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The state of a single-species monatomic gas from near-equilibrium to highly nonequilibrium
conditions is investigated using analytical and numerical methods. Normal solutions of the
Boltzmann equation for Fourier flow (uniform heat flux) and Couette flow (uniform shear stress) are
found in terms of the heat-flux and shear-stress Knudsen numbers. Analytical solutions are found for
inverse-power-law molecules from hard sphere through Maxwell at small Knudsen numbers using
Chapman-Enskog (CE) theory and for Maxwell molecules at finite Knudsen numbers using a
moment-hierarchy (MH) method. Corresponding numerical solutions are obtained using the direct
simulation Monte Carlo (DSMC) method of Bird. The thermal conductivity, the viscosity, and the
Sonine-polynomial coefficients of the velocity distribution function from DSMC agree with CE
results at small Knudsen numbers and with MH results at finite Knudsen numbers. Subtle
differences between inverse-power-law, variable-soft-sphere, and variable-hard-sphere
representations of Maxwell molecules are observed. The MH and DSMC results both indicate that
the effective thermal conductivity and the effective viscosity for Maxwell molecules are
independent of the heat-flux Knudsen number, and additional DSMC simulations indicate that these
transport properties for hard-sphere molecules decrease slightly as the heat-flux Knudsen number is
increased. Similarly, the MH and DSMC results indicate that the effective thermal conductivity and
the effective viscosity for Maxwell molecules decrease as the shear-stress Knudsen number is
increased, and additional DSMC simulations indicate the same behavior for hard-sphere molecules.
These results provide strong evidence that the DSMC method can be used to determine the state of

a gas under highly nonequilibrium conditions. © 2006 American Institute of Physics.

[DOLI: 10.1063/1.2166449]

I. INTRODUCTION

The state of a single-species monatomic gas under
highly nonequilibrium conditions remains a fundamental re-
search problem with important applications. Departure from
equilibrium can be achieved in two ways: through rarefac-
tion effects (molecules collide with solid boundaries more
frequently than with each other) and through gradients in
flow properties. Herein, the latter situation is considered: the
heat flux or the shear stress is finite rather than infinitesimal,
whereas the direct influence of solid boundaries is negligible.
This situation can exist in heated micron-scale devices sur-
rounded by air at ambient conditions.

The Boltzmann equation (BE) is the starting point for
kinetics-based investigations into the nonequilibrium proper-
ties of gases.1 At the level of the BE, a “hydrodynamic”
description is obtained when the velocity distribution func-
tion is a “normal” solution: temporal and spatial variations
occur entirely through a functional dependence on the hydro-
dynamic fields (the number density, the temperature, and the
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velocity). An equivalent way of posing this is to consider two
types of Knudsen numbers: a system Knudsen number, de-
fined as the ratio of the mean free path to a characteristic
geometric length scale, and a local Knudsen number, defined
as the ratio of the mean free path to a local characteristic
hydrodynamic length scale determined from the local heat
flux or shear stress. If both types of Knudsen numbers are
small, then the flow is hydrodynamic and continuum, and the
Navier-Stokes equations apply. If the system Knudsen num-
ber is not small, then the flow is not hydrodynamic, with
noncontinuum effects produced by molecule collisions with
solid surfaces. On the other hand, if the system Knudsen
number is small but the local Knudsen number is finite, then
the flow is hydrodynamic, with noncontinuum effects pro-
duced by flow gradients. In this latter situation, a normal
solution of the BE can be obtained.

Despite the physical simplicity of the BE, its mathemati-
cal complexity makes it difficult to find exact solutions. The
main source of this complexity is the collision term, which is
an integral over velocity space of quadratic terms involving
the velocity distribution function. In hydrodynamic con-
tinuum situations, the departure from equilibrium is small, so
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the velocity distribution function can be represented as a per-
turbation expansion about the equilibrium distribution in
terms of the local Knudsen number. Chapman-Enskog (CE)
theory1 provides such a representation of the velocity distri-
bution function. The first-order CE solution, however, is lim-
ited to small local Knudsen numbers (i.e., near-equilibrium
continuum conditions).

The collision term becomes more tractable for certain
molecular interactions. In the case of Maxwell molecules,
which repel each other with a force inversely proportional to
the fifth power of the distance between their centers, mo-
ments of the collision term can be determined directly from
moments of the velocity distribution function without requir-
ing detailed knowledge of this function. This moment prop-
erty for Maxwell molecules allows a hierarchy of moment
equations to be derived from the BE, and this system of
equations admits the possibility of recursively obtaining nor-
mal solutions. Several exact solutions for uniform heat flux
and uniform shear stress (Fourier flow and Couette flow) that
are based on this moment-hierarchy (MH) method have ap-
peared in the literature,”” and efficient algorithms for com-
puting these moments symbolically and numerically have
been reported.8 Corresponding solutions for the Bhatnagar-
Gross-Krook (BGK) collision term have also been
derived.”"’

The direct simulation Monte Carlo (DSMC) method of
Bird"' is a numerical method for simulating nonequilibrium
gas behavior that is based on kinetic theory. In brief, com-
putational molecules move, reflect from solid boundaries,
and collide with each other so as to statistically mimic the
behavior of real molecules. Wagner12 provides a rigorous
proof that DSMC produces a solution to the Boltzmann
equation in the limit of vanishing discretization and stochas-
tic errors. Santos and co-workers apply DSMC to Fourier
flow and Couette flow with Maxwell and hard-sphere mol-
ecules and use the results to evaluate the accuracy of BGK-
like and Grad models."*'* Gallis and co-workers”®™" show
that DSMC reproduces the infinite-approximation CE results
for the thermal conductivity and the viscosity of Maxwell
and hard-sphere molecules.

Herein, two classical benchmark problems are investi-
gated in which the flow properties vary one-dimensionally in
space and remain constant in time. In Fourier flow, the gas
experiences a uniform heat flux, whereas in Couette flow, the
gas experiences a uniform shear stress. These flows are pro-
duced in the DSMC simulations by confining the gas be-
tween two parallel, solid walls at fixed, uniform conditions.
To ensure that a normal solution is obtained in the central
region of the domain, the walls are separated by approxi-
mately 40 mean free paths.

Fourier flow, shown in Fig. 1, is perhaps the simplest
situation for studying gas behavior under highly nonequilib-
rium conditions. Gas is confined between two infinite, paral-
lel walls separated by a distance L that are motionless (tan-
gential velocities V;=V,=0) but have unequal temperatures
(T, #T,). Starting from an arbitrary initial state, the system
reaches a steady state after a transient period during which
the molecules travel between the walls several times. After
steady state is reached, the gas is motionless, and a uniform
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FIG. 1. Fourier flow and Couette flow.

heat flux and a corresponding temperature gradient exist in
the domain. When the heat flux (or, more precisely, the heat-
flux Knudsen number discussed below) is small, the heat flux
is proportional to the temperature gradient in the bulk gas
(i.e., several mean free paths away from the walls) according
to Fourier’s law, where the coefficient of proportionality is
the thermal conductivity.

Couette flow, also shown in Fig. 1, is another simple
situation for studying gas behavior under highly nonequilib-
rium conditions. In this situation, the walls are isothermal
(temperatures T,=T,) but have unequal tangential velocities
(V,#V,). Steady flow is achieved in the same manner as in
the previous situation. After steady state is reached, the nor-
mal velocity component is zero, and a uniform shear stress
and a corresponding tangential-velocity gradient exist in the
domain. When the shear stress (or, more precisely the shear-
stress Knudsen number discussed below) is small, the shear
stress is proportional to the tangential-velocity gradient in
the bulk gas according to Newton’s law, where the coeffi-
cient of proportionality is the viscosity. Couette flow is more
complicated than Fourier flow because the viscous heat gen-
eration is nonzero throughout the domain and therefore the
temperature distribution is nonuniform. Since 77=T7,, the
temperature distribution reaches a maximum at the center of
the domain. When the walls have unequal temperatures and
tangential velocities, both Fourier flow and Couette flow are
obtained. More specifically, at small heat fluxes and shear
stresses, Fourier’s law and Newton’s law are jointly observed
in the bulk gas well away from the walls.

In the following sections, Fourier flow and Couette flow
from near-equilibrium to highly nonequilibrium conditions
are studied in detail. Inverse-power-law (IPL) molecular in-
teractions from hard-sphere through Maxwell are examined.
At near-equilibrium conditions, analytical solutions from CE
theory and numerical solutions from DSMC are compared.
For Maxwell molecules at highly nonequilibrium conditions,
analytical solutions from the MH method and numerical so-
lutions from DSMC are compared. For hard-sphere mol-
ecules at these conditions, only DSMC numerical solutions
are presented since no analytical results are available. In all
situations, the thermal conductivity, the viscosity, and the
Sonine-polynomial coefficients that characterize the velocity
distribution function are of particular interest, as is the de-
pendence of each of these quantities on the heat-flux and
shear-stress Knudsen numbers.
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Il. CHAPMAN-ENSKOG THEORY
A. General results

CE theory provides a method for obtaining the normal
solution of the BE in terms of an expansion in the gradients
of hydrodynamic flow properties or, equivalently, powers of
the heat-flux and shear-stress Knudsen numbers." If truncated
at first order in these Knudsen numbers, CE theory describes
the state of a nonequilibrium gas in the hydrodynamic limit
for a small heat-flux vector and a small shear-stress tensor
(i.e., the Navier-Stokes equations). In this situation, first-
order CE theory generates a closed-form expression for the
velocity distribution function in terms of macroscopic hydro-
dynamic fields and their gradients:

=00+ @0+ wh), (1
fO =nexp[- (7)), (2)
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Here, f© is the equilibrium (Maxwellian) distribution, (!
and W) are the first-order nonequilibrium perturbations
from this distribution, c¢,,=V2kgT/m is the most probable
molecular thermal speed for the equilibrium distribution, m
is the molecular mass, n is the number density, T is the
temperature, kg is the Boltzmann constant, c=u—-U is the
thermal velocity of a molecule, u=(u,v,w) is the velocity of
a molecule, U=(U,V,W)=(u) is the average value of u,
¢=c/c,, is the normalized molecular thermal velocity,
ToT=6¢—(¢?/3)I is a traceless dyadic, (~1=q/(mncfn) and
7=7/(mnc’) are the nondimensional heat-flux vector and
shear-stress tensor, and A and B are expansions in the Sonine
polynomials S;k):
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The heat-flux vector and the shear-stress tensor obey the fol-
lowing constitutive equations:

q=-KVT, (8)

T= ,LL{(VU+VU7)—§(V'U)I}- ©)

The thermal conductivity K and the viscosity u in the previ-
ous equations obey the following relations:

K=—-(5/4)kgcla,, (10)
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Here, K./K, and p./p; are the CE infinite-to-first-

approximation ratios of the thermal conductivity and the vis-
cosity, respectively. The a; and the b, are the heat-flux and
shear-stress Sonine-polynomial coefficients, respectively.
Ratios of these coefficients can be expressed in terms of
moments of the velocity distribution function, where, for
convenience, the relevant nonzero components of the heat-
flux vector and the shear-stress tensor are taken to be ¢, and
Teys respectively:17
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The (local) heat-flux and shear-stress Knudsen numbers are
defined to be the nondimensional heat flux and shear stress,
respectively:

Kn, =3, =lq,|/(mnc;,), (15)

Kn,=|7,|=|7,//(mnc;,). (16)

B. Molecular interactions

A molecular interaction must be specified in order to use
CE theory to determine the thermal conductivity, the viscos-
ity, and the Sonine-polynomial coefficients. In the IPL inter-
action, the repulsive force between two molecules varies ac-
cording to 1/r", where r is the distance between their centers
and 5 <wv=oo. The two limiting cases are the Maxwell inter-
action, for which v=5, and the hard-sphere interaction, for
which v—oo. The IPL interaction yields a thermal conduc-
tivity and a viscosity with the following forms:'

K= Kref(T/Tref)ws (17)
M= /'Lref(T/Tref)wa (18)
w=(1/2)+[2/(1/—1)], (19)

where “ref” denotes reference quantities. The parameter w
takes the values of 1/2 and 1 for the hard-sphere and Max-
well interactions, respectively.

In DSMC simulations, the variable-soft-sphere (VSS) in-
teraction of Koura and Matsumoto'® and the variable-hard-
sphere (VHS) interaction of Bird'" are used to approximate
the IPL interaction. All three interactions yield thermal con-
ductivities and viscosities with the same temperature depen-
dence, namely proportional to 7. The VSS and VHS inter-
actions use a molecular diameter d that depends on the
relative molecular speed ¢, according to d0<c:2/(v_l), where
the reference molecular diameter is given by the following
expression:“’15
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FIG. 2. Dependence of CE transport-coefficient ratios and VSS « on w.

o o 1/2 1/2
ret:( 5(a+ 1) (a+2)(mkgT ol ) ) 00

4a(5 = 20)(7 = 20) phref( 1/ fher)

Here, « is the angular-scattering parameter, which relates the
scattering angle y to the impact parameter b according to
boccos?[x/2]. Since a=1 produces isotropic (hard-sphere)
scattering, the VHS interaction uses this value for all w val-
ues (i.e., for all IPL interactions).

The VSS interaction uses different values of a to repre-
sent different IPL interactions. The « value that achieves the
best match between the VSS and IPL interactions is deter-
mined by equating the VSS and IPL Schmidt numbers (the
Schmidt number is w/pD, where w is the viscosity, p=mn is
the mass density, and D is the self-diffusion coefficient):

a=(24,[v])/(2A,[v] - Ayl v]), (21)

where A,[v] and A,[v] are functions in Chapman and
Cowling.1 Figure 2 shows the dependence of o on w based
on Egs. (19) and (21). From these equations, the values
a=1 and @=2.139 86 are obtained for hard-sphere and Max-
well molecules, respectively. It is emphasized that the values
w=1/2 and a=1 exactly reproduce the hard-sphere interac-
tion (VSS and VHS are identical in this situation) but that the
VSS values w=1 and @=2.139 86 (and the VHS values
w=1 and a=1) only approximate the IPL Maxwell interac-
tion. Whenever a distinction is necessary, these Maxwell in-
teractions are denoted as “VSS-Maxwell,” “VHS-Maxwell,”
and “IPL-Maxwell.” Although more computationally intense,
the VSS interaction is emphasized here because it represents
molecular diffusion more accurately than the VHS interac-
tion and is thus appropriate for extending these investiga-
tions from single-species to multispecies gases.

CE theory provides the means to determine the relevant
quantities for a particular IPL. molecular interaction.' Table I
contains numerical values for the infinite-to-first-
approximation ratios of the viscosity, the thermal conductiv-
ity, and the self-diffusion coefficient (u../u;, K./K,, and
D,/ D, respectively) and for the heat-flux and shear-stress
Sonine-polynomial-coefficient ratios (a,/a; and b;/b,) for
the hard-sphere and Maxwell interactions. ' Figure 2 also
shows the dependence of w../u;, K./K;, and D../D; on w

for intermediate interactions. For the Maxwell interaction,
the transport coefficient ratios are all unity, and the Sonine-
polynomial-coefficient ratios are 1 for k=1 and O for k=2. It
is emphasized that these values are obtained only in the limit
of small heat-flux and shear-stress Knudsen numbers.

C. Effective transport coefficients

For Fourier flow and Couette flow, an effective thermal
conductivity K ¢ and an effective viscosity . are defined as

oT
qe=—Kei—> (22)
ox
vV
Ty = —. 23
y = Meff o (23)

When first-order CE theory applies (i.e., the heat-flux, shear-
stress, and system Knudsen numbers are all small), Egs. (8)
and (9) indicate that K.z=K and p.;=u. When first-order

TABLE I. Chapman-Enskog (CE) results.

Symbol Hard-sphere Maxwell
) 1/2 1

a (VSS) 1 2.139 86
a (VHS) 1 1
Mool 1y 1.016 034 1
K./K, 1.025 218 1
D../D, 1.018 954 1
aila; 1 1
a/a; 0.095 428 4 0
asla; 0.021 7503 0
asla; 0.006 857 9 0
asla; 0.002 592 6 0
b,/b; 1 1
by/b; 0.061 742 1 0
b3/b; 0.010 3303 0
byl b, 0.002 5919 0
bs/b, 0.000 820 7 0
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CE theory does not apply (i.e., at least one Knudsen number
is finite), it is generally the case that K% K and o # u. If
the system Knudsen number is small but at least one of the
other two Knudsen numbers is finite, the effective transport
coefficient ratios K./ K and u.q/ e, as well as the Sonine-
polynomial-coefficient ratios a,/a, and b,/b, defined by
Egs. (13) and (14), are in general nonlinear functions of both
Kn, and Kn..

lll. MOMENT-HIERARCHY METHOD
A. Application to Maxwell molecules

Most of the known analytical solutions for the BE con-
sider Maxwell molecules and apply the MH method directly
or indirectly. Ikenberry and Truesdell® obtain an exact ex-
pression for the pressure tensor in uniform shear flow with
Maxwell molecules. Asmolov et al.> and Makashev and
Nosik* indirectly use the MH method to obtain expressions
for higher-order moments for Fourier flow and Couette flow
with Maxwell molecules. Santos and co-workers® ' use the
MH method extensively to investigate Fourier flow and Cou-
ette flow with Maxwell molecules. Sabbane and Tij8 present
efficient computational algorithms that utilize symbol-
manipulation software to calculate the collisional moments
for Maxwell molecules that are required in the MH method.

The MH method is particularly useful for Maxwell mol-
ecules because the collision rate for the Maxwell interaction
is independent of the relative speed of the molecules. This
property allows the BE to be represented as an infinite hier-
archy of moment equations.5 ~" The BE describes the tempo-
ral and spatial variation of the velocity distribution function f
and has the following form in the absence of body forces:

111, (24)

where Jl¢|f,f] is the collision operator. Moments of the BE
relate moments of f to moments of J[e¢|f,f], where their

afldt+u-Vi=Je

nondimensional forms are given below and f: (cfn/ n)f:

My i, = J chepenflelde = (Eeel), (25)

f.flde. (26)

—_ | Fhizkoxks s
Jk|k2k3_fcx ¢y, J[C

For the special situation of Maxwell molecules, the Jk1k2k3
can be expressed as bilinear combinations of the M gk
where the coefficients in these combinations are linear com-
binations of the eigenvalues of the linearized collision
operator.s’7 These coefficients can be computed by the algo-
rithm of Sabbane and Tij8 and differ for the VSS-Maxwell,
VHS-Maxwell, and IPL-Maxwell interactions because these
interactions produce different angular scattering.

B. Fourier flow and Couette flow

The above-mentioned property enables an exact solution
to the BE to be obtained recursively for Fourier flow and
Couette flow with Maxwell molecules.”” In this solution, the
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TABLE II. Moment-hierarchy (MH) results.

Symbol IPL-Maxwell VSS-Maxwell VHS-Maxwell
Ay 21.1786 21.3155 21.3190
Aj 30.8947 32.4522 32.4917
Az 1455.17 1584.61 1588.02
Ay 11.1479 12.0749 12.0990
Ap 4539.44 5272.08 5291.97
Ay 222 458 288 112 290 023
Asy 5514.96 6805.30 6841.24
Asy 1.10275 X 10° 1.553 84 10° 1.567 41 X 10°
Asy 6.291 32 107 1.064 69 % 10% 1.079 06 X 108
B, 16.3894 16.5355 16.5392
Bj, 22.4570 24.1045 24.1472
B, 908.683 1007.93 1010.59
By 6.616 97 7.33624 7.355 14
By, 2685.43 3210.81 3225.37
By 115761 154 863 156 027
ck 29.0383 29.0418 29.0419
c 596/45 596/45 596/45

pressure p=nkgT is uniform in space, and the moments
My i i, are polynomials of degree k;+k,+k;—2=0 in the
heat-flux Knudsen number Kn,:
ky+ky+ks—-2
Mg [Kn Knl= X uf)  [KnJKn) — (27)
3 0 1%2K3 4q

Here, the coefficients M/(c?kzk3
shear-stress Knudsen number Kn, that can be represented by
infinite expansions in powers of Kn,. Several of the lower-
order moments have obvious values (number density, veloc-

ity, temperature, shear stress, and heat flux):

are nonlinear functions of the

Moo =1, (28)
Moo= Mo10=My =0, (29)
Moo+ Moo + Moop =312, (30)
Mio=-Kn,, (31)
Mg+ M50+ My, = 2Kn,. (32)

In the limit of small shear stress (i.e., Kn.—0),
Egs. (13), (14), (25), and (27) indicate that the Sonine-
polynomial-coefficient ratios a,/a; and b;/b, for k=2 are
even polynomials of degree 2(k—1):

k-1
T (- 11 A Kn, (33)
a = ]
b k-1
= (- 11X B KnY. (34)
b, j=1 !

Table II contains values for the nonzero coefficients in the
above-mentioned equations for the IPL-Maxwell, VSS-
Maxwell, and VHS-Maxwell interactions determined using
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the approach of Sabbane and Tij.8 The differences between
the values are caused by differences in the angular scattering.
Note that A5;=0. In general, A;;=0 if j<(k-1)/3.

C. Transport coefficients

For Fourier flow and Couette flow under the assumption
that a hydrodynamic description is valid (small system
Knudsen number), the effective thermal conductivity and the
effective viscosity defined by Egs. (22) and (23) can poten-
tially be functions of the heat-flux and shear-stress Knudsen
numbers. For Fourier flow, Asmolov ef al.’ prove that the
thermal conductivity for Maxwell molecules is independent
of the heat flux. For Couette flow, Makashev and Nosik?
prove that the viscosity for Maxwell molecules depends on
the shear stress. Santos and co-workers” apply the MH
method to determine the manner in which the thermal con-
ductivity K. and the viscosity w.g for Maxwell molecules
[see Egs. (22) and (23)] depend on the small but finite shear-
stress Knudsen number, where K and u are the CE values:

Keot/K = Fi[Kn,] = 1 — cxKn? + O[Kn?], (35)

M/ = F,[Kn,]=1-c,Kn + O[Kn}]. (36)

Table II shows the values of cg and Cp for IPL-Maxwell,
VSS-Maxwell, and VHS-Maxwell molecules. Since both co-
efficients are positive, Maxwell-molecule gases are shear-
insulating and shear-thinning: the thermal conductivity and
the viscosity decrease as the shear stress increases.

IV. DSMC METHOD
A. General description

The DSMC method of Bird"' provides an additional
method for investigating the behavior of gases under high
heat flux and high shear stress.”” "7 DSMC uses computa-
tional molecules that move, reflect from walls, and collide
with each other to simulate noncontinuum gas behavior.
Each computational molecule typically represents a large
number of real molecules. During a time step, molecules
move at constant velocity (“ballistic” movement). Molecules
that cross a solid boundary are reflected back into the com-
putational domain. These reflections can be specular, diffuse
at the wall temperature, diffuse without energy change, or a
linear combination of these (in a probabilistic sense). More
complicated reflection models are also available."” Between
moves, pairs of molecules within each cell are randomly se-
lected to collide at the appropriate rate.

The collisions of computational molecules mimic the
collisions of real molecules statistically (“stochastic” colli-
sions). Here, the VSS interaction of Koura and Matsumoto'®
and the VHS model of Bird'' are used. As discussed previ-
ously, these interactions exactly represent the hard-sphere in-
teraction and approximate other IPL interactions, including
the Maxwell interaction, when suitable values are selected
for the viscosity temperature exponent w and the angular-
scattering exponent «. Although slightly more expensive
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TABLE III. DSMC simulation parameters.

Quantity Symbol Value
Boltzmann constant kg 1.380 658 X 107 J/K
Molecular mass m 66.3X107%" kg
Reference viscosity Moot 2.117X 1073 Pas
Reference temperature Tret 273.15 K
Reference pressure Dref 266.644 Pa
Initial temperature Tinic T et
Initial pressure Pinit Dref
Left-hand wall temperature T, Ty~ AT/2
Right-hand wall temperature T, T s+ AT/2
Temperature difference AT Up to 400 K
Left-hand wall velocity v, -AV/2
Right-hand wall velocity V, AV/2
Velocity difference AV Up to 800 m/s
Domain length L 1 mm
Cell size Ax 2.5 um
Time step At 7 ns
Molecules per cell N, 120

computationally, the VSS interaction is emphasized here be-
cause it represents molecular diffusion more accurately than
the VHS interaction.

The computational mesh in DSMC serves two functions.
First, the computational mesh enables identification of pairs
of molecules as possible collision partners. Second, it pro-
vides a means for accumulating statistical information about
the flow (e.g., the number density, the velocity, the tempera-
ture, the shear stress, the heat flux, and other moments of the
velocity distribution function). Statistical information is
sampled both before and after collisions are performed. If the
flow is statistically steady (stationary), long-time averages
are used to reduce statistical uncertainty (the ergodic hypoth-
esis).

B. Simulation specifics

The flow domain shown in Fig. 1 is considered. Table III
shows the physical parameters used in the simulations. As in
previous studies,"”™” the gas has the molecular mass and the
reference viscosity of argon. However, the w and « values
for the VSS interaction are used as discussed previously to
represent hard-sphere, Maxwell, and intermediate IPL inter-
actions. Initially, the gas is motionless and at the reference
pressure and temperature: pjni=pr.r=266.644 Pa (2 Torr)
and T;,;=T,;=273.15 K, respectively. The most probable
molecular thermal speed at these conditions is
¢,,=337.3 m/s. The domain has a length L=1 mm and is
bounded by two parallel solid walls that reflect all molecules
diffusely at the wall temperature (unity accommodation).
These walls have temperatures 7,=T,—AT/2 and
T,=T,;+AT/2 and tangential velocities V;=—AV/2 and
V,=AV/2, respectively. Temperature differences up to
AT=400 K and velocity differences up to AV=800 m/s are
considered. With the mean free path defined as
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VT NTHC,

\ = , (37)

mnc,, 2p
the system Knudsen number at the initial conditions has the
value N/L=0.0237, so the walls are approximately 42 mean
free paths apart. Since the Knudsen layers produced by the
walls are generally approximately 4—10 mean free paths
thick, the normal solution occupies a large fraction of the
domain.

A slightly modified version of the code DSMCI is used to
perform these simulations. The principal modification from
the published version of the code'! involves performing both
precollision and postcollision sampling, which improves the
accuracy of nonconserved moments.'>~"” Table III shows the
numerical parameters for the simulations. The domain is di-
vided into 400 uniform cells of width Ax=2.5 um (approxi-
mately 1/10 of the mean free path \) and is populated with
N.=120 computational molecules per cell selected from an
equilibrium distribution at the initial pressure and tempera-
ture. A fixed time step of Ar=7 ns (approximately 1/10 of
the collision time \/c,,) is used. Transients are allowed to
decay for the first 0.3 million time steps (2.1 ms), and ap-
proximately 1 billion samples per cell are subsequently ac-
cumulated. Based on extensive simulations, discretization
and stochastic errors in the thermal conductivity and the vis-
cosity are expected to be below 0.2%.'° Each simulation re-
quires 60—120 h on 16 nodes of an IBM Linux cluster with
dual 1.2-GHz P3 processors.

Quantities of interest include the thermal conductivity,
the viscosity, and the Sonine-polynomial coefficients. The
effective thermal conductivity K ¢ and the effective viscosity
Megr are determined within each mesh cell from Egs. (17),
(18), (22), and (23):

K _ KT KyT®0T

= - w ’ (38)
Keff qx ox Tref qx ox
WV e TO IV
BBV TV (39)

=== ,
Meff Tay ox T Tyy ox

where the reference quantities are known, the quantities 7, V,
q,, and 7, are determined within each cell, and the spatial

derivatives dT/dx and dV/dx are approximated using central
differences with values from adjacent cells. The moments
needed to determine the a;/a, and the b;/b, from Egs. (13)
and (14) are accumulated directly within each cell during a
simulation. The above-mentioned quantities are examined as
functions of position (profiles) or as functions of the heat-
flux or shear-stress Knudsen number in the central region of
the domain, within which the normal solution is obtained.
When relevant, average values are also obtained for proper-
ties in this region.

V. RESULTS
A. Weakly nonequilibrium conditions

Before considering highly nonequilibrium conditions,
weakly nonequilibrium conditions are first examined. The
reasons for this are twofold. First, the accuracy of the DSMC
method is demonstrated by simulating conditions for which
first-order CE theory applies. This level of agreement pro-
vides confidence in the DSMC method when theoretical re-
sults are not available. Second, the region of the domain
occupied by the normal solution and the complementary re-
gion occupied by the Knudsen layers are determined. The
fact that the normal solution is obtained in a significant por-
tion of the domain for these simulations provides confidence
that the normal solution is obtained over a similar region at
highly nonequilibrium conditions.

Figure 3 presents the temperature and velocity profiles
for a simulation with Maxwell molecules for AT=70 K and
AV=100 m/s. In this simulation, the left-hand wall is colder
(T,=238.15K) and moving downward (V;=-50 m/s),
whereas the right-hand wall is hotter (7,=308.15 K) and
moving upward (V,=50 m/s). The heat-flux and shear-stress
Knudsen numbers corresponding to these conditions are
Kn,~0.006 and Kn,~0.003, respectively, so CE theory is
expected to apply in the central region of the domain. Due to
the large number of samples obtained in the simulation, the
statistical variations in these profiles cannot be visually dis-
cerned. The discontinuities between the gas and wall values
of the temperature and the velocity are small (approximately
3 K and 2 m/s, respectively) because of the small system
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FIG. 4. Maxwell thermal-conductivity and viscosity profiles at small Kn,.

Knudsen number (0.0237). Outside the Knudsen layers
(10%-25% of the domain adjacent to each wall), the tem-
perature and velocity profiles are nearly linear with a slight
downward concavity. This shape results from two effects.
First, the thermal conductivity and the viscosity are propor-
tional to the temperature for Maxwell molecules (they are
increasing functions of temperature for IPL, VSS, and VHS
molecules), so the transport coefficients are larger on the
right-hand side of the domain than on the left-hand side.
Since the heat flux and the shear stress are uniform across the
domain, the temperature and velocity gradients are smaller
on the right-hand side than on the left-hand side. Second,
viscous dissipation generates heat throughout the domain.
As discussed earlier, this phenomenon acts to create a maxi-
mum in temperature in the center of the domain even when
both walls are at the same temperature. The temperature in-
crease is small compared to the wall temperatures for the
above-mentioned velocity difference (approximately 2 K for
AV=100 m/s) but can be much larger for large velocity dif-
ferences (e.g., over 100 K for AV=800 m/s).

Figure 4 shows the normalized effective thermal-
conductivity and viscosity profiles for these conditions. The
effective values K g and u g are determined using Egs. (22)
and (23) and are normalized using the CE values, yielding
Egs. (38) and (39). It is noted that the CE thermal conduc-
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tivity K and viscosity u are not constant within the domain
but rather increase from left to right because they are increas-
ing functions of temperature and the temperature increases
monotonically (in this case) from left to right. A value of
unity indicates that the CE value is obtained, which occurs in
the central region of the domain for both transport coeffi-
cients. The stochastic noise evident in these plots enters pri-
marily through the numerical derivatives used in Egs. (38)
and (39). The Knudsen layers are clearly evident and are
restricted to approximately 10-25% of the domain adjacent
to each wall. The Knudsen layer near the hot wall is slightly
thicker than the Knudsen layer near the cold wall because the
mean free path at constant pressure is an increasing function
of temperature [see Egs. (37) and (18)].

Figure 5 shows the profiles of the Sonine-polynomial-
coefficient ratios a;/a; and b,/b; for these conditions. The
ay/a, are shown for k=2, 3, 4, and 5, and the b,/b; are
shown for k=2, 3, and 4. The solid curves are the DSMC
values from Egs. (13) and (14), and the dashed lines indicate
the CE values of 0 that are obtained for Maxwell molecules
when k=2. As observed regarding the thermal conductivity
and the viscosity, the a;/a; and the b;/b; achieve their CE
values in the central region of the domain and depart from
the CE values only in the Knudsen layers, which again are
seen to occupy approximately 10-25% of the domain adja-
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FIG. 5. Maxwell Sonine-polynomial-coefficient profiles at small Kn,.
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FIG. 6. Hard-sphere Sonine-polynomial-coefficient profiles at small Kn,.

cent to the walls. As previously mentioned, the normal solu-
tion is seen to occupy the central region of the domain.

Figure 6 shows the corresponding profiles obtained us-
ing hard-sphere molecules instead of Maxwell molecules but
with all other conditions unchanged. The profiles of tempera-
ture, velocity, thermal conductivity, and viscosity for hard-
sphere molecules are almost identical to the corresponding
profiles for Maxwell molecules in Figs. 3 and 4 (with slight
differences arising from the different temperature depen-
dence of the transport coefficients), so these profiles are not
shown. As for the simulation using Maxwell molecules, the
heat-flux and shear-stress Knudsen numbers at these condi-
tions are Kn,~0.006 and Kn,~0.003, respectively, so CE
theory is expected to apply in the central region of the do-
main. The CE values are also shown as in the previous fig-
ure. Unlike Maxwell molecules, hard-sphere molecules have
nonzero CE values for the a,/a; and the b;/b; when k=2
(see Table I). As with Maxwell molecules, CE behavior is
obtained in the central region of the domain, and departures
are observed only in the Knudsen layers adjacent to the
walls.

Figure 7 shows the normalized effective thermal conduc-
tivity and viscosity as functions of the viscous temperature
exponent for IPL interactions from hard-sphere through
Maxwell. These values are obtained by averaging profiles

1.01 T T T T

®DSMC
---- CE

5

.
-
-

(«—— Hard-Sphere Maxwell —»

0.5 0.6 0.7 0.8 0.9 1.0
(O]

like those in Fig. 4 over the central region of the domain,
with error bars indicating the 95% confidence intervals cor-
responding to the stochastic uncertainty. Six (w, @) combina-
tions are examined [see Fig. 2 and Egs. (19) and (21)]:
(0.5, 1.0), (0.6, 1.209 04), (0.7, 1.42248), (0.8, 1.645 56),
(0.9, 1.883 13), and (1.0, 2.139 86), where the first combina-
tion is the hard-sphere interaction and the last combination is
the VSS-Maxwell interaction. In all cases except for the
Maxwell interaction, the values for the thermal conductivity
and the viscosity agree with the CE values to within the error
bars, which are approximately +0.002. As indicated earlier,
the discretization errors for these simulations are also ap-
proximately +0.002 and tend to be positive for the hard-
sphere interaction but negative for the Maxwell interaction,
as shown below. The high accuracy of these values is further
emphasized by recognizing that the differences between the
infinite-approximation and first-approximation CE values of
the thermal conductivity and the viscosity for hard-sphere
molecules are approximately 0.025 and 0.016, respectively
(see Table I), which are approximately 10 times as large as
the differences exhibited in this figure.

Figure 8 shows the Sonine-polynomial-coefficient ratios
as functions of the viscosity temperature exponent for the
conditions in the previous figure. As in the previous figure,
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FIG. 7. Dependence of thermal conductivity and viscosity on  at small Kn,.
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these values are obtained by averaging over the central re-
gion. However, error bars are not shown because the stochas-
tic errors are smaller than the symbol size. As in the previous
figures, the dashed curves are the CE values. Since the heat-
flux and shear-stress Knudsen numbers (an%0.006 and
Kn,=~0.003, respectively) are small in these simulations, the
good agreement between the simulation values in the central
region of the domain and the CE values is not surprising.
Close examination of this figure indicates that the coefficient
ratios actually depart slightly but systematically from the CE
values (the most noticeable example is as/a;). This is be-
cause the heat-flux Knudsen number is not infinitesimally
small. Simulations with smaller temperature differences cor-
roborate this observation."”

To summarize, when the heat-flux and shear-stress
Knudsen numbers are small, the DSMC simulations exhibit
CE behavior in the central region of the domain. More spe-
cifically, the CE values for the thermal conductivity and the
viscosity (both temperature-dependent) and for the Sonine-
polynomial-coefficient ratios are obtained to high accuracy
in this region, indicating that DSMC correctly reproduces the
CE velocity distribution. The Knudsen layers are seen to
occupy approximately 10%—25% of the domain adjacent to
each wall. Thus, the normal solution of the BE is obtained in
the central region of the domain. Since the mean free path is
an increasing function of temperature at constant pressure,
the Knudsen layer adjacent to the right-hand wall is thicker
than the Knudsen layer adjacent to the left-hand wall. This
leftward shift of the region in which the normal solution is
obtained becomes more pronounced at larger temperature
differences. These observations hold for all interactions from
hard-sphere through Maxwell. Additional DSMC results us-
ing the VHS interaction (not shown) also exhibit CE behav-
ior in the central region and are nearly identical to those
presented previously using the VSS interaction, which is
as expected for single-species gases because the effect of
molecular diffusion is not significant. Finally, close exami-
nation of the DSMC results indicates slight departures from
CE theory that are attributed to the fact that the heat-flux
Knudsen number is not infinitesimally small.

B. Highly nonequilibrium conditions

With highly nonequilibrium conditions, the CE theory
discussed in earlier sections is no longer applicable. For
Maxwell molecules, first-order CE theory is superseded by
the MH theory, which provides expressions for the effective
thermal conductivity, the effective viscosity, and the Sonine-
polynomial-coefficient ratios in terms of the heat-flux and
shear-stress Knudsen numbers. For hard-sphere and other
IPL molecules, no corresponding theory is available. Thus,
for highly nonequilibrium conditions, the DSMC method
is verified by comparison with MH results for Maxwell
molecules and provides new information for hard-sphere
molecules.

Figure 9 shows the profiles of the Sonine-polynomial-
coefficient ratios for Maxwell molecules at the same condi-
tions as in Fig. 5 except that the temperature difference AT is
increased from 70 to 200 K. Under these conditions, the
heat-flux Knudsen number Kn, is correspondingly increased
from approximately 0.006 to approximately 0.017. The ap-
proximate nature of the preceding statement reflects the fact
that the heat-flux Knudsen number is not constant throughout
the domain but increases from hot to cold at constant pres-
sure (i.e., from right to left in the simulations). This is be-
cause the heat-flux Knudsen number can be expressed as
Kn,=|q,|/(2pc,,), the heat flux is uniform in the domain, the
pressure is approximately uniform in the domain (exactly so
for the Maxwell-molecule normal solution”), and the tem-
perature and the most probable molecular speed increase
from left to right. This variation with position is quite small
for the previous simulation with AT=70 K: c,, and Kn, lie
within 7% of their average values everywhere in the domain,
which is the reason for ignoring the spatial variation of Kn,
when determining averages in the previous section. As in
Fig. 5, the solid curves are the DSMC results, and the dashed
lines are the CE results. At these finite values of the heat-flux
Knudsen number, the Knudsen layers and the central region
are still evident although the central region is shifted left-
ward to account for the temperature dependence of the mean
free path at constant pressure. However, the DSMC results
differ significantly from the CE results in the central region
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FIG. 9. Maxwell Sonine-polynomial-coefficient profiles at finite Kn,.

of the domain. More specifically, the Sonine-polynomial-
coefficient ratios differ increasingly from the corresponding
CE values from right to left just as the heat-flux Knudsen
number increases from right to left. Within the central re-
gion, the variation of the a;/a; and the b,/b; with Kn, rep-
resents the normal solution. Thus, a single DSMC simulation
provides the normal solution for the Kn, values in the central
region. The same approach is used subsequently to determine
the variation of the normalized effective thermal conductiv-
ity and viscosity with the heat-flux Knudsen number. How-
ever, as shown below, these quantities remain so close to
unity that their values, along with the heat-flux Knudsen
number, are averaged over the central region to reduce sto-
chastic errors.

Figure 10 shows the Sonine-polynomial-coefficient ra-
tios for Maxwell molecules as functions of the heat-flux
Knudsen number as determined in the manner described pre-
viously. The symbols indicate the values determined from
DSMC simulations. Each cluster of points along a curve cor-
responds to values obtained from the central region of a
single DSMC simulation as discussed previously. More spe-
cifically, the four clusters correspond to four DSMC simula-
tions with temperature differences of A7=70, 200, 300, and
400 K and a velocity difference of AV=100 m/s. In all
cases, the shear-stress Knudsen number is below 0.005,
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which is small. The solid and long-dashed curves are the
corresponding MH results for VSS-Maxwell and IPL-
Maxwell interactions, respectively, in the zero-shear-stress
limit (Kn,—0), as given by Egs. (33) and (34) with the
parameter values in Table II, and the dashed lines indicate
the CE values of 0. The DSMC values are seen to agree
closely with the MH VSS-Maxwell values except for as/a
and as/a; at AT=400 K (the largest temperature difference),
whereas the DSMC VSS-Maxwell values differ increasingly
from the MH IPL-Maxwell values as k increases. The former
slight difference between the DSMC and VSS-Maxwell val-
ues appears to have two causes. First, discretization errors
appear to account for approximately half of this difference
based on additional DSMC simulations in which Ax and At
are halved while N, is doubled (the stochastic errors increase
substantially, so a more detailed quantification is not pos-
sible). Second, the finite shear-stress Knudsen number in the
DSMC simulations also accounts for approximately half of
this difference based on additional simulations at a shear-
stress Knudsen number that is approximately twice as large
(i.e., a velocity difference of AV=200 m/s).

Figure 11 shows the Sonine-polynomial-coefficient ra-
tios for hard-sphere molecules as functions of the heat-flux
Knudsen number at the same conditions as in the previous
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FIG. 10. Dependence of Maxwell Sonine-polynomial coefficients on Kn,,.
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figure. The long-dashed curves are low-order polynomial fits
to the DSMC values (there are no theoretical results avail-
able for comparison), and the dashed lines are the CE values.
The dependence on the heat-flux Knudsen number is similar
for hard-sphere and Maxwell molecules. More specifically,
coefficient ratios with even values of k decrease with increas-
ing Kn,, whereas coefficient ratios with odd values of k in-
crease with increasing Kn,. However, the rate of change is
more gradual for hard-sphere molecules than it is for Max-
well molecules. Unlike the DSMC results for VSS-Maxwell
molecules, the DSMC results for hard-sphere molecules are
almost independent of the discretization parameters Ax, At,
and N, and of the shear-stress Knudsen number Kn_. It is
conjectured that this difference may be related to the fact that
the molecular collision rate is an increasing function of the
relative molecular speed for hard-sphere molecules but is
independent of the relative molecular speed for Maxwell
molecules, which allows high-speed Maxwell molecules to
travel farther than their hard-sphere counterparts before col-
liding.

Figure 12 shows the normalized effective thermal con-
ductivity and viscosity for Maxwell molecules as functions
of the heat-flux Knudsen number for several values of the
shear-stress Knudsen number. The four solid symbols along
each of the three curves (drawn to guide the eye) in the
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thermal-conductivity plot are values from four DSMC simu-
lations identical to those presented in Fig. 10 except with
velocity differences of AV=0, 100, and 200 m/s. Since the
shear stress must be nonzero in order to determine the effec-
tive viscosity, only values from the latter two sets of simula-
tions are present in the viscosity plot. In distinction to Fig.
10, the DSMC values in Fig. 12 are averaged over the central
region of the domain, with error bars corresponding to the
95% confidence intervals. Averaging of these ratios is ac-
ceptable because their spatial variation in the central region
of the domain is quite small (the profiles of these quantities
are similar to those in Fig. 4). The dashed lines indicate the
CE and MH results for Maxwell molecules. As the shear-
stress Knudsen number approaches zero, the DSMC values
increase upward toward the MH values. The DSMC values
exhibit a slight but consistent increase with increasing heat-
flux Knudsen number. However, the net increase over the
entire range of heat-flux Knudsen number is comparable to
the stochastic and discretization errors for these simulations,
which are each approximately +0.002. Thus, to within nu-
merical uncertainty, the Maxwell-molecule transport coeffi-
cients are independent of heat flux, in agreement with
theory.3_7

Figure 13 shows the normalized effective thermal con-
ductivity and viscosity for hard-sphere molecules as func-
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FIG. 12. Dependence of Maxwell thermal conductivity and viscosity on Kn,.
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tions of the heat-flux Knudsen number at the same conditions
as in the Fig. 12. In Fig. 13, the dashed lines represent the
CE values, which are relevant only in the limit of zero heat-
flux Knudsen number. No theoretical results for finite heat-
flux Knudsen number are available for comparison. As ob-
served for Maxwell molecules, the hard-sphere values
increase upward as the shear-stress Knudsen number is de-
creased, and this variation is nearly linear. However, the CE
values are not obtained except for small values of the heat-
flux Knudsen number. Instead, the normalized effective ther-
mal conductivity and viscosity decrease approximately qua-
dratically with increasing heat-flux Knudsen number. The
differences observed at the largest heat-flux Knudsen number
are slightly larger than the combined effect of discretization
and stochastic errors (approximately +0.002 each) and thus
appear to be real. As noted previously, the DSMC results for
hard-sphere molecules are almost independent of the dis-
cretization parameters Ax, Az, and N,, which provides further
evidence supporting this assertion.

Figure 14 shows the normalized effective thermal con-
ductivity and viscosity for Maxwell molecules as functions
of the shear-stress Knudsen number. The symbols represent
values from DSMC simulations with tangential velocity dif-
ferences of AV=0-800 m/s in increments of 100 m/s and a
temperature difference of AT=0 K. Even though the walls
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are at the same temperature, the effective thermal conductiv-
ity can be determined because viscous dissipation produces
spatially nonuniform temperature and heat-flux profiles. (A
small region centered around the midpoint of the domain is
excluded because the temperature gradient and the heat flux
are too small to determine the effective thermal conductivity
with acceptable stochastic uncertainty.) As in Fig. 13, the
error bars represent the 95% confidence intervals. In the
thermal-conductivity plot, the error bars are seen to increase
as the shear-stress Knudsen number is decreased. This phe-
nomenon results from the fact that the temperature gradients
and the heat flux produced by viscous heating are approxi-
mately proportional to the square of the shear-stress Knudsen
number, whereas the stochastic noise does not depend
strongly on the shear-stress Knudsen number. In the viscosity
plot, the error bars do not depend strongly on the shear-stress
Knudsen number because the shear stress is essentially pro-
portional to the velocity gradient and the ratio of the shear
stress to the velocity gradient determines the effective vis-
cosity. Also shown in this figure are three theoretical curves.
The dashed lines are the CE results, which are appropriate
only for vanishing shear-stress and heat-flux Knudsen num-
bers, the solid curves are the MH results for Maxwell mol-
ecules [Egs. (35) and (36)], and the long-dashed curves are
the MH results offset by a small arbitrary amount. The offset
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MH results are in excellent agreement with the DSMC re-
sults. The small negative offsets (—0.002 for both transport
coefficients) are comparable to and presumably represent the
discretization errors discussed previously (+0.002). Through-
out the entire domain in all of these DSMC simulations, the
heat-flux Knudsen number is below 0.017; in fact, it is well
below this value for all but the largest velocity differences.
Based on Fig. 12, the heat-flux Knudsen number does not
affect the normalized effective thermal conductivity and vis-
cosity significantly in these simulations.

Figure 15 shows the normalized effective thermal con-
ductivity and viscosity for hard-sphere molecules as func-
tions of the shear-stress Knudsen number at the same condi-
tions as in the previous figure. The symbols represent the
DSMC values, the dashed lines represent the CE values,
which are appropriate only for vanishing shear stress, and
the long-dashed curves represent curve fits of the form
c0+c2Kn3 through the DSMC values. There are no exact
theoretical results available for comparison. The curve fits
are seen to represent all of the DSMC values accurately. The
intercepts of these curves are positive and lie between 0.001
and 0.002. These values are comparable to and presumably
represent the discretization errors (£0.002). The rightward
extrapolations of these curves are shown simply to guide the
eye and should be quantitatively assessed prior to use in
another context. When compared to Maxwell molecules (see
Fig. 14), hard-sphere molecules exhibit a weaker dependence
of the normalized effective thermal conductivity and viscos-
ity on the shear-stress Knudsen number than Maxwell mol-
ecules do. Nevertheless, the departures of these quantities
from unity at large shear-stress Knudsen numbers are signifi-
cantly larger than the discretization error, the stochastic error,
and their combined effect. Coincidentally, these departures
are similar to the differences between the infinite-
approximation and first-approximation hard-sphere CE val-
ues for the thermal conductivity and the viscosity, namely
0.025 and 0.016 as in Table 1.

To summarize, DSMC simulations are presented to de-
termine the behavior of the normal solution when either the
heat-flux Knudsen number or the shear-stress Knudsen num-
ber is finite. The DSMC and MH results for the VSS-
Maxwell interaction are in very good agreement (and are

clearly different from the MH IPL-Maxwell results), which
provides strong evidence that DSMC produces the correct
velocity distribution. Although not shown, the DSMC and
MH VHS-Maxwell results are nearly identical to the corre-
sponding VSS-Maxwell results, as expected in situations
where the effect of molecular diffusion is not significant. No
exact theoretical hard-sphere results are available, but the
DSMC hard-sphere and Maxwell results exhibit similar be-
havior except in one particular. Although the normalized
effective thermal conductivity and viscosity are decreasing
functions of the shear-stress Knudsen number for both
Maxwell and hard-sphere molecules, these quantities are es-
sentially independent of the heat-flux Knudsen number for
Maxwell molecules whereas they are both decreasing func-
tions of the heat-flux Knudsen number for hard-sphere mol-
ecules. It is noted that the decreases in these quantities ob-
served in the DSMC simulations presented previously are
always less than 3%. Thus, even under highly nonequilib-
rium conditions, the CE values for these quantities are prob-
ably accurate enough for many engineering calculations.
These results are in accord with those of Santos and co-
workers, who report similar agreement between DSMC
simulations and theoretical results for BGK-like collision
terms for much larger heat-flux and shear-stress values.'>'*

VI. CONCLUSIONS

The state of a single-species monatomic gas experienc-
ing a large heat flux or a large shear stress is investigated
using the moment-hierarchy (MH) method for the Maxwell
molecular interaction and using the direct simulation Monte
Carlo (DSMC) method of Bird'' for Maxwell, hard-sphere,
and intermediate molecular interactions. Normal solutions of
the Boltzmann equation are found for Fourier flow (uniform
heat flux) and Couette flow (uniform shear stress) for finite
heat-flux and shear-stress Knudsen numbers. The thermal
conductivity, the viscosity, and the Sonine-polynomial coef-
ficients from the MH and DSMC methods agree with
Chapman-Enskog (CE) theory at small Knudsen numbers.
Additionally, these quantities are in agreement at finite
Knudsen numbers for VSS-Maxwell and VHS-Maxwell mol-
ecules, which yield nearly identical results when molecular
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diffusion is not significant. The MH and DSMC methods
both indicate that the effective thermal conductivity and the
effective viscosity for Maxwell molecules are almost inde-
pendent of the heat-flux Knudsen number but decrease
slightly as the shear-stress Knudsen number is increased. Ad-
ditional DSMC simulations indicate that these transport
properties for hard-sphere molecules decrease slightly as the
shear-stress Knudsen number or the heat-flux Knudsen num-
ber is increased. In all cases examined, these decreases are
less than 3%, which indicates that the CE values for the
thermal conductivity and the viscosity can be used under
highly nonequilibrium conditions with small errors so long
as the system Knudsen number is small (the hydrodynamic
limit). These results provide strong evidence that the DSMC
method can be used to determine the state of a gas under
highly nonequilibrium conditions. Future work will involve
using DSMC to investigate the behavior of multispecies
gases for situations in which molecular diffusion is important
(e.g., thermal diffusion).
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