashed line!.
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In the pure Couette flow (g50), the solution is charac
terized by a uniform pressure, a linear velocity profile, an
quadratic temperature profile, the latter two with respect t
conveniently scaled space variable. The results reported
show that, to first order ing, the pressure, the velocity, an
the temperature become linear, quadratic, and cubic fu
tions, respectively. The most important quantities of
problem are the five independent transport coefficients, m
suring the heat and momentum fluxes across the sys
Apart from generalizations of the shear viscosity,h, and the
thermal conductivity,kyy , coefficients, one can define th
viscometric functions C1 and C2 , measuring norma
stresses, and a new coefficientkxy that measures a compo
nent of the heat flux parallel to the flow and orthogonal to
temperature gradient. All of these coefficients have been
plicitly obtained in terms of the shear rate and the therm
gradient. In the case of the rheological properties (h, C1,2),
we have found that the influence of gravity tends to decre
as the shear rate increases, i.e., in the non-Newtonian reg
The quantity where the effect of gravity is the largest one
the thermal conductivity kyy . In addition, kyyugÞ0

2kyyug50 changes sign as one goes from small to large sh
rates.

Although the results reported in this paper have be
obtained from the BGK model, we expect that most of t
main trends will also be present in a more detailed desc
tion in the framework of the Boltzmann equation. In fa
this is what happens in the pure Couette flow9 and in the
Fourier flow under gravitation.2 A more quantitative agree
ment could be expected if one conveniently defines redu
units in order to get the correct Prandtl number. This strat
has proven to be useful in the pure Couette flow14 and in the
Poiseuille flow.19 More specifically, we propose to definea
5(hNS/p)]ux /]y, e5(AkBT/mkNS/pcp)] ln T/]y, and g*
5(hNS/pAkBT/m)g, where cp5 5

2kB /m and hNS and kNS

are, respectively, the correct Navier–Stokes shear visco
and thermal conductivity coefficients. Thus, we conject
that a good approximation to the nonlinear Boltzmann tra
port coefficients~to first order ing) could be obtained by
making h→hNSh* (a,e,g* ), C i→(hNS

2 /p)C i* (a,e,g* ),
and k i j→ 2

5kNSk i j* (a,e,g* ), where the dimensionless tran
port coefficients are those explicitly derived here from t
BGK model.
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APPENDIX A: CONSISTENCY CONDITIONS FOR THE
HYDRODYNAMIC FIELDS

In this Appendix we prove the consistency between
hydrodynamic profiles~42!–~44! and the solution given by
Eq. ~41!. To this end, it is convenient to rewrite the form
solution ~41! as
a
a
re

c-
e
a-
m.

e
x-
l

se
e.

s

ar

n
e
-

ed
y

ity
e
-

e

e

e

f ~1!2 f L
~1!5 (

k51

`

~2]s!
kVy

kf L
~1!

1e21(
k50

`

~2]s!
kT~0!Vy

k ]

]Vi
f ~0!

[L I1e21L II . ~A1!

Let us introduce the integrals

Fn1n2n3

I 5E dVVx
n1Vy

n2Vz
n3L I

5 (
k51

`

~2]s!
kE dVVx

n1Vy
n21kVz

n3f L
~1!

1(
l 51

n1

(
k5 l

`

~ l
k!

n1!

~n12 l !!
~2a! l~2]s!

k2 l

3E dVVx
n12 lVy

n21kVz
n3f L

~1! , ~A2!

where in the last step we have made use of the identitie

A~2]s!
kB5(

l 50

k

~ l
k!~2]s!

k2 l~]s
l A!B, ~A3!

]s
l Vx

n15
n1!

~n12 l !!
~2a! lVx

n12 l . ~A4!

By taking into account that

E dVVx
n1Vy

n2Vz
n3f L

~0!5Kn1
Kn2

Kn3
T~0!~n11n21n322!/2,

~A5!

where Kn5(n21)!! if n5even ~with the convention
(21)!! 51), beingKn50 otherwise, Eq.~39! yields

E dVVx
n1Vy

n2Vz
n3f L

~1!

5F p~1!1
n11n21n322

2

T~1!

T~0!G
3Kn1

Kn2
Kn3

T~0!~n11n21n322!/2

1ux
~1!Kn111Kn2

Kn3
T~0!~n11n21n323!/2. ~A6!

The integrals of this type contributing to Eq.~A2! are of the
form n11n21n3>2 with n15even and of the formn1

1n21n3>3 with n15odd. Thus, Eqs.~42!–~44! imply that
the right-hand side of Eq.~A6! is a polynomial ins of degree
n11n21n321. Consequently,Fn1n2n3

I is also a polynomial

of degreen11n21n321. In particular,

F000
I 5F001

I 50, ~A7!
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F100
I 5 (

k51

`

~2k21!!! ]s
2kux

~1!T~0!k2112a(
k51

`

k~2k21!!! ]s
2k21F p~1!1~k21!

T~1!

T~0!GT~0!k21

5b(
k51

`

~2k!! ~2k21!!! ~2g0!k2112a(
k51

`

k~2k21!! ~2k21!!! @a~2g0!k211~k21!g2~2g0!k22#, ~A8!

F010
I 52 (

k50

`

~2k11!!! ]s
2k11F p~1!1k

T~1!

T~0!GT~0!k

52 (
k50

`

~2k11!! ~2k11!!! @a~2g0!k1kg2~2g0!k21#, ~A9!

F200
I 5 (

k51

`

~2k21!!! ]s
2kF p~1!1k

T~1!

T~0!GT~0!k14a(
k51

`

k~2k21!!! ]s
2k21ux

~1!T~0!k21

12a2(
k51

`

k~2k21!~2k21!!! ]s
2k22F p~1!1~k21!

T~1!

T~0!GT~0!k21

5 (
k51

`

~2k!! ~2k21!!! $~2k11!@g2k~2g0!k211a~2g0!k#s1k@~g11ea!~2g0!k211eg2~k21!~2g0!k22#%

14ab(
k51

`

k~2k21!! ~2k21!!! @2k~2g0!k21s1~k21!e~2g0!k22#

12a2(
k51

`

k~2k21!~2k22!! ~2k21!!! $~2k21!@g2~k21!~2g0!k221a~2g0!k21#s

1~k21!@~g11ea!~2g0!k221eg2~k22!~2g0!k23#%, ~A10!

F020
I 5 (

k51

`

~2k11!!! ]s
2kF p~1!1k

T~1!

T~0!GT~0!k

5 (
k51

`

~2k!! ~2k11!!! $~2k11!@g2k~2g0!k211a~2g0!k#s1k@~g11ea!~2g0!k211eg2~k21!~2g0!k22#%,

~A11!

F002
I 5 (

k51

`

~2k21!!! ]s
2kF p~1!1k

T~1!

T~0!GT~0!k

5 (
k51

`

~2k!! ~2k21!!! $~2k11!@g2k~2g0!k211a~2g0!k#s1k@~g11ea!~2g0!k211eg2~k21!~2g0!k22#%.

~A12!
io

The series expansions appearing in Eqs.~A8!–~A12! are

asymptotic. They can be expressed in terms of the funct
Fr(g0) defined by Eqs.~23! and~24! by taking into account
their asymptotic expansions10

Fr[Fr~g0!5 (
k50

`

~k11!r~2k11!! ~2k11!!! ~2g0!k.

~A13!

It must be noticed that the functions$Fr ,r>3% can be easily
expressed in terms ofF0 , F1 , andF2 as
nsF35
1

8g0
~12F0!2F22

1

4
F1 , ~A14!

Fr5
1

8g0
(

m50

r 23

~m
r 23!~21!m1rFm2Fr 212

1

4
Fr 22 , r>4.

~A15!

Making use of Eq.~A13!, one can rewrite Eqs.~A8!–~A12!
as

F100
I 52~b1aa!F122a

g2

g0
~F22F1!, ~A16!
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F010
I 52aF01

g2

g0
~F12F0!, ~A17!

F200
I 52@g2~2F31F2!2ag0~2F21F1!#s12~g11ea!F2

14eg2~4F6112F5113F416F31F2!

18ab@F2s1e~4F518F415F31F2!#

12a2H Fa~2F22F1!2
g2

g0
~2F323F21F1!Gs

2
g11ea

g0
~F22F1!1

g2

g0
2
e~F323F212F1!J ,

~A18!

F020
I 52@g2~4F414F31F2!2ag0~4F314F21F1!#s

12~g11ea!~2F31F2!14eg2~8F7136F6162F5

151F4120F313F2!, ~A19!

F002
I 52@g2~2F31F2!2ag0~2F21F1!#s12~g11ea!F2

14eg2~4F6112F5113F416F31F2!. ~A20!

Now let us consider the termL II defined in the last line
of Eq. ~A1!. By taking into account thatT(0) is a quadratic
function ofs and considering an identity similar to~A3!, we
can carry out the decomposition

L II5T~0!L II,02~]sT
~0!!L II,11~]s

2T~0!!L II,2, ~A21!

where

L II, m5 (
k50

`

~m
k1m!~2]s!

kVy
k1m ]

]Vy
f ~0!. ~A22!

To proceed, we need the expression of the distribution fu
tion in the absence of gravitation,f (0). While its explicit
form is known,11 here it is more convenient to make use
the formal solution10

f ~0!5(
l 50

`

~2]s!
lVy

l f L
~0! . ~A23!

Substitution into Eq.~A22! yields

L II, m5 (
k50

`

~m11
k1m11!S ]

]Vy
Vy2m2

m11

m12
kD

3Vy
k1m21~2]s!

kf L
~0! , ~A24!

where we have made use of the identities

(
l 50

k

~m
k2 l 1m!5~m11

k1m11!, ~A25!

(
l 50

k

~m
k2 l 1m!~k2 l 1m!5~m11

k1m11!S m1
m11

m12
kD . ~A26!

In the same way as in Eq.~A2!, we define the integrals
c-

Fn1n2n3

II, m 5E dVVx
n1Vy

n2Vz
n3L II, m

52(
l 50

n1

(
k5 l

`

~ l
k!~m11

k1m11!
n1!

~n12 l !!

3S n21m1
m11

m12
kD ~2a! l~2]s!

k2 l

3E dVVx
n12 lVy

n21k1m21Vz
n3f L

~0! , ~A27!

where in the last step we have used again Eqs.~A3! and
~A4!. The evaluation ofFn1n2n3

II, m is now straightforward by

using Eq.~A5! and it is easy to see thatFn1n2n3

II, m is in general

a polynomial of degreen11n21n31m23. The most im-
portant integrals are

F000
II,052]sT

~0!21, F000
II,15T~0!21, F000

II,250, ~A28!

F100
II,05aT~0!21, F100

II,150, ~A29!

F100
II,25

a

24 (
k50

`

~6k111!~2k14!! ~2k11!!! ~2g0!k,

~A30!

F010
II,052T~0!21, F010

II,150, ~A31!

F010
II,252

1

8 (
k50

`

~2k14!! ~2k11!!! ~2g0!k, ~A32!

F001
II,05F001

II,15F001
II,250, ~A33!

F200
II,050, ~A34!

F200
II,152

1

3 (
k50

`

~4k13!~k11!~2k!! ~2k11!!! ~2g0!k

2
a2

6 (
k50

`

~4k17!~2k14!! ~2k11!!! ~2g0!k,

~A35!

F200
II,25

1

24
~]sT

~0!!(
k50

`

~6k111!~k11!~2k14!!

3~2k11!!! ~2g0!k1
a2

24
~]sT

~0!!(
k50

`

~6k117!

3~k11!~2k16!! ~2k13!!! ~2g0!k, ~A36!

F020
II,050, ~A37!

F020
II,152

1

6 (
k50

`

~4k19!~2k12!! ~2k11!!! ~2g0!k,

~A38!

F020
II,25

1

24
~]sT

~0!!(
k50

`

~6k119!~k11!~2k14!!

3~2k13!!! ~2g0!k, ~A39!

F002
II,050, ~A40!
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F002
II,152

1

3 (
k50

`

~4k13!~k11!~2k!! ~2k11!!! ~2g0!k,

~A41!

F002
II,25

1

24
~]sT

~0!!(
k50

`

~6k111!~k11!~2k14!!

3~2k11!!! ~2g0!k. ~A42!

If we define

Fn1n2n3

II 5E dVVx
n1Vy

n2Vz
n3L II

5T~0!Fn1n2n3

II,0 2~]sT
~0!!Fn1n2n3

II,1

1~]s
2T~0!!Fn1n2n3

II,2 , ~A43!

we easily get

F000
II 5F001

II 50, ~A44!

F100
II 5aF12

g0

3
~12F4128F3121F215F1!G , ~A45!

F010
II 5211g0~2F313F21F1!, ~A46!

F200
II 5~e22g0s!F12

g0

3
~12F5144F4157F3131F2

16F1!1
a2

3
~16F4136F3126F216F1!

2
2

3
a2g0~48F81352F711024F611500F5

11157F41443F3166F2!G , ~A47!

F020
II 5~e22g0s!F4

3
F21

5

3
F12

g0

3

3~24F61100F51134F4171F3113F2!G ,
~A48!

F002
II 5~e22g0s!F12

g0

3

3~12F5144F4157F3131F216F1!G . ~A49!

Once the integralsFn1n2n3

II and Fn1n2n3

II associated with the

collisional invariants have been expressed in terms ofe, a,
g0(a), a, b, g1 , and g2 , the consistency conditions, Eq
~45!, imply

F100
I 1e21F100

II 50, ~A50!

F010
I 1e21F010

II 50, ~A51!

F200
I 1F020

I 1F002
I 1e21~F200

II 1F020
II 1F002

II !50.
~A52!
Since the left-hand side of Eq.~A52! is a linear function ofs,
Eqs.~A50!–~A52! constitute a closed set of four linear equ
tions for the unknownsa, b, g1 , andg2 . The solution for
g2 is

g252
g0

3e

R

S
, ~A53!

where we have introduced the coefficients

R5a2$2F0F2@g0~12F4128F3121F215F1!23#

23F1~2F21F1!@g0~2F313F21F1!21#%

23F1g0$F0l2@12g0~2F313F21F1!#

3~4F318F213F1!%, ~A54!

S5a2$F0@F1~F222F3!14F2
2!#2F1

2~2F21F1!%

1F1g0$F0@4~F413F3!111F213F1!#

2F1~4F318F213F1!%, ~A55!

with

l521
4

3
F21

5

3
F12

g0

3
@24F61124F51222F4

1185F3175F2112F1#1
2

3
a2~8F4118F3113F2

13F1!2
2

3
a2g0~48F81352F711024F611500F5

11157F41443F3166F2!. ~A56!

The remaining parameters are

a5
1

eF0
Fg0~2F313F21F1!1e

g2

g0
~F12F0!21G , ~A57!

b52aFa2
g2

g0

F22F1

F1
2

g0

6e

12F4128F3121F215F1

F1

1
1

2eF1
G , ~A58!

g152ae1
1

2a2~F22F1!/g024F326F2

3Fl14eg2~8F7144F6186F5177F4132F315F2!

18abe~4F518F415F31F2!

12a2e
g2

g0
2 ~F323F212F1!G . ~A59!

Equations~A53!–~A59! show the highly nonlinear depen
dence of the profiles on the shear rate. On the other hand
dependence on the reduced thermal gradiente is quite
simple;a, b, andg2 are inversely proportional toe, while
g1 does not depend one.
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APPENDIX B: CALCULATION OF THE FLUXES

This appendix is concerned with the evaluation of t
momentum and heat fluxes at the~arbitrary! point of interest
s50.

Let us start with thexy element of the pressure tensor.
the first order approximation, it is defined as

Pxy
~1!us505E dVVxVyf ~1!5F110

I us501e21F110
II us50 .

~B1!

From Eqs.~A2! and ~A6! we have

F110
I us5052be(

k50

`

k~2k11!! ~2k11!!! ~2g0!k21

2a(
k50

`

k~2k11!! ~2k11!!! @~g11ae!

3~2g0!k211~k21!eg2~2g0!k22#

5
e~b1aa!1ag1

g0
~F12F0!

2ae
g2

g0
2 ~F223F112F0!. ~B2!

Next, by taking into account Eq.~A27!, we get

F110
II us5052

1

3
ae(

k50

`

~2k14!! ~2k11!!! ~2g0!k

1
1

4
aeg0(

k50

`

~k11!~2k16!! ~2k13!!! ~2g0!k

5aeF2g0~8F7144F6190F5185F4137F3

16F2!2
4

3
~2F313F21F1!G . ~B3!

Inserting Eqs.~B2! and ~B3! into Eq. ~B1!, one finally gets
Pxy
~1!us505

be1a~ae1g1!

g0
~F12F0!

2ae
g2

g0
2 ~F223F112F0!

1aF2g0~8F7144F6190F5185F4137F3

16F2!2
4

3
~2F313F21F1!G . ~B4!

The diagonal elements of the pressure tensor have
ready been evaluated in Appendix A,

Pyy
~1!us505F020

I us501e21F020
II us50

52~ae1g1!~2F31F2!14g2e~8F7136F6

162F5151F4120F313F2!

1 1
3~4F215F1!2 1

3g0~24F61100F51134F4

171F3113F2!, ~B5!

Pzz
~1!us505F002

I us501e21F002
II us50

52~ae1g1!F214g2e~4F6112F5113F4

16F31F2!112 1
3g0~12F5144F4157F3

131F216F1!, ~B6!

Pxx
~1!us5052Pyy

~1!us502Pzz
~1!us50 . ~B7!

The heat flux vector is defined at this order as

q~1!5
1

2E dVV2V f ~1!. ~B8!

In the same way as in the pure Couette flow problem, the
nonzero components of the heat flux areqx

(1) andqy
(1) . They

require the evaluation ofFn1n2n3

I,II with n11n21n353, which

can be obtained from Eqs.~A2! and ~A27!. After rather te-
dious algebra, one obtains the expressions
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