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Numerical study of the influence of gravity on the heat conductivity
on the basis of kinetic theory
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The Boltzmann–Krook–Welander~or Bhatnagar–Gross–Krook! model of the Boltzmann equation
is solved numerically for the heat transfer problem of a gas enclosed between two parallel, infinite
plates kept at different temperatures, in the presence of a constant gravity field normal to the plates.
At each point where the direct effect of the boundaries is negligible, a relation among the relevant
local quantities~heat flux, temperature gradient, temperature, and density! holds even if the
temperature varies over a length scale comparable to the mean free path. The ratio of the actual heat
flux to the value predicted by the Fourier law is seen to be determined by the local Knudsen number
and the local Froude number which are defined with the local mean free path, local characteristic
length, and the magnitude of gravity. It is observed that the gravity produces an enhancement of the
effective heat conductivity when the heat flux and the gravity field are parallel, while it produces an
inhibition when both vectors are antiparallel. This deviation from the Fourier law, which vanishes
in the absence of gravity, increases as the local Knudsen number increases and is more remarkable
when the heat flux is parallel to the gravity field rather than otherwise. Comparison of the numerical
data with an asymptotic analysis as well as with Pade´ approximants derived from it is also made.
© 1999 American Institute of Physics.@S1070-6631~99!03211-0#
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I. INTRODUCTION

The relation between the system of the Boltzmann eq
tion and the one of classical fluid dynamics in describing
behavior of gas flows has been extensively studied by m
physicists and mathematicians. The study has been de
oped by means of tools such as the Hilbert expansion,1,2 the
Chapman–Enskog expansion,3 and the asymptotic theor
~Ref. 4 for initial-value problems and Refs. 5–13 f
boundary-value problems!. In Refs. 7–13, the set of the flui
dynamic-type equations and its appropriate boundary co
tions describing the steady behavior of slightly rarefied
flows over smooth boundaries has been derived from
Boltzmann system~generalized slip flow theory!. Recently,
especially in Ref. 12, it has been clarified that phenom
which cannot be understood without the aid of the raref
tion of the gas occur in the continuum limit~ghost effect!
and that the classical gas dynamics contains an esse
defect.14 On the other hand, another branch of studies
also been continued.15–20 In these studies, where absence
boundary effects and one-dimensional situations are con
ered, the dependence of the heat conductivity of the ga
the local Knudsen number~the local mean free path of th
gas molecules divided by a local characteristic length! is in-
vestigated when the latter is finite. When the local Knuds

a!Electronic mail: doi@damp.tottori-u.ac.jp
b!Electronic mail: andres@unex.es
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number is small, the heat conductivity can be derived fr
the Boltzmann equation with the aid of the Hilbert expa
sion, etc., and the result is well-known. Asmolovet al.15 and
Santoset al.,16,17however, have shown that this relation al
holds exactly even when the local Knudsen number is fin
Further, the study has been recently extended to situat
where gravity is present and its effect on the heat conduc
ity has been investigated by means of perturbat
expansions.18–20 The results obtained, however, seem to
dicate that the series are divergent, so that they do not s
to be applicable to situations of finite Knudsen numbers. I
worth pointing out that, from a physical point of view,
uniform gravity field is equivalent to a non-inertial frame o
reference subject to aconstantacceleration. The study of th
frame dependence of the transport properties of a gas
been the subject of a number of papers.21

The goal of this paper is, by analyzing numerically
one-dimensional heat transfer problem in the presence
gravity field on the basis of kinetic theory, to investigate t
relation holding among the heat flux, the temperature gra
ent, the temperature, and the density of the gas, and to cla
the effect of gravity on it when the local Knudsen number
finite. To be more precise, we will analyze the steady beh
ior of the gas when the gas flow is absent, evaluate the r
of the heat flux and the local temperature gradient at e
point in the gas, and investigate the dependence of it on
local Knudsen number and the strength of gravity. In t
3 © 1999 American Institute of Physics
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actual numerical analysis, we will employ the Boltzman
Krook–Welander ~BKW! equation,22 also known as the
Bhatnagar–Gross–Krook~BGK! equation, in accordanc
with the analysis of Ref. 20. The physical problem is d
scribed in Sec. II and the numerical method used to solv
is presented in Sec. III. Section IV is devoted to a br
summary of the theoretical analysis carried out in Ref. 20
order to improve the range of applicability of the asympto
result, Pade´ approximants are considered. The numerical
sults and their comparison with the theoretical estimates
shown in Sec. V. The paper ends with some concluding
marks.

II. PROBLEM AND BASIC EQUATIONS

A. Setting of the problem

In order to investigate the problem stated in the previo
section, let us consider a gas enclosed between two par
plane surfaces placed at rest atX150 andX15D ~Xi : space
rectangular coordinate system!, whose surface temperature
areT0 andT1 , respectively. A uniform gravity field (g,0,0)
is exerted on the gas. We will analyze the steady behavio
the gas in the absence of gas flow and obtain the heat
and the local temperature gradient of the gas. This prob
contains the boundaries, which are introduced in orde
produce a temperature gradient in the gas, so that we res
ourselves to the bulk region, i.e., the region where the di
effect of the boundaries is negligible. According to Refs. 1
23, and 24, the effect of the molecules directly coming fro
the boundaries is sufficiently small at points separated fr
the walls about 10–15 times the mean free path. At e
point within this region, we evaluate the heat flux (q,0,0)
and the local temperature gradientG[dT/dX1 ~T: gas tem-
perature! and consider the ratio2q/G. Now, let the length
scale along which the gas temperature varies appreciabl
the local characteristic lengthL:

L5T/uGu. ~1!

Further, we introduce the local Knudsen numberk̃ and the
local inverse Froude numberg̃ with the aid of thisL as their
characteristic length:

k̃5
Ap

2

l

L
, ~2!

g̃5
gL

2RT
, ~3!

wherel is the local mean free path of the gas molecules
R is the specific gas constant. Without loss of generality,
will take the conventionT1,T0 , i.e., G,0 andq.0. On
the other hand,g ~and henceg̃! can be either positive o
negative. In the first case, the heat flux is in the same di
tion as that of gravity, whileg̃,0 means that the heat flux i
in the opposite direction to that of gravity.

In the absence of gravity (g̃50), according to the
asymptotic theory for small Knudsen numbers, the ra
2q/G is a function of the local temperatureT:

2q/G5l~T!, ~4!
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where l is called the heat conductivity and its function
form is determined by the intermolecular potential. Asmol
et al.15 ~in the case of the Boltzmann equation for Maxwe
molecules! and Santoset al.16,17 ~in the case of the BKW
equation for an arbitrary interaction! showed, however, tha
the Fourier law~4! holds even for finite Knudsen numberk̃.
In the course of our present study, we will confirm this sta
ment numerically. That is, we will examine from the nume
cal data thatq, G, andT satisfy the relation~4! at each point
in the bulk region of the gas. When the gravity is present,
relation ~4! no longer holds.18–20 We put instead

2q/G5l~T!l̃, ~5!

where the heat conductivity factorl̃ measures the deviatio
of the actual heat flux from the one predicted by the Fou
law. The aims of this study are as follows:~i! We confirm
that the factorl̃ is determined by the local Knudsen numb
k̃ and the local inverse Froude numberg̃; in other words, as
far as the ratio (2q/G)/l(T) is concerned, it gives the sam
value whenk̃ and g̃ are identical, even ifq, G, and T are
different. ~ii ! We clarify the functional relationl̃( k̃,g̃! for
finite values ofk̃ and g̃.

B. Basic equations

The BKW equation22 for the present steady and on
dimensional problem in the presence of gravity can be w
ten as

j1

] f

]X1
1g

] f

]j1
5Acr~ f e2 f !, ~6!

f e5
r

~2pRT!3/2expS 2
~j12v !21j2

21j3
2

2RT D , ~7!

r5E f dj1dj2dj3 , ~8!

v5
1

r E j1f dj1dj2dj3 , ~9!

T5
1

3Rr E @~j12v !21j2
21j3

2# f dj1dj2dj3 , ~10!

wherej i is the molecular velocity,f is the distribution func-
tion of the gas molecules,r is the mass density of the ga
(v,0,0) is the flow velocity,Ac is a constant~Acr is the
collision frequency of a gas molecule, assumed here to in
act via the Maxwell potential!, and the range of integration
with respect toj i is, hereafter, the whole space ofj i unless
otherwise stated. The boundary conditions, diffuse reflec
conditions, on the walls are

f 5
rw0

~2pRT0!3/2expS 2
j1

21j2
21j3

2

2RT0
D ~X150, j1.0!,

~11!

rw052S 2p

RT0
D 1/2E

j1,0
j1f dj1dj2dj3 ~X150!, ~12!
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f 5
rw1

~2pRT1!3/2expS 2
j1

21j2
21j3

2

2RT1
D ~X15D, j1,0!,

~13!

rw15S 2p

RT1
D 1/2E

j1.0
j1f dj1dj2dj3 ~X15D !. ~14!

Finally, we have to specify the amount of the gas or, equi
lently, its mean density

r05
1

D E
0

D

r dX1 ~15!

to complete the problem.
The heat flux of the gas (q,0,0) is defined by the mo

ment of the distribution function as

q5
1

2 E ~j12v !@~j12v !21j2
21j3

2# f dj1dj2dj3 . ~16!

Multiplying by 1 or j1
21j2

21j3
2 both sides of Eq.~6!, inte-

grating with respect toj i , and considering the boundar
conditions~11! and ~13!, we get

v50 and q5const. ~17!

These relations will be used to test the accuracy of the
merical results. The local mean free path25 l of the gas mol-
ecules and the heat conductivityl of the gas without gravity
for the BKW equation are

l 5
2

Ap

~2RT!1/2

Acr
, ~18!

l5
5

2

R2T

Ac
. ~19!

If we make some appropriate nondimensionalization,
find that the boundary-value problem posed by Eqs.~6!–~15!
is characterized by the following three dimensionless par
eters:

k0[
~2RT0!1/2

Acr0D
, g0[

gD

2RT0
,

T1

T0
. ~20!

The first parameter represents the reference Knudsen n
ber, the second parameter represents the reference in
Froude number, and the third parameter is simply the te
perature ratio. We will give them a set of actual values a
solve the problem. As stated before, we will evaluatek̃, g̃,
andl̃[(2q/G)/l(T) at each pointX1 in the bulk region of
the gas. From a lot of solutions for various sets of values
Eq. ~20!, we construct the relation amongk̃, g̃, and l̃ for a
wide range ofk̃ and g̃.

III. OUTLINE OF THE NUMERICAL ANALYSIS

In this section, we briefly summarize the method of t
numerical analysis employed. According to Chu,26 the
boundary-value problem~6!–~15! can be reduced to one wit
two independent variables,X1 and j1 , by eliminating the
molecular velocity componentsj2 and j3 parallel to the
walls. We solve this reduced problem numerically. First,
-

u-

e

-

m-
rse
-

d

f

e

range ofj1 , which is from2` to 1`, is restricted to some
finite interval, the width of which is chosen appropriate
depending on the parameters~20!. The validity of this re-
striction is confirmeda posteriori from the numerical result,
i.e., it is confirmed that the distribution function practical
vanishes sufficiently near the edge of this interval. Next,
introduce~nonuniform! lattice points in theX12j1 plane and
define the distribution function only on these points. T
derivatives]/]X1 and ]/]j1 are approximated with a stan
dard second-order finite difference formula. The finite diffe
ence equation thus obtained is solved numerically using
iterative method.@In the actual computation, the time deriva
tive term is added to Eq.~6! and the initial-value problem
with a uniform equilibrium initial state is solved to obtain th
steady solution as the limiting one for very long time.# The
convergence is rather fast unlessk0 is very small. The finite
difference scheme for a one-dimensional problem with
gravity is explained in detail in Ref. 27. In the present pro
lem, although a derivative term with respect toj1 is added,
the difference scheme is obtained as a straightforward ex
sion. Thus we will omit the explicit form of our scheme
Incidentally, the scheme used here is essentially the sam
the one used to obtain one-dimensional solutions of the´-
nard problem in Refs. 28 and 29.

In our problem, although the boundaries are plane
shape, an external force is exerted on the gas molecules
thus the characteristics of Eq.~6! are curved to be convex to
the opposite direction to that of gravity. Because of this
discontinuity of the distribution function develops from th
upper wall into the gas29 ~here, ‘‘upper wall’’ means the
boundary atX15D wheng,0 and the one atX150 when
g.0!. Such discontinuity cannot be described correctly w
a standard finite difference scheme and special techniq
are required. Our aim is, however, to investigate the
behavior in the region located a long distance, as compa
with the mean free path, apart from the boundaries, wh
the discontinuity is estimated to vanish owing to interm
lecular collisions. In addition, an inaccurate treatment of t
discontinuity does not seem to disturb the behavior of the
in that region. For these reasons, in our present study, w
not analyze this discontinuity accurately and we employ
conventional finite difference scheme. Incidentally, on t
lower boundary the discontinuity does not exist and the d
tribution function is continuous even at the boundary~see
footnote 29 of Ref. 29!.

IV. SUMMARY OF THE THEORETICAL ANALYSIS

For the sake of completeness, in this section we giv
brief summary of the results of the asymptotic analysis
Ref. 20. First, we take anarbitrary point X15a in the bulk
region and define the following dimensionless quantities:

r* 5r/ra , T* 5T/Ta , j i* 5j i /~2RTa!1/2,
~21!

f * 5ra
21~2RTa!3/2f ,

x5~2RTa!21/2AcE
a

X1
r dX18 , ~22!
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where the subscripta denotes quantities evaluated atX1

5a. Thus, Eq.~6! becomes

j1*
] f *

]x
1

g̃ak̃a

r*
] f *

]j1*
5 f e* 2 f * , ~23!

where f e* 5ra
21(2RTa)3/2f e . In the absence of gravity (g̃a

50), an exact solution of Eq.~23! yields16

T* 5
1

r*
512 k̃ax, l̃a51. ~24!

This implies that the temperature has a linear profile w
respect to the nonlinear space variablex, the pressure is con
stant, and the heat conductivity is independent of the valu
the local Knudsen numberk̃a , so that Eq.~4! is exactly
verified. These predictions have been confirmed by comp
son with numerical solutions.30,31

On the other hand, the extension of the above exact
lution to the caseg̃aÞ0 for finite k̃a andg̃a does not seem to
be feasible. In Ref. 20, the solution of Eq.~23! was obtained
in the form of a perturbation series expansion in powers
g̃a through orderg̃a

6. Here we quote the main results throug
third order:

T* 512 k̃ax1 k̃a
2x2g̃a2 4

15k̃a
3x2~5x199k̃a!g̃a

2

2 2
75k̃a

4x2@317 952k̃a
223460k̃ax215~5x2232!#g̃a

3

1O~ g̃a
4!, ~25!

r* T* 5112k̃axg̃a1 552
5 k̃a

5xg̃a
31O~ g̃a

4!, ~26!

l̃a511 58
5 k̃a

2g̃a1 32
25k̃a

2~1499k̃a
215!g̃a

2

1 8
125k̃a

4~21 427 694k̃a
2145 985!g̃a

31O~ g̃a
4!. ~27!

SinceX15a represents an arbitrary point, we can drop t
subscripta in Eq. ~27!, so that it then refers to local quant
ties evaluated at any given point.

These results, and the more extensive ones of Ref.
indicate that the expansion in powers ofg̃ seems to be
asymptotic~i.e., it is not a convergent one!, so that it will be
only useful for small values ofug̃u. Here we will retain only
the terms through orderg̃2. The corresponding truncated s
ries is

l̃ @2,0#511 58
5 k̃2g̃1 32

25k̃
2~1499k̃215!g̃2. ~28!

The validity of the above approximation is limited to tho
values ofg̃ andk̃ for which the first neglected term~i.e., the
third-order term! is much smaller than the last term in E
~28!. This yields k̃2ug̃u!20(1499k̃215)/(21 427 694k̃2

145 985);1023.
On the other hand, in order to enlarge the range of val

of g̃ for which one can expect to get reliable results, it
useful to construct Pade´ approximants32 based on Eq.~28!.
More specifically, we consider the Pade´ approximants@1,1#
and @0,2#:

l̃ @1,1#~ k̃,g̃!5
12 16

29~11 11 151
40 k̃2!g̃

12 16
29~11 1499

5 k̃2!g̃
, ~29!
h

of

ri-

o-

f

e

0,

s

l̃ @0,2#~ k̃,g̃!5@12 58
5 k̃2g̃2 32

5 ~11 11 151
40 k̃2!k̃2g̃2#21. ~30!

It must be kept in mind that these approximants are inten
to yield reasonable estimates ofl̃ for small values ofug̃u
only, as they differ from the exact asymptotic series@Eq.
~27!# to order g̃3 and beyond. One could also constru
higher-order approximants, but their expressions beco
progressively more complicated without any significant
crease in their range of applicability, due to the asympto
character of the series~27!. Thus, as a compromise betwee
simplicity and accuracy, we restrict ourselves to the abo
two approximants. There is no definitea priori criterion to
choose betweenl̃ @1,1# and l̃ @0,2# . From a practical point of
view, comparison with the numerical results discussed
Sec. V shows thatl̃ @1,1# is clearly superior tol̃ @0,2# for g̃

,0, while l̃ @0,2# is slightly better thanl̃ @1,1# for g̃.0. In
view of this, we take

l̃est~ k̃,g̃!5H l̃ @0,2#~ k̃,g̃!, ~ g̃.0!,

l̃ @1,1#~ k̃,g̃!, ~ g̃,0!
~31!

as our best theoretical estimate, at least for the range20.6
<g̃<0.4, k̃&0.1 considered in the numerical solutions.33

V. RESULTS OF THE NUMERICAL ANALYSIS

In this section, we show the results of the numeric
analysis. As stated at the end of Sec. II, once a solution
Eqs. ~6!–~15! is obtained, we evaluate the local Knuds
numberk̃ @Eq. ~2!#, the local inverse Froude numberg̃ @Eq.
~3!#, and the local ratiol̃[(2q/G)/l(T) @Eq. ~5!# at some
points in the gas where the direct effects from the bounda
are negligible. To be more precise, we employ the followi
criterion. The number of collisions that a molecule emitt
from the boundaryX150 experiences while it proceeds t
some distanceX15d is estimated in the average sense
N0(d)5*0

dl 21 dX1 . If we consider a pointX15d where this
integral is sufficiently large, the direct effect of the bounda
is considered to vanish owing to intermolecular collisions.
the present study, we consider that this direct effect vanis
where the value ofN0(d) is greater than 15~for the cases of
g.0! or greater than 10~for g,0!. This threshold value is
chosen judging from the results. A similar criterion
adopted also on the opposite boundary (X15D). For the
convenience of the following discussions, we evaluatek̃ and
l̃ at whichg̃ assumes a specified value with the aid of int
polation. The values ofl̃ thus obtained, which are take
from a lot of solutions of Eqs.~6!–~15!, are shown as a
function of k̃ for some values ofg̃ in Table I and Fig. 1. We
note thatg̃ is taken as positive when the heat flux is in t
same direction as that of gravity and negative when the h
flux is in the opposite direction to that of gravity. The the
retical results corresponding to the truncated seriesl̃ @2,0# ,
Eq. ~28!, and to the estimatel̃est, Eqs. ~29!–~31!, are also
shown in Table I and Fig. 1 for comparison.

As seen from Fig. 1, the data for any given value ofg̃ lie
on a smooth curve, although they are taken from vario
solutions of Eqs.~6!–~15!. This suggests that, as predicte
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by the theoretical analysis of Sec. IV,l̃ is determined only
by the local values ofk̃ andg̃ irrespective of the actual one
of q and G. To confirm this, we show in Table II a few
examples of the explicit values ofq, G, andT at whichk̃ and
l̃ are evaluated from different solutions of Eqs.~6!–~15!.
For each pair of these cases, the values ofl̃ are obtained at
those points in the gas at which the values ofg̃ are identical
and those ofk̃ are as close as possible. Although the valu
of q, G, and T differ considerably, those ofl̃ are nearly
identical if k̃ are very close. Thus it may be concluded th
the factorl̃ is a function of local values ofk̃ and g̃.

Now we examine the features of the relation amongk̃,
g̃, andl̃. When the gravity is absent (g̃50), l̃ is very close
to unity irrespective ofk̃. As we have mentioned in Sec. I
an exact solution for this situation was obtained by San
et al.,16,17according to whichl̃51 regardless the value ofk̃

TABLE I. The heat conductivity factorl̃ as a function ofk̃ and g̃. The

theoretical approximationsl̃ @2,0# and l̃est are given by Eq.~28! and Eqs.
~29!–~31!, respectively. The columns are common in this table.

g̃50

k̃ l̃ l̃ @2,0# l̃est k̃ l̃ l̃ @2,0# l̃est

0.02 1.0000 1.0000 1.0000 0.08 0.9998 1.0000 1.00
0.04 0.9999 1.0000 1.0000 0.10 0.9998 1.0000 1.00
0.06 0.9998 1.0000 1.0000 0.13 0.9998 1.0000 1.00

g̃50.05 g̃520.05

0.029 64 1.0004 1.0005 1.0005 0.021 36 0.9997 0.9997 0.9
0.047 13 1.0011 1.0013 1.0013 0.042 71 0.9990 0.9990 0.9
0.059 87 1.0020 1.0022 1.0022 0.056 31 0.9981 0.9983 0.9
0.067 14 1.0025 1.0028 1.0028 0.066 44 0.9975 0.9976 0.9
0.074 38 1.0031 1.0034 1.0034 0.111 61 0.9934 0.9937 0.9

g̃50.1 g̃520.1

0.029 50 1.0009 1.0011 1.0011 0.024 34 0.9993 0.9994 0.9
0.041 04 1.0019 1.0021 1.0021 0.042 10 0.9981 0.9981 0.9
0.060 03 1.0044 1.0047 1.0047 0.056 18 0.9965 0.9967 0.9
0.072 58 1.0066 1.0070 1.0070 0.074 87 0.9941 0.9945 0.9
0.078 74 1.0078 1.0083 1.0083 0.100 11 0.9900 0.9909 0.9

g̃50.2 g̃520.2

0.029 79 1.0022 1.0023 1.0023 0.021 99 0.9990 0.9990 0.9
0.039 91 1.0041 1.0043 1.0043 0.043 33 0.9963 0.9964 0.9
0.055 11 1.0085 1.0085 1.0086 0.065 69 0.9920 0.9925 0.9
0.069 06 1.0141 1.0140 1.0141 0.081 72 0.9878 0.9896 0.9
0.077 61 1.0183 1.0183 1.0184 0.096 62 0.9836 0.9874 0.9

g̃50.4 g̃520.4

0.022 54 1.0027 1.0030 1.0030 0.022 56 0.9983 0.9982 0.9
0.032 41 1.0063 1.0063 1.0063 0.038 75 0.9949 0.9953 0.9
0.041 18 1.0110 1.0105 1.0105 0.046 57 0.9927 0.9936 0.9
0.048 64 1.0163 1.0151 1.0152 0.069 11 0.9850 0.9897 0.9

0.080 84 0.9801 0.9895 0.981

g̃520.6

0.021 24 0.9981 0.9980 0.9977 0.054 59 0.9875 0.9923 0.9
0.036 59 0.9942 0.9950 0.9936 0.067 71 0.9815 0.9932 0.9
0.044 48 0.9914 0.9935 0.9910
s

t

s

@see Eq.~24!#. The slight discrepancy~deviation from unity!
is due to the unavoidable influence of the boundaries an
the error of the present numerical analysis. Thus we
estimate that our numerical results forl̃ have an error not
greater than 0.02%. When the gravity is present (g̃Þ0), l̃

varies depending both onk̃ and g̃. The heat conductivity
factor l̃ is greater than unity wheng̃.0 ~heat flux is in the
same direction as that of gravity! and less than unity when
g̃,0 ~heat flux is in the opposite direction to that of gravity!.
In both cases, the deviation ofl̃ from unity increases mono
tonically as k̃ increases, this effect being more remarkab
for g̃.0 than forg̃,0. In addition, for a given value ofk̃ the
deviation is larger ifug̃u is larger. In obtaining numerically
the relation amongk̃, g̃, and l̃, we have been forced to
restrict ourselves to the rangesk̃&0.1 and20.6<g̃<0.4.
This is because for the two-surface heat transfer prob
stated in Sec. II A, it is difficult for any proper set of value
of Eq. ~20! to make a point in the gas where the local Knu
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FIG. 1. Plot of the heat conductivity factorl̃ vs k̃ for several values ofg̃.
The symbols are the numerical results, the solid lines represent the cu
which are smoothly fitted to the data, the dotted lines represent the trunc

seriesl̃ @2,0# , Eq.~28!, and the dashed lines represent the theoretical estim

l̃est, Eqs.~29!–~31!.

TABLE II. Examples of pairs of values ofl̃ for which (k̃,g̃) are close.
Here, q05(r0/2)(2RT0)3/2 and G05T0 /D. All the cases correspond to
T1 /T050.05.

q/q0 2G/G0 T/T0 g̃ k̃ l̃

0.023 20 1.3333 0.3508 20.15 0.073 92 0.9920
0.007 38 3.3333 0.1489 20.15 0.073 44 0.9920

0.023 20 0.8000 0.5832 20.25 0.046 87 0.9946
0.007 38 2.0000 0.2474 20.25 0.046 56 0.9949

0.016 52 3.5000 0.1204 0.1 0.046 28 1.0023
0.020 02 1.0000 0.4466 0.1 0.046 77 1.0024

0.023 13 2.5000 0.1646 0.1 0.066 77 1.0056
0.023 61 2.0000 0.2100 0.1 0.066 34 1.0055
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sen and inverse Froude numbers are large. This is espec
so if g̃.0 and this is why we could not include the caseg̃
50.6 in Table I and Fig. 1.

Next we compare the truncated seriesl̃ @2,0# @Eq. ~28!# as

well as the Pade´ approximantl̃est @Eqs.~29!–~31!# with the
numerical result. First of all, it should be remembered t

the truncated seriesl̃ @2,0# , where the terms of orderg̃3 and
higher are neglected, has been introduced as a formula t

valid for k̃2ug̃u!1023, as stated in Sec. IV. In addition, th

Padéapproximantl̃est is also valid in the same region be
cause it is constructed to agree with the asymptotic se
Eq. ~27!, up to the order ofg̃2. It is seen in Fig. 1 and Table
I that these two formulas really agree with the numeri
result within this range. Besides this, it is also seen t
whenever these two formulas coincide each other, they

agree with the numerical result. Wheng̃.0, l̃ @2,0# and l̃est

coincide indistinguishably with each other and agree with

numerical result fairly well up to the order ofk̃2ug̃u;1023,
beyond the restriction stated above. Atg̃50.05 andg̃50.1
they overestimate slightly the numerical values, while ag̃
50.4 they underestimate them; thus at the intermediate v
g̃50.2 the agreement is especially good. Wheng̃,0, on the

other hand, the truncated seriesl̃ @2,0# deviates from the nu-

merical result rapidly as the Knudsen numberk̃ increases and
increases beyond unity, so that the agreement is conside
poor. This is because the last term on the right-hand sid

Eq. ~28! increases rapidly withk̃ due to its large numerica
factor. For this reason, it is clear that merely employi
terms in the asymptotic series@Eq. ~27!# will not give any

improvement. The Pade´ approximantl̃est, however, sup-
presses this increasing character and gives a better agree

with the numerical result for a wider range ofk̃. In addition,

the fact that the effect of gravity onl̃ is stronger wheng̃
.0 rather than wheng̃,0 is well expressed qualitatively
From these reasons, it might be said that the Pade´ approxi-
mants@Eqs. ~29!–~31!# provide a better formula in describ
ing the behavior of the numerical result than the trunca

asymptotic result@Eq. ~28!#, at least in a finite rangek̃
&0.1.

Finally, we briefly summarize the computational cond
tions and the results of accuracy tests. We introduced
lattice points within the interval 0<X1 /D<1. The lattice
size is uniform (0.002D) within 0.1<X1 /D<0.9 and non-
uniform otherwise; approaching the boundaries it becom
finer and takes a minimum value (3.3531026D) on the
boundariesX150 andD. The computational range with re
spect to j1 is limited as 2jD<j1<jD with jD

55.2(2RT0)1/2. Within this interval, we introduced 1601 la
tice points, the size of which is a monotonically increasi
function of uj1u: 1.2531024(2RT0)1/2 at j150 and
0.02421(2RT0)1/2 at j156jD . The convergence criterion
of the iteration process is that the variation of the dimensi
less macroscopic variablesr/r0 andT/T0 in 100 iterations is
less than 10210 on each lattice point. The results of the a
curacy tests are as follows. It is confirmed that the dim
sionless marginal distribution functionr0

21(2RT0)1/2
lly

t

be

s,

l
t

so

e

ue

bly
of

ent

d

9

s

-

-

3* f dj2dj3 decays rapidly withuj1u and is less than 8.0
310211 on the lattice pointsj156jD . As mentioned in
Sec. II, the heat fluxq should be uniform theoretically@Eq.
~17!#, but it varies slightly due to numerical error. Con
versely this variation can be an estimate of the numer
error. The present results show that the relative variation
the heat flux,u(qmax2qmin)/qminu, is less than 1.231024,
where qmax and qmin are, respectively, the maximum an
minimum value ofq within the bulk region~see the first
paragraph of this section!. In addition, the flow velocityv,
which should vanish everywhere, is evaluated
uvu/(2RT0)1/2,3.631026 within the same region. We hav
also made recomputations for eight typical cases of the
rameters in Eq.~20! using finer lattice systems~one is double
in X1 and the other double inj1!. The values ofk̃ andl̃ for
given g̃ obtained with these finer systems differ less th
0.031% from the ones obtained with the standard system

The computation was carried out on VT-Alpha 433 co
puters ~Visual Technology Inc., CPU: Alpha 21164 43
MHz! of the first author’s laboratory.

VI. CONCLUDING REMARKS

In this paper we have been concerned with a o
dimensional heat transfer problem in the presence of a g
ity field and have analyzed it on the basis of kinetic theo
To that end, we have numerically solved the BKW~BGK!
model of the Boltzmann equation for Maxwell molecule
Our aim has been to investigate the influence of gravity
the heat conductivity of the gas for those points sufficien
separated from the walls so that the boundary effects on t
are negligible. At those points we have measured the h
flux q, the temperatureT, the densityr, and the temperature
gradientG. Three independent characteristic distances can
defined, the mean free pathl @Eq. ~18!#, the characteristic
length L associated with the temperature gradient@Eq. ~1!#,
and the characteristic lengthh[2RT/g associated with the
gravity, the ratios of which define the local Knudsen numb
k̃5(Ap/2)l /L and the local inverse Froude numberg̃
5L/h. In addition, the ratio of the actual heat flux to th
value predicted by the Fourier law,l̃5(2q/G)/l(T),
wherel(T) is the heat conductivity in the absence of gra
ity, is evaluated.

The first conclusion drawn from our results is that t
factor l̃ is a unique function ofk̃ and g̃. This means that if
different points corresponding to different solutions have
same (k̃,g̃), then they also have the samel̃. We have also
verified that, in accordance with the exact solution of R
16, l̃51 in the absence of gravity (g̃50), irrespective of
the value ofk̃. On the other hand,l̃ depends both onk̃ and
g̃ when gravity is present. The results show that the effec
heat conductivity is enhanced (l̃.1) when the heat flux
points in the same direction as that of gravity (g̃.0), while
it is inhibited (l̃,1) when pointing in the opposite directio
to that of gravity (g̃,0), both effects becoming more re
markable as the Knudsen numberk̃ increases. At a given
value of k̃ and a given sign ofg̃, the larger the value ofug̃u
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the larger the deviationul̃21u. Further, the dependence ofl̃

on g̃ is not symmetric, i.e.,l̃( k̃,g̃)21.12l̃( k̃,2g̃).
We have also compared our numerical results with

asymptotic analysis of Ref. 20. The asymptotic result, tak
the first few terms in the expansion as a series in power
g̃, shows a fair agreement with the numerical one wheg̃
.0, while the agreement is considerably poor wheng̃,0.
To overcome this, we have also constructed a theore
estimate with the aid of Pade´ approximants. This estimate
although being a considerably simple formula, shows reas
able agreement with the numerical results, so that it provi
a practical formula valid within the range of the local Knu
sen number and the local inverse Froude number consid
here.
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