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The Boltzmann—Krook—Welandéor Bhatnagar—Gross—Krobknodel of the Boltzmann equation

is solved numerically for the heat transfer problem of a gas enclosed between two parallel, infinite
plates kept at different temperatures, in the presence of a constant gravity field normal to the plates.
At each point where the direct effect of the boundaries is negligible, a relation among the relevant
local quantities(heat flux, temperature gradient, temperature, and denbiiijds even if the
temperature varies over a length scale comparable to the mean free path. The ratio of the actual heat
flux to the value predicted by the Fourier law is seen to be determined by the local Knudsen number
and the local Froude number which are defined with the local mean free path, local characteristic
length, and the magnitude of gravity. It is observed that the gravity produces an enhancement of the
effective heat conductivity when the heat flux and the gravity field are parallel, while it produces an
inhibition when both vectors are antiparallel. This deviation from the Fourier law, which vanishes

in the absence of gravity, increases as the local Knudsen number increases and is more remarkable
when the heat flux is parallel to the gravity field rather than otherwise. Comparison of the numerical
data with an asymptotic analysis as well as with Papproximants derived from it is also made.

© 1999 American Institute of Physids$1070-663(99)03211-7

I. INTRODUCTION number is small, the heat conductivity can be derived from
. the Boltzmann equation with the aid of the Hilbert expan-
The relation between the system of the Boltzmann CAYa0n. etc., and the result is well-known. Asmoletval X® and

Santoset al,'%'”however, have shown that this relation also

tion and the one of classical fluid dynamics in describing the
behavior of gas flows has been extensively studied by man P
g Y y El\f_olds exactly even when the local Knudsen number is finite.
Further, the study has been recently extended to situations

physicists and mathematicians. The study has been dev
oped by means of tools such as the Hilbert expansfahe - ) -
Chapman—Enskog expansidrand the asymptotic theory yvhere gravity is present and its effect on the heat conducpv—
(Ref. 4 for initial-value problems and Refs. 5-13 for ity has_ b%ezr(lj investigated by means  of perturbat_|on
boundary-value problemsin Refs. 7—13, the set of the fluid expansmné.‘ The results obtained, however, seem to in-
dynamic-type equations and its appropriate boundary condficate that the series are divergent, so that they do not seem
tions describing the steady behavior of slightly rarefied gaéo be applicable to situations of finite Knudsen numbers. It is
flows over smooth boundaries has been derived from th@orth pointing out that, from a physical point of view, a
Boltzmann systentgeneralized slip flow theojy Recently, ~uniformgravity field is equivalent to a non-inertial frame of
especially in Ref. 12, it has been clarified that phenomené&eference subject to @onstantacceleration. The study of the
which cannot be understood without the aid of the rarefacframe dependence of the transport properties of a gas has
tion of the gas occur in the continuum limighost effect ~ been the subject of a number of papérs.
and that the classical gas dynamics contains an essential The goal of this paper is, by analyzing numerically a
defect™® On the other hand, another branch of studies hagne-dimensional heat transfer problem in the presence of a
also been continue®~2°In these studies, where absence ofgravity field on the basis of kinetic theory, to investigate the
boundary effects and one-dimensional situations are considielation holding among the heat flux, the temperature gradi-
ered, the dependence of the heat conductivity of the gas oant, the temperature, and the density of the gas, and to clarify
the local Knudsen numbédthe local mean free path of the the effect of gravity on it when the local Knudsen number is
gas molecules divided by a local characteristic lepgghin-  finite. To be more precise, we will analyze the steady behav-
vestigated when the latter is finite. When the local Knudserior of the gas when the gas flow is absent, evaluate the ratio
of the heat flux and the local temperature gradient at each
aElectronic mail: doi@damp.tottori-u.ac.jp point in the gas, and investigate the dependence of it on the
YElectronic mail: andres@unex.es local Knudsen number and the strength of gravity. In the
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actual numerical analysis, we will employ the Boltzmann—where \ is called the heat conductivity and its functional
Krook—Welander (BKW) equatior12,2 also known as the form is determined by the intermolecular potential. Asmolov
Bhatnagar—Gross—KrookBGK) equation, in accordance et all® (in the case of the Boltzmann equation for Maxwell
with the analysis of Ref. 20. The physical problem is de-molecule$ and Santoset all®’ (in the case of the BKW
scribed in Sec. Il and the numerical method used to solve iequation for an arbitrary interactipshowed, however, that

is presented in Sec. lll. Section IV is devoted to a briefthe Fourier law(4) holds even for finite Knudsen numbler
summary of the theoretical analysis carried out in Ref. 20. Inn the course of our present study, we will confirm this state-
order to improve the range of applicability of the asymptoticment numerically. That is, we will examine from the numeri-
result, Padepproximants are considered. The numerical recal data that, G, andT satisfy the relatior{4) at each point
sults and their comparison with the theoretical estimates arg, the bulk region of the gas. When the gravity is present, the
shown in Sec. V. The paper ends with some concluding rerelation (4) no longer hold$8-2°We put instead

marks. _
—qg/G=N\(T)\, 5)

Il. PROBLEM AND BASIC EQUATIONS where the heat conductivity factar measures the deviation
of the actual heat flux from the one predicted by the Fourier
law. The aims of this study are as follows) We confirm

In order to investigate the problem stated in the previoushat the facto is determined by the local Knudsen number

section, let us consider a gas enclosed between two paralRland the local inverse Froude numfigrin other words, as
plane surfaces placed at restqt=0 andX,=D (X;: space far as the ratio ¢ q/G)/\(T) is concerned, it gives the same
rectangular coordinate systgnmwhose surface temperatures value whenk andg are identical, even ity G, and T are

areTy and T4, respectively. A uniform gravity fieldd,0,0) . ; . . T

is exerted on the gas. We will analyze the steady behavior O(Pfferent. (i) V\Le clagfy the functional relatior (k,g) for
the gas in the absence of gas flow and obtain the heat fluknite values ofk andg.

and the local temperature gradient of the gas. This problem

contains the boundaries, which are introduced in order to

produce a temperature gradient in the gas, so that we restrigt Basic equations

ourselves to the bulk region, i.e., the region where the direct
effect of the boundaries is negligible. According to Refs. 13,
23, and 24, the effect of the molecules directly coming from
the boundaries is sufficiently small at points separated fronfeh as

A. Setting of the problem

The BKW equatiof? for the present steady and one-
dimensional problem in the presence of gravity can be writ-

the walls about 10-15 times the mean free path. At each of of
point within this region, we evaluate the heat fluy,@,0) fla_xl“Lg(;_gl:AcP(fe_f)! (6)
and the local temperature gradigae=dT/dX; (T: gas tem-
peraturé and consider the ratie-q/G. Now, let the length P (£1-V)2+ &+ 8
scale along which the gas temperature varies appreciably be fe_(szTﬁ/ZeX - 2RT ' @
the local characteristic lengih

L=T/|G|. 1) P:f f d§,d&,déEs, (8)
Further, we introduce the local Knudsen numkeand the 1
local inverse Froude numb@rwith the aid of thisL as their V= —f & fdédérdés, 9)
characteristic length: P

1
u:g't, @ T=3r, f [(&1-v)*+ &+ &) dEidédes, (10
ol where¢; is the molecular velocityf is the distribution func-

(¢ , (3) tion of the gas moleculeg, is the mass density of the gas,
2RT (v,0,0) is the flow velocity,A; is a constantA.p is the
wherel is the local mean free path of the gas molecules angollision frequency of a gas molecule, assumed here to inter-

Ris the specific gas constant. Without loss of generality, weaCt via the Maxwell potential and the range of integration
will take the conventiorT;<T,, i.e., G<0 andq>0. On  With respect taf; is, hereafter, the whole space gfunless
the other handg (and hencej) can be either positive or Otherwise stated. The boundary conditions, diffuse reflection
negative. In the first case, the heat flux is in the same direcconditions, on the walls are
.tion as that qf gravity,_ whil§ <0 means Fhat the heat flux is Pud §§+ §§+ §§
in the opposite direction to that of gravity. f= S RT )3,2ex ~ToRT

In the absence of gravitygE0), according to the (27RTo 0
asymptotic theory for small Knudsen numbers, the ratio
—q/G is a function of the local temperatuiie

—q/G=\(T), (4)

) (X1=0, £>0),
(11)

2a 1/2
o) | tdedeas, =0, a2
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range of¢;, which is from—ox to +o, is restricted to some
(Xy=D, £:<0), finite interval, the width of which is chosen appropriately
(13) depending on the paramete20). The validity of this re-
" striction is confirmeda posteriorifrom the numerical result,
2 i.e., it is confirmed that the distribution function practically
Pwa= (R_Tl) Ll>0§1f dgydéades  (X1=D). 149 Vanishes sufficiently near the edge of this interval. Next, we

inall h ity th fth . _introduce(nonuniform lattice points in theX; — &, plane and
Finally, we have to specify the amount of the gas or, equivayfine the distribution function only on these points. The

o pm TGS
(27RT,)¥2 2RT,

lently, its mean density derivativesd/dX, and d/9¢, are approximated with a stan-
1 (D dard second-order finite difference formula. The finite differ-
Po=p fo p dXy (15 ence equation thus obtained is solved numerically using an
iterative method[In the actual computation, the time deriva-
to complete the problem. tive term is added to Eq6) and the initial-value problem
The heat flux of the gasq(0,0) is defined by the mo- with a uniform equilibrium initial state is solved to obtain the
ment of the distribution function as steady solution as the limiting one for very long tih&he

1 convergence is rather fast unldgsis very small. The finite
q= EJ (E1-V)[(£1—V)?+ &5+ £2]f dé,dé,dé;. (16)  difference scheme for a one-dimensional problem without
gravity is explained in detail in Ref. 27. In the present prob-
Multiplying by 1 or &2+ £+ £5 both sides of Eq(6), inte-  lem, although a derivative term with respectépis added,
grating with respect to, and considering the boundary the difference scheme is obtained as a straightforward exten-
conditions(11) and(13), we get sion. Thus we will omit the explicit form of our scheme.
Incidentally, the scheme used here is essentially the same as

v=0 and q=const. (17 the one used to obtain one-dimensional solutions of the Be
These relations will be used to test the accuracy of the nunard problem in Refs. 28 and 29.
merical results. The local mean free pathof the gas mol- In our problem, although the boundaries are plane in
ecules and the heat conductivityof the gas without gravity shape, an external force is exerted on the gas molecules and
for the BKW equation are thus the characteristics of E() are curved to be convex to
> (2RI the opposite direction to that of gravity. Because of this, a
= — (2RT) , (18) discontinuity of the distribution function develops from the
Jr A upper wall into the ga&$ (here, “upper wall” means the
5 R2T boundary atX;=D wheng<0 and the one aX;=0 when

_> . (19) g>0). Such discontinuity cannot be described correctly with
2 A a standard finite difference scheme and special techniques

If we make some appropriate nondimensionalization, wed'® required. Our aim is, however, to investigate the gas
find that the boundary-value problem posed by Efjs-(15) behavior in the region located a long distance, as compared

is characterized by the following three dimensionless paramWith the mean free path, apart from the boundaries, where
eters: the discontinuity is estimated to vanish owing to intermo-

o lecular collisions. In addition, an inaccurate treatment of this
K= (2RTo) Jo= gb E (20) discontinuity does not seem to disturb the behavior of the gas
AcpoD 0 2RT," T in that region. For these reasons, in our present study, we do

The first parameter represents the reference Knudsen nurﬂpt anal_yze th_|s_ d|sqont|nU|ty accurately a_nd we employ a
ber, the second parameter represents the reference invers ventional finite dnfferenge §cheme. Inudgntally, on the
Froude number, and the third parameter is simply the teml_o.wer. boundary th.e d|scqnt|nU|ty does not exist and the dis-
perature ratio. We will give them a set of actual values anc#rIbUtlon function is continuous even at the boundésge

- = 29 of Ref. 2
solve the problem. As stated before, we will evalulatd, ootnote 29 of Ref. 2B
andx=(—q/G)/\(T) at each poinK; in the bulk region of

th .F lot of soluti f i ts of val f
© gas. From a fot o7 solu |0n3_ or varlgui Sets 9« vaiues OIV. SUMMARY OF THE THEORETICAL ANALYSIS
Eq. (20), we construct the relation amorkg §, and\ for a

wide range ok andg. For the sake of completeness, in this section we give a
brief summary of the results of the asymptotic analysis of
Ref. 20. First, we take aarbitrary point X;=a in the bulk
region and define the following dimensionless quantities:

In this section, we briefly summarize the method of the * _ * _ * _ g 112
numerical analysis employed. According to Cliuthe pr=plpa, TO=TIMa, & =6/(2RT)T
boundary-value probleri®)—(15) can be reduced to one with f*=p, 1(2RTa)3/2f,
two independent variables$; and &;, by eliminating the
molecular velocity components, and &; parallel to the x=(2RTa)*1’2ACJX1de1, (22)
walls. We solve this reduced problem numerically. First, the a

Ill. OUTLINE OF THE NUMERICAL ANALYSIS

(21)
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vi/here the subscripa denotes quantities evaluated Xi X[O,ZJ(T(,C])Z[l—%gEZ’g—%(lnL%IEZ)T(ZQZ]*. (30)
=a. Thus, Eq.(6) becomes
_ It must be kept in mind that these approximants are intended
o af* +% ﬁ—f* _ g 29) to yield reasonable estimates bffor small values of/g|
1 ox p* o&r e ' only, as they di;fer from the exact asymptotic serj&s.

_ o (27)] to orderg® and beyond. One could also construct
where fg =p, 1(2RT"’})3/2fe' In the _absegce of gravitygg higher-order approximants, but their expressions become
=0), an exact solution of E¢23) yields' progressively more complicated without any significant in-

1 - - crease in their range of applicability, due to the asymptotic
T*=—=5=1-kX, Ng=1. (24)  character of the serigg7). Thus, as a compromise between
simplicity and accuracy, we restrict ourselves to the above
This implies that the temperature has a linear profile withwo approximants. There is no definigepriori criterion to
respect to the nonlinear space \(ar_iahlehe pressure is cON-  -hoose betweeﬁ[l I andX[o 2. From a practical point of
stant, and the heat conductivity is independent of the value Q';iew, comparison 'With the numerical results discussed in

the local Knudsen numbek,, so that Eq.(4) is exactly  gec v shows thai[l,l] is clearly superior t&[o,z] for G

verified. These predictions have been confirmed by compari- L~ . . ~ ~
son with numerirz:al solutior931 y P <0, while \jq 5 is slightly better tham\, 5 for §>0. In

On the other hand, the extension of the above exact sov-Iew of this, we take
No(k,@), (G>0),

lution to the cas@,# 0 for finite k, andg, does not seem to ~
be feasible. In Ref. 20, the solution of E&3) was obtained Nes(K,9)=1 = T 5 =
in the form of a perturbation series expansion in powers of ’

T, through ordeigg. Here we quote the main results through @S OUr be~st theoretical estimate, at least for the ranQes
third order: <7=<0.4,k=<0.1 considered in the numerical solutiofis.

(31)

x_1_T T2y2= _ 4T.3,2 T \=2
T = 1 kaX kX a— 15KaX (5% +9%4)Ta V. RESULTS OF THE NUMERICAL ANALYSIS

— ZKax?[317 95X — 3460k x — 15(5x*—32) 3 In this section, we show the results of the numerical

+(9(“g§), (25) analysis. As ;tated a_t the end of Sec. I, once a solution of
Egs. (6)—(15) is obtained, we evaluate the local Knudsen
p* T* =1+ 2K XTo+ %fkg{ggju (9(@3 , (26) numberk [Eq. (2)], the local inverse Froude numbgrEq.
_ _ (3)], and the local ratioo.=(—q/G)/\(T) [Eq. (5)] at some
Na= 1+ FK3Ga+ 35K3(149K;+5)55 points in the gas where the direct effects from the boundaries

84 o 3 4 are negligible. To be more precise, we employ the following
T 12Ka(21 427 694, +45 9859, + O(Ta).- (27 criterion. The number of collisions that a molecule emitted
SinceX;=a represents an arbitrary point, we can drop theffom the boundaryX;=0 experiences while it proceeds to
subscripta in Eq. (27), so that it then refers to local quanti- Some distanceX; = is estimated in the average sense as
ties evaluated at any given point. No(8)=[§l~dX;. If we consider a poinK; = § where this
These results, and the more extensive ones of Ref. 2@0tegral is sufficiently large, the direct effect of the boundary
indicate that the expansion in powers §fseems to be is considered to vanish owing to intermolecular collisions. In
asymptotic(i.e., it is not a convergent oheso that it will be  the present study, we consider that this direct effect vanishes
only useful for small values dfj|. Here we will retain only ~ Where the value alNy(5) is greater than 1&or the cases of
the terms through ord@?. The corresponding truncated se- 9>0) or greater than 10for g<<0). This threshold value is

ries is chosen judging from the results. A similar criterion is
- Sioe | a7 - ) adopted also on the opposite boundak,€D). For the
A20= 1+ TKTG+ 55K (149%+ 5)G". (280 convenience of the following discussions, we evallagnd

The validity of the above approximation is limited to those X at whichg assumes a specified value with the aid of inter-

values ofg andk for which the first neglected terfiie., the  polation. The values ok thus obtained, which are taken
third-order term is much smaller than the last term in Eq. from a lot of solutions of Eqs(6)—(15), are shown as a
(28). This vyields K2[gj|<20(149%2+5)/(2142769%2  function ofk for some values d§ in Table | and Fig. 1. We
+45985)~10 3. note thatg is taken as positive when the heat flux is in the
On the other hand, in order to enlarge the range of valuesame direction as that of gravity and negative when the heat

of § for which one can expect to get reliable results, it isflux is in the opposite direction to that of gravity. The theo-
useful to construct Péd&pproximant?l based on Eq(28).  retical results corresponding to the truncated seii@.?o],
More specifically, we consider the Padpproximant{1,1]  Eq. (28), and to the estimat&.g, Egs.(29—(31), are also
and[0,2]; shown in Table | and Fig. 1 for comparison.
184 115G 2y As seen from Fig. 1, the data for any given valu&die

i 40 (290 on a smooth curve, although they are taken from various
1- 351+ 4%2)g solutions of Eqs(6)—(15). This suggests that, as predicted

Moyg(k@) =
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TABLE I. The heat conductivity factok as a function ofk andg. The
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theoretical approximationi[z,o] and X . are given by Eq(28) and Egs.
(29—(31), respectively. The columns are common in this table. 1.021
=0 i
~k X X[z’o] Xest E X X[ZU] Xest 1.01 P
0.02 1.0000 1.0000 1.0000 0.08 0.9998 1.0000 1.0000
0.04 0.9999 1.0000 1.0000 0.10 0.9998 1.0000 1.0000
0.06 0.9998 1.0000 1.0000 0.13 0.9998 1.0000 1.0000 1
§=0.05 §=-0.05
0.02964 1.0004 1.0005 1.0005 0.02136 0.9997 0.9997 0.9997 I
004713 1.0011 1.0013 1.0013 0.04271 0.9990 0.9990 0.9990 099
0.05987 1.0020 1.0022 1.0022 0.05631 0.9981 0.9983 0.9983
0.067 14 1.0025 1.0028 1.0028 0.06644 0.9975 0.9976 0.9976
0.07438 1.0031 1.0034 1.0034 0.11161 0.9934 0.9937 0.9936  (og]
§=0.1 §=-0.1
0.02950 1.0009 1.0011 1.0011 0.02434 0.9993 0.9994 0.9994 0 0.05 01 k 0.15
0.04104 1.0019 1.0021 1.0021 0.04210 0.9981 0.9981 0.998G, 1. plot of the heat conductivity factar vsk for several values .
0.06003 1.0044 1.0047 1.0047 0.05618 0.9965 0.9967 0.9967he symbols are the numerical results, the solid lines represent the curves
0.07258 1.0066 1.0070 1.0070 0.07487 0.9941 0.9945 0.9943yhich are smoothly fitted to the data, the dotted lines represent the truncated
0.078 74 1.0078 1.0083 1.0083 0.10011 0.9900 0.9909 0'990%erie§[2,0],Eq.(28), and the dashed lines represent the theoretical estimate
§=0.2 §=-0.2 Nest: EQs.(29—(31).
0.02979 1.0022 1.0023 1.0023 0.02199 0.9990 0.9990 0.9990
0.03991 1.0041 1.0043 1.0043 0.04333 0.9963 0.9964 0.996§see Eq_(24)] The S||ght discrepancweviation from unity
0.05511 1.0085 1.0085 1.0086 0.06569 0.9920 0.9925 O. - ; .
0.06906 1.0141 1.0140 1.0141 0.08172 0.9878 0.9896 0.988 idue to thfe l:]navmdable mfluen_celof thle b_ourjlfjhanes and to
007761 1.0183 1.0183 1.0184 0.09662 0.9836 0.9874 0.9847N€ €rror of the present numerical analysis. Thus we can
i—o4 G o4 estimate that our numerical results forhave an error not
g=0. §=-0. Lo ~ ~
greater than 0.02%. When the gravity is pres@n0), A
0.02254 1.0027 1.0030 1.0030 0.02256 0.9983 0.9982 0.9981 . . ; < ~ o
0.03241 1.0063 1.0063 1.0063 0.03875 0.9949 0.9953 0_994§varles~d_epend|ng both Ok! and g.~ The heat con.du_ctlwty
0.04118 1.0110 1.0105 1.0105 0.04657 0.9927 0.9936 0.992dactor\ is greater than unity wheg>0 (heat flux is in the
0.04864 1.0163 1.0151 1.0152 0.06911 0.9850 0.9897 0.9856same direction as that of gravitand less than unity when
0.08084 0.9801 0.9895 0.9817 gG<O (heat flux is in the opposite direction to that of grayity
§=-0.6 In both cases, the deviation ®ffrom unity increases mono-
002124 09981 0.9980 0.9977 0.05459 0.9875 09923 0.9g7d0nically ask increases, this effect being more remarkable
0.03659 0.9942 0.9950 0.9936 0.067 71 0.9815 0.9932 0.982€or §>0 than forg<0. In addition, for a given value & the
0.04448 0.9914 0.9935 0.9910

deviation is larger if[g| is larger. In obtaining numerically

by the theoretical analysis of Sec. I¥,is determined only
by the local values ok andg irrespective of the actual ones

the relation amond, §, and X, we have been forced to
restrict ourselves to the rangéss0.1 and —0.6<G<0.4.
This is because for the two-surface heat transfer problem
stated in Sec. Il A, it is difficult for any proper set of values
of Eqg. (20) to make a point in the gas where the local Knud-

of g and G. To confirm this, we show in Table Il a few

examples of the explicit values gf G, andT at whichk and
X\ are evaluated from different solutions of Ed6)—(15).

TABLE II. Examples of pairs of values of for which (k,§) are close.
Here, go=(po/2)(2RTp)%? and G,=T,/D. All the cases correspond to

For each pair of these cases, the values afre obtained at T1/To=0.05.

those points in the gas at which the value§jadre identical
and those ok are as close as possible. Although the values
of g, G, and T differ considerably, those ok are nearly

identical if k are very close. Thus it may be concluded that

the factorx is a function of local values dt andg.
Now we examine the features of the relation améng

g, andX. When the gravity is abseri&0), X is very close

to unity irrespective ok. As we have mentioned in Sec. I,

an exact solution for this situation was obtained by Santos
according to which\ = 1 regardless the value &f

eta

16,17
I,

a/do —G/Gy TITo g k I
0.02320 1.3333 0.3508 —0.15 0.07392 0.9920
0.007 38 3.3333 0.1489 -0.15 0.073 44 0.9920
0.023 20 0.8000 0.5832 —-0.25 0.046 87 0.9946
0.007 38 2.0000 0.2474 —-0.25 0.046 56 0.9949
0.016 52 3.5000 0.1204 0.1 0.046 28 1.0023
0.020 02 1.0000 0.4466 0.1 0.046 77 1.0024
0.02313 2.5000 0.1646 0.1 0.066 77 1.0056
0.023 61 2.0000 0.2100 0.1 0.066 34 1.0055




3558 Phys. Fluids, Vol. 11, No. 11, November 1999 Doi, Santos, and Tij

sen and inverse Froude numbers are large. This is especially [ f d&,dé; decays rapidly with&;| and is less than 8.0
so if §>0 and this is why we could not include the cd&se X 10 ! on the lattice pointst;=+£p. As mentioned in
=0.6 in Table | and Fig. 1. Sec. ll, the heat fluxy should be uniform theoreticalljEq.

Next we compare the truncated 336‘?5,0] [Eq(28)] as (17)], but it varies Sllghtly due to numerical error. Con-

well as the Padapproximantx .. [Egs. (29)—(31)] with the versely this variation can be an estimate of the numerical
numerical result. First of all ﬁ5tshoula be remembered thaf"m"- The present results show that the relative variation of
L~ ' y the heat flux,|(0Qmax—Cmin)/Gmin, is less than 1.21074,

the truncated series;, , where the terms of ord&® and where g, and g, are, respectively, the maximum and

higher are neglected, has been introduced as a formula to t?ﬁinimum value ofg within the bulk region(see the first

valid for k2|§|<10:3, as stated in Sec. IV. In addition, the paragraph of this sectionin addition, the flow velocity,
Padeapproximant ¢4 is also valid in the same region be- which should vanish everywhere, is evaluated as
cause it is constructed to agree with the asymptotic seriesy|/(2RT,)?<3.6x 10" ® within the same region. We have
Eq. (27), up to the order 0§?. It is seen in Fig. 1 and Table also made recomputations for eight typical cases of the pa-
| that these two formulas really agree with the numericalrameters in Eq(20) using finer lattice system®ne is double
result within this range. Besides this, it is also seen thain X, and the other double i&;). The values ok andX for
whenever these two formulas coincide each other, they alsgiven § obtained with these finer systems differ less than
agree with the numerical result. Whgn-0, 7\[2,0] and7\est 0.031% from the ones obtained with the standard system.
coincide indistinguishably with each other and agree with the ~ The computation was carried out on VT-Alpha 433 com-
numerical result fairly well up to the order &f|g|~1073,  puters (Visual Technology Inc., CPU: Alpha 21164 433
beyond the restriction stated above. @ 0.05 andg=0.1  MH2) of the first author’s laboratory.

they overestimate slightly the numerical values, whilgat

=0.4 they underestimate them; thus at the intermediate val

§=0.2 the agreement is especially good. Wigen0, on the L CONCLUDING REMARKS

other hand, the truncated serﬁa@}o] deviates from the nu- In this paper we have been concerned with a one-
merical result rapidly as the Knudsen numkéncreases and dimensional heat transfer problem in the presence of a grav-
increases beyond unity, so that the agreement is consideradly field and have analyzed it on the basis of kinetic theory.

poor. This is because the last term on the right-hand side of© that end, we have numerically solved the BKBGK)
model of the Boltzmann equation for Maxwell molecules.

Our aim has been to investigate the influence of gravity on
. . ; . . the heat conductivity of the gas for those points sufficiently
Tcerms in the asymptot'|c sené;q. (272] will not give any separated from the walls so that the boundary effects on them
improvement. The Padepproximanties, however, sup- e negiigible. At those points we have measured the heat
presses this increasing character and gives a better agreemgq q, the temperaturd, the densityp, and the temperature
with the numerical result for a wider range kof In addition,  gradientG. Three independent characteristic distances can be
the fact that the effect of gravity oN is stronger wher§j  defined, the mean free pathEq. (18)], the characteristic
>0 rather than whefj<0 is well expressed qualitatively. lengthL associated with the temperature gradiggq. (1)],
From these reasons, it might be said that the’ Ramfeoxi-  and the characteristic lengti=2RT/g associated with the
mants[Egs. (29)—(31)] provide a better formula in describ- gravity, the ratios of which define the local Knudsen number
ing the behavior of the numerical result than the truncaredk=(\/#/2)I/L and the local inverse Froude numb@r
asymptotic resulfEq. (28)], at least in a finite rang& =L/h. In addition, the ratio of the actual heat flux to the
=0.1. value predicted by the Fourier lawk=(—q/G)/\(T),
Finally, we briefly summarize the computational condi- where\(T) is the heat conductivity in the absence of grav-
tions and the results of accuracy tests. We introduced 798y, is evaluated.
lattice points within the interval € X,/D=<1. The lattice The first conclusion drawn from our results is that the
size is uniform (0.00R) within 0.1<X;/D<0.9 and non- factor X is a unique function ok andg. This means that if
uniform otherwise; approaching the boundaries it becomesifferent points corresponding to different solutions have the
finer and takes a minimum value (3830 °D) on the  same &), then they also have the sarke We have also
boundariesX; =0 andD. The computational range with re- yerified that, in accordance with the exact solution of Ref.
spect to %/2 is limited as —&p<&<E With & 16 §—=1 in the absence of gravityg0), irrespective of
=5.2(2RTy) ~'%. Within this interval, we introduced 1601 lat- the value ofk. On the other hand, depends both ok and

tice points, the size of which is a monotonically increasing. oo .
function of |&]: 1.25¢10 4(2RTy)M2 at &=0 and 0 when gravity is present. The results show that the effective

0.02421(RTy) Y2 at £,=+£y. The convergence criterion heat conductivity is enhanced\#1) when the heat flux

of the iteration process is that the variation of the dimension.p(?'n_tS |_n .the same direction ?S.tha.t of gravfgb(p), \_Nh'le_
less macroscopic variablegp, andT/T, in 100 iterations is it iS inhibited (\ <1) when pointing in the opposite direction
less than 10° on each lattice point. The results of the ac-© that of gravity §<0), both effects becoming more re-
curacy tests are as follows. It is confirmed that the dimenmarkable as the Knudsen numberincreases. At a given
sionless marginal distribution functionpal(ZRTo)l’2 value ofk and a given sign of, the larger the value dfj|

Eq. (28) increases rapidly witfk due to its large numerical
factor. For this reason, it is clear that merely employing
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