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We consider a dilute granular gas of hard spheres colliding inelastically with coefficients of normal
and tangential restitution � and �, respectively. The basic quantities characterizing the distribution
function f�v ,�� of linear �v� and angular ��� velocities are the second-degree moments defining the
translational �Ttr� and rotational �Trot� temperatures. The deviation of f from the Maxwellian
distribution parameterized by Ttr and Trot can be measured by the cumulants associated with the
fourth-degree velocity moments. The main objective of this paper is the evaluation of the collisional
rates of change of these second- and fourth-degree moments by means of a Sonine approximation.
The results are subsequently applied to the computation of the temperature ratio Trot /Ttr and the
cumulants of two paradigmatic states: the homogeneous cooling state and the homogeneous steady
state driven by a white-noise stochastic thermostat. It is found in both cases that the Maxwellian
approximation for the temperature ratio does not deviate much from the Sonine prediction. On the
other hand, non-Maxwellian properties measured by the cumulants cannot be ignored, especially in
the homogeneous cooling state for medium and small roughness. In that state, moreover, the
cumulant directly related to the translational velocity differs in the quasi-smooth limit �→−1 from
that of pure smooth spheres ��=−1�. This singular behavior is directly related to the unsteady
character of the homogeneous cooling state and thus it is absent in the stochastic thermostat case.
© 2011 American Institute of Physics. �doi:10.1063/1.3558876�

I. INTRODUCTION

Among the many topics in the kinetic theory of gases
uncovered by Carlo Cercignani during his long and fruitful
scientific career it is mandatory to mention the kinetic theory
of inelastic particles, a field he substantially contributed to
during the last decade of his life.1–9 With this paper we wish
to pay a modest tribute to Carlo Cercignani’s accomplish-
ments in this field.

The most frequently used physical model of a granular
fluid consists of a system of many inelastic and smooth hard
spheres with a constant coefficient of normal restitution �.10

On the other hand, the macroscopic nature of the grains
makes the influence of friction when two particles collide
practically unavoidable.11–36 From a more fundamental point
of view, the existence of collisional friction is important to
unveil the inherent breakdown of energy equipartition in
granular fluids, even in homogeneous and isotropic states.

The simplest model accounting for friction during colli-
sions assumes, apart from a constant coefficient of normal
restitution �, a constant coefficient of tangential restitution
�.12,13 While � is a positive quantity smaller than or equal to
1 �the value �=1 corresponding to elastic spheres�, the pa-
rameter � lies in the range between �1 �perfectly smooth
spheres� to 1 �perfectly rough spheres�. The total kinetic
energy is not conserved in a collision, unless �=1 and

�= �1. As a consequence, many of the papers in the litera-
ture assume that the spheres are nearly smooth and nearly
elastic.14–21

The theoretical study of a granular gas is usually under-
taken by employing tools already developed in nonequilib-
rium statistical mechanics and kinetic theory of normal
gases. In particular, one can introduce the one-body distribu-
tion function f�r ,v ,� ; t�, where v and � are the velocity of
the center of mass and the angular velocity, respectively, of a
particle. From the second-degree velocity moments of the
distribution function it is straightforward to define �granular�
translational and rotational temperatures, Ttr and Trot �see
Sec. II�. The rates of change of these two quantities produced
by collisions define the energy production rates �tr and �rot as

�tr = −
1

Ttr� �Ttr

�t
�

coll
, �rot = −

1

Trot� �Trot

�t
�

coll
. �1.1�

The collisional energy production rates �tr and �rot do not
have a definite sign. They can be decomposed into two
classes of terms:35 equipartition rates and cooling rates �see
Fig. 1�. The equipartition terms, which exist even when en-
ergy is conserved by collisions ��=1 and �= �1�, tend to
make temperatures equal.35,37 Therefore, they can be positive
or negative depending essentially on the sign of the tempera-
ture difference Ttr−Trot. On the other hand, the genuine cool-
ing terms reflect the collisional energy dissipation and thus
they are positive if ��1 and/or ����1, vanishing otherwise.
Only the cooling terms in �tr and �rot contribute to the net
cooling rate �= ��trTtr+�rotTrot� / �Ttr+Trot�. Both �tr and �rot
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are functionals of f and therefore they formally depend on all
the moments of f , not just on Ttr and Trot.

In an extensive paper,22 Goldshtein and Shapiro under-
took the task of evaluating the collisional energy production
rates �tr and �rot by using a two-temperature Maxwellian ap-
proximation for the distribution function, namely

f�v,�� → fM�v,��

= n� mI

4	2TtrTrot�3/2

 exp	−

m�v − u�2

2Ttr −
I�2

2Trot
 .

�1.2�

Here, n and u are the number density and the flow velocity,
respectively, of the gas and m and I are the mass and the
moment of inertia, respectively, of a particle. The mean an-
gular velocity has been assumed to vanish.22 The final results
for the energy production rates in the Maxwellian approxi-
mation are29,34

�tr =
5

12
	1 − �2 +

�

1 + �
�1 − �2�

+
�

�1 + ��2 �1 + ��2�1 − 
�
� , �1.3�

�rot =
5

12

1 + �

1 + �
	1 − � −

�

1 + �
�1 + ��

1 − 





� , �1.4�

where


 �
Trot

Ttr �1.5�

is the rotational/translational temperature ratio,

� �
4I

m�2 �1.6�

is the dimensionless moment of inertia �� being the diameter
of a particle�, and

� � 16
5 �2n�	Ttr/m �1.7�

is an effective collision frequency. The expressions within
the Maxwellian approximation but with a nonzero mean an-
gular velocity can be found in Ref. 36. Furthermore,
the more general expressions for mixtures were derived in
Ref. 34.

Equations �1.3� and �1.4� have been applied to the so-
called homogeneous cooling state �HCS�.22,26 From the con-

dition limt→� 
�t�=const one gets �tr=�rot, yielding a qua-
dratic equation for the asymptotic temperature ratio 
 whose
physical solution is


 = �1 + C2 + C �1.8�

with

C �
1 + �

2��1 + ��	�1 + ��
1 − �2

1 + �
− �1 − ���1 − ��
 . �1.9�

The time evolution of the ratio Trot /Ttr toward the HCS
asymptotic value Eq. �1.8� has been widely analyzed,
both theoretically and by means of molecular dynamics, by
Luding, Zippelius, and coworkers.23–29

An even simpler application of Eqs. �1.3� and �1.4� cor-
responds to the case of a homogeneous and isotropic granu-
lar gas kept in a nonequilibrium steady state by a white-noise
thermostat.38–42 We will refer to this situation as the white-
noise state �WNS�. The steady-state condition �rot=0 simply
yields


 = �
1 + �

1 − � + 2�
. �1.10�

Despite the crudeness of the Maxwellian approximation
given by Eq. �1.2�, Eq. �1.9� does a very good job when
compared with computer simulations for the HCS.25,29 The
same is expected to hold for Eq. �1.10� in the WNS case. On
the other hand, the production rates �tr and �rot, being non-
linear functionals of f , can be expected to be influenced by
non-Maxwellian features of f , thus deviating �even if only
slightly� from Eqs. �1.3� and �1.4�. The basic non-
Maxwellian features of a velocity distribution function
f�v ,�� are the existence of nonzero cumulants. The most
physically interesting cumulants are a20, a11, and a02, defined
as


�v − u�4� =
15

4
�2Ttr

m
�2

�1 + a20� , �1.11�


�v − u�2�2� =
9

4
�2Ttr

m
��2Trot

I
��1 + a11� , �1.12�


�4� =
15

4
�2Trot

I
�2

�1 + a02� . �1.13�

Here the angular brackets denote average values defined as


��v,��� �
1

n
� dv� d���v,��f�v,�� . �1.14�

The objectives of this paper are: �a� to evaluate the
second-degree collisional moments �tr and �rot in a Sonine
approximation that includes the cumulants a20, a11, and a02;
�b� to evaluate the three fourth-degree collisional moments
related to the moments defined by Eqs. �1.11�–�1.13� in the
same Sonine approximation; and �c� to apply the results to
both the HCS and the WNS in order to “refine” Eqs. �1.8�
and �1.10�, and estimate a20, a11, and a02 in those states. The
method will be similar to that already worked out in the case
of smooth spheres.41–43

FIG. 1. �Color� Scheme on the two classes of contributions �equipartition
rates and cooling rates� to the energy production rates �tr and �rot character-
izing the effect of collisions on Ttr and Trot, respectively. The terms repre-
sented by dotted arrows are absent in the case of perfectly smooth spheres
��=−1�.
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This paper is organized as follows. The collision rules
and the Boltzmann equation for a gas of inelastic and rough
hard spheres are presented in Sec. II. The Sonine approxima-
tion is constructed in Sec. III, where the derived expressions
for the collisional moments are written down. Sections IV
and V deal with the application of the results to the HCS and
the WNS, respectively. The paper ends with a brief discus-
sion in Sec. VI.

II. COLLISION RULES AND BOLTZMANN EQUATION

A. Collision rules

Let us consider a granular gas made of inelastic rough
hard spheres of mass m, diameter �, and moment of inertia I.
In this section we first derive the rules for a binary collision
between two spheres with precollisional center of mass ve-
locities �v1 ,v2� and angular velocities ��1 ,�2�.

Let us denote by v12=v1−v2 the precollisional relative
velocity of the center of mass of both spheres and by
�̂��r2−r1� / �r2−r1� the unit vector pointing from the center
of sphere 1 to the center of sphere 2. The precollisional ve-
locities of the points of the spheres which are in contact
during the collision are

V1 = v1 −
�

2
�̂ 
 �1, V2 = v2 +

�

2
�̂ 
 �2, �2.1�

the corresponding relative velocity being

V12 = v12 − �̂ 
 S12, S12 �
�

2
��1 + �2� . �2.2�

Conservation of linear and angular momenta yields29

v1� + v2� = v1 + v2, �2.3�

I�1� − m
�

2
�̂ 
 v1� = I�1 − m

�

2
�̂ 
 v1, �2.4a�

I�2� + m
�

2
�̂ 
 v2� = I�2 + m

�

2
�̂ 
 v2, �2.4b�

where the primes denote postcollisional values. Equations
�2.3� and �2.4� imply that

v1� = v1 − �12, v2� = v2 + �12, �2.5�

�1� = �1 −
m�

2I
�̂ 
 �12, �2� = �2 −

m�

2I
�̂ 
 �12, �2.6�

where m�12 is the impulse exerted by particle 1 on particle
2. Therefore,

v12� = v12 − 2�12,

�2.7�

V12� = V12 − 2�12 +
2

�
�̂ 
 ��̂ 
 �12� ,

where the dimensionless moment of inertia � is defined by
Eq. �1.6�. It varies from zero to a maximum value of 2/3, the
former corresponding to a concentration of the mass at the
center of the sphere, while the latter value corresponds to a

concentration of the mass on the surface of the sphere. The
value �=2 /5 refers to a uniform mass distribution.

To close the collision rules, we need to express �12 in
terms of the precollisional velocities and the unit vector �̂.
To that end, let us relate the normal �i.e., parallel to �̂� and
tangential �i.e., orthogonal to �̂� components of the relative
velocities V12 and V12� by

�̂ · V12� = − ��̂ · V12, �̂ 
 V12� = − ��̂ 
 V12. �2.8�

Here, as said in Sec. I, � and � are the coefficients of normal
and tangential restitution, respectively. The former coeffi-
cient ranges from �=0 �perfectly inelastic particles� to
�=1 �perfectly elastic particles�, while the latter runs from
�=−1 �perfectly smooth particles� to �=1 �perfectly rough
particles�. A more realistic model consists of assuming that �
is a function of the angle between V12 and �̂,26 thus account-
ing for Coulomb friction. In this paper, however, we will
assume a constant �.

Inserting the second equality of Eq. �2.7� into Eq. �2.8�
one gets

�̂ · �12 = �̃�̂ · V12, �̂ 
 �12 = �̃�̂ 
 V12, �2.9�

where the following abbreviations were introduced:

�̃ �
1 + �

2
, �̃ �

�

1 + �

1 + �

2
. �2.10�

Therefore,

�12 = �̃�v12 · �̂��̂ + �̃�v12 − �v12 · �̂��̂ − �̂ 
 S12� .

�2.11�

Equations �2.5�, �2.6�, and �2.11� express the postcolli-
sional velocities �v1� ,�1� ,v2� ,�2�� in terms of the pre-
collisional velocities �v1 ,�1 ,v2 ,�2� and the unit vector �̂.
In the special case of perfectly smooth spheres ��=−1 or,

equivalently, �̃=0� one has �̂
�12=0, so that �1�=�1 and
�2�=�2.

The collisional change of the total �translational plus ro-
tational� kinetic energy is

E12� − E12 = −
m

4
�1 − �2���̂ · v12�2 −

m

4

�

1 + �
�1 − �2�


�v12 − �̂ 
 S12 − �v12 · �̂��̂�2, �2.12�

where

E12 �
m

2
v1

2 +
m

2
v2

2 +
I

2
�1

2 +
I

2
�2

2. �2.13�

The right-hand side of Eq. �2.12� is a negative definite quan-
tity. Thus, energy is conserved only if the particles are elastic
��=1� and either perfectly smooth ��=−1� or perfectly
rough ��=1�. Otherwise, E12� �E12 and kinetic energy is dis-
sipated upon collisions.

Equations �2.5�, �2.6�, and �2.11� give the direct colli-
sional rules. For a restituting encounter the pre- and
postcollisional velocities are denoted by �v1� ,�1� ,v2� ,�2��
and �v1 ,�1 ,v2 ,�2�, respectively, and the collision
vector by �̂�=−�̂. It is easy to verify that the relation-
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ship v12· �̂�=−�v12� · �̂�=−v12· �̂ holds. Analogously,
�̂�
V12=−��̂�
V12� =−�̂
V12. As a consequence, the
restituting collision rules are

v1� = v1 − �̄12, v2� = v2 + �̄12, �2.14�

�1� = �1 −
m�

2I
�̂ 
 �̄12, �2� = �2 −

m�

2I
�̂ 
 �̄12,

�2.15�

where

�̄12 =
�̃

�
�v12 · �̂��̂ +

�̃

�
�v12 − �v12 · �̂��̂ − �̂ 
 S12� .

�2.16�

The modulus of the Jacobian of the transformation be-
tween pre- and postcollisional velocities is

� ��v1�,�1�,v2�,�2��
��v1,�1,v2,�2�

� = � ��v1,�1,v2,�2�
��v1�,�1�,v2�,�2��

� = ��2. �2.17�

Furthermore, the relationship between volume elements in
velocity space reads

�v12� · �̂��dv1�d�1�dv2�d�2� =
�v12 · �̂�

�2�2 dv1d�1dv2d�2.

�2.18�

B. Boltzmann equation

If the granular gas is dilute enough the velocity distribu-
tion function f�r ,v ,� ; t� obeys the Boltzmann equation22,44

�t f + v · �f = J�v,��f� , �2.19�

where the collision operator is

J�v1,�1�f� = �2� dv2� d�2�
+

d�̂�v12 · �̂�


 � 1

�2�2 f1�f2� − f1f2� . �2.20�

Here the subscript + in the integral over �̂ means the con-
straint v12 · �̂�0 and we have employed the short-hand no-
tation f1�� f�v1� ,�1�� and so on.

Given an arbitrary function ��v ,��, its average value is
defined by Eq. �1.14�. The associated collisional rate of
change is 
��−1J�� � f�, where the collisional quantity
J���v ,�� � f� is defined by

J���f� � � dv1� d�1��v1,�1�J�v1,�1�f�

=
�2

2
� dv1� d�1� dv2� d�2�

+
d�̂


 �v12 · �̂�f1f2��1� + �2� − �1 − �2� , �2.21�

where in the last step we have carried out a standard change
of variables.

Here we are especially concerned with the partial tem-

peratures associated with the translational and rotational de-
grees of freedom:

Ttr =
m

3

�v − u�2�, Trot =

I

3

�2� , �2.22�

where u�
v� is the flow velocity. The corresponding energy
production rates are defined as

�tr � −
m

3nTtrJ��v − u�2�f�, �rot � −
I

3nTrotJ��2�f� .

�2.23�

The total temperature and its corresponding cooling rate are

T =
Ttr + Trot

2
, �2.24�

� �
�trTtr + �rotTrot

Ttr + Trot . �2.25�

It is worthwhile remarking that, instead of Trot, we

could have alternatively adopted T̄rot= �I /3�
��− 
���2�
=Trot�1−X�, with X��m�2
��2 /12Trot, as the definition of
the rotational temperature. However, a disadvantage of this
alternative choice is that, in contrast to the cooling rate �

defined by Eq. �2.25�, the alternative cooling rate �̄
associated with the alternative total temperature

T̄= �Ttr+ T̄rot� /2=T− T̄rotX /2 is not positive definite and in
fact becomes negative in the perfectly elastic and rough case
��=1, �=1�.36

Making use of the collision rules given by Eqs. �2.5�,
�2.6�, and �2.11�, and after performing the integration over �̂,
one gets34

�tr =
5�	�

96�Ttr/m�3/2	��̃�1 − �̃� + �̃�1 − �̃��

v12
3 ��

−
�̃2

2


3v12S12

2 − v12
−1�v12 · S12�2��
 , �2.26�

�rot =
5�	�

96�Ttr/m�3/2
�̃



	1

2
�1 −

�̃

�
�




3v12S12
2 − v12

−1�v12 · S12�2�� −
�̃

�


v12

3 ��
 , �2.27�

� =
5�	�

384�Ttr/m�3/2
1

1 + 

	�1 − �2�

v12

3 ��

+
�

1 + �

1 − �2

2
�2

v12

3 ��

+ 

3v12S12
2 − v12

−1�v12 · S12�2���
 . �2.28�

In these equations, 
 is the temperature ratio defined by Eq.
�1.5�, � is the collision frequency defined by Eq. �1.7�, and
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��v12,S12��� �
1

n2� dv1� d�1� dv2� d�2


 ��v12,S12�f�v1,�1�f�v2,�2� �2.29�

are two-body averages. Use has been made of Eq. �2.10�
upon obtaining Eq. �2.28� from Eqs. �2.26� and �2.27�. It is
worthwhile emphasizing that Eqs. �2.26�–�2.28� are exact in
the framework of the Boltzmann equation.

III. SONINE APPROXIMATION FOR SECOND-
AND FOURTH-DEGREE COLLISIONAL MOMENTS

Equations �2.26� and �2.27� express the translational and
rotational energy production rates as functionals of f through
two independent two-body averages of the form Eq. �2.29�.
If f is replaced by the Maxwellian approximation given by
Eq. �1.2� one gets Eqs. �1.3� and �1.4�. As said in Sec. I we
want to go beyond such a Maxwellian approximation.

To proceed, it is convenient to introduce the dimension-
less velocities

c �
v − u

�2Ttr/m
, w �

�

�2Trot/I
, �3.1�

and the dimensionless distribution function

��c,w� �
1

n
�4TtrTrot

mI
�3/2

f�v,�� . �3.2�

In terms of the reduced translational and rotational velocities,
the collision rules given by Eqs. �2.5�, �2.6�, and �2.11� be-
come

c1� = c1 − �12
� , c2� = c2 + �12

� , �3.3�

w1� = w1 −
1

��

�̂ 
 �12

� , w2� = w2 −
1

��

�̂ 
 �12

� ,

�3.4�

�12
� = �̃�c12 · �̂��̂ + �̃


	c12 − �c12 · �̂��̂ −�


�
�̂ 
 �w1 + w2�
 . �3.5�

Let us now specialize to isotropic states. The latter con-
dition implies that the scalar function ��c ,w� is invariant
under orthogonal transformations, including those with de-
terminant equal to +1 �rotations� or �1 �reflections�. This
means that ��c ,w� is actually a function of the three scalar
quantities c2=c ·c, w2=w ·w, and �c ·w�2. We do not need to
assume that the state is either homogeneous or stationary.
Here we focus on the following second- and fourth-degree
moments: 
c2�, 
w2�, 
c4�, 
c2w2�, and 
w4�. By construction,


c2� = 
w2� = 3
2 . �3.6�

In the Maxwellian approximation Eq. �1.2�, i.e.,

��c,w� → �M�c,w� = 	−3e−c2−w2
, �3.7�

one has


c4� → 15
4 , 
c2w2� → 9

4 , 
w4� → 15
4 . �3.8�

In general, however, ���M and the above equalities are not
verified. This can be characterized by the cumulants

a20 = 4
15
c4� − 1, �3.9�

a11 = 4
9 
c2w2� − 1, �3.10�

a02 = 4
15
w4� − 1. �3.11�

Note that Eqs. �3.9�–�3.11� are equivalent to Eqs.
�1.11�–�1.13�.

Let us define the collisional moments �pq �with
p ,q=even� as

�pq = −� dc� dwcpwqJ��c,w��� , �3.12�

where the dimensionless collision operator J� is defined simi-
larly to Eq. �2.20�, except that one must formally take �=1
and the collision rules are given by Eqs. �3.3�–�3.5�. The
energy production rates �tr and �rot are directly related to the
collisional moments �20 and �02 by

�tr =
5�

12�2	
�20, �rot =

5�

12�2	
�02. �3.13�

Analogously, the total cooling rate is

� =
5�

12�2	

�20 + �02

1 + 

. �3.14�

The primary objective in this section is to get estimates
of the second-degree collisional moments �20 and �02, and
of the fourth-degree collisional moments �40, �22, and �04 in
terms of the temperature ratio 
 and the cumulants a20, a11,
and a02. To that end, we first express the distribution function
� by the first few terms in its Sonine expansion,

��c,w� � �M�c,w��1 + a20S1/2
�2� �c2� + a02S1/2

�2� �w2�

+ a11S1/2
�1� �c2�S1/2

�1� �w2�� . �3.15�

The Sonine polynomials in Eq. �3.15� are

S1/2
�1� �x� = 3

2 − x, S1/2
�2� �x� = 1

8 �15 − 20x + 4x2� . �3.16�

In principle, apart from the moments 
c4�, 
c2w2�, and 
w4�,
the other independent fourth-degree moment 
�c ·w�2� should
be represented in the truncated expansion Eq. �3.15�. How-
ever, for simplicity, it is assumed here that


�c · w�2� = 1
3 
c2w2� = 3

4 �1 + a11� . �3.17�

This implies that the study of the orientational correlation
between c and w is not addressed in this paper. From that
point of view, our approach is complementary to that of Refs.
32 and 33, where it was assumed that a20=a11=a02=0 but

�c ·w�2� / 
c2w2�� 1

3 .
The second step consists of inserting the approximation

defined by Eq. �3.15� into Eq. �3.12�, and neglecting terms
nonlinear in a20, a11, and a02. After some algebra one gets the
following expressions for the second-degree collisional mo-
ments:
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�20 = 4�2		��̃�1 − �̃� + �̃�1 − �̃���1 +
3a20

16
�

− 

�̃2

�
�1 −

a20

16
+

a11

4
�
 , �3.18�

�02 = 4�2	
�̃

�
	�1 −

�̃

�
��1 −

a20

16
+

a11

4
�

−
�̃



�1 +

3a20

16
�
 . �3.19�

Thus, Eq. �3.14� gives

� =
5�

12�1 + 
�	�1 − �2 + �
1 − �2

1 + �
��1 +

3a20

16
�

+ 

1 − �2

1 + �
�1 −

a20

16
+

a11

4
�
 . �3.20�

Equations �3.18�–�3.20� can also be obtained from Eqs.
�2.26�–�2.28� by taking into account that



v12
3 �� �

16
�2	

�2Ttr

m
�3/2�1 +

3a20

16
� , �3.21�



3v12S12
2 − v12

−1�v12 · S12�2��

�
32


��2	
�2Ttr

m
�3/2�1 −

a20

16
+

a11

4
� �3.22�

in the Sonine approximation Eq. �3.15�. This explains why
the cumulant a02, being related to 
�4�, does not intervene in
Eqs. �3.18�–�3.20�.

Of course, Eqs. �3.18� and �3.19� reduce to Eqs. �1.3�
and �1.4�, respectively, by setting a20=a11=0. Moreover, Eq.
�3.18� is consistent with van Noije and Ernst’s derivation41

for the smooth case ��=−1�.
The evaluation of the fourth-degree collisional moments

�40, �22, and �04 is much more involved. After carefully
performing the calculations following several independent
routes to check the results, we have found

�40 = 16�2	��̃3�2 − �̃� + �̃3�2 − �̃� − �̃�̃�1 − �̃ − �̃ + �̃�̃� +
11

8
��̃ + �̃� −

19

8
��̃2 + �̃2�

− 	�̃�̃�23

15
− �̃ − �̃ + �̃�̃� −

269

120
��̃ + �̃� +

357

120
��̃2 + �̃2� − �̃3�2 − �̃� − �̃3�2 − �̃�
15a20

16
−

11�̃2


8�
�1 +

41a20

176
+

3a11

4
�

+
�̃2


�
��̃�1 − �̃� + 2�̃�1 − �̃���1 +

3a20

16
+

3a11

4
� −

�̃4
2

�2 �1 −
a20

16
+

a11

2
+

a02

2
�� , �3.23�

�22 = 3�2	�2	�̃�1 − �̃� + �̃�1 − �̃� −
4�̃�̃

3�
�1 − �̃��1 −

�̃

�
� −

8�̃2

3�
�3

4
− �̃ −

�̃

�
+ 2

�̃2

�
�



 �1 +
3a20

16
+

3a11

4
� +

7�̃

3�
�1 −

�̃

�
��1 +

29a20

112
� −

�̃2

2�

a20 −

8�̃2

3�

	9

8
− �̃�1 − �̃� − 2�̃�1 − �̃�
�1 +

15a20

16
� −

�̃2


3�


	5 − 8
�̃

�
�1 −

�̃

�
�
a02 − 8

�̃2


3�
	1 − 2

�̃

�
�1 −

�̃

�
�
�1 −

a20

16
+

a11

2
� + 	 �̃

�
�37

12
− 2�̃ −

7�̃

4�
� + �̃ + �̃ −

4�̃�̃

3�

a11� ,

�3.24�

�04 = 4�2	
�̃

�
��1 −

�̃

�
�	5 − 4

�̃

�
�1 −

�̃

�
�
�1 −

a20

16
� −

�̃



	5 − 8

�̃

�
�1 −

�̃

�
�
�1 +

3a20

16
+

3a11

4
� −

5

2
�1 −

4�̃

5�
�a11

−
4�̃3

�
2�1 +
15a20

16
� + �5 −

13

2

�̃

�
+ 4

�̃2

�2 − 2
�̃3

�3��a11 + a02�� . �3.25�

To the best of our knowledge, the collisional moments
�40, �22, and �04 have not been evaluated before, even in the
Maxwellian approximation �a20=a11=a02=0�. The only ex-
ception is van Noije and Ernst’s evaluation of �40 in the

smooth case,41 to which Eq. �3.23� reduces by setting
�=−1. As an additional simple consistency test, we get
�22= �3 /2��20 in the special case of smooth spheres
��=−1� with a11=0.
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Equations �3.18�, �3.19�, and �3.23�–�3.25� are the main
results of this paper. In the next two sections they are applied
to the HCS and the WNS.

IV. APPLICATION TO THE HCS

In the homogeneous free cooling state �HCS� the
Boltzmann Eq. �2.19� becomes

�t f�v,�;t� = J�v,��f� . �4.1�

As a consequence, the only mechanisms responsible for
changes in the partial and total temperatures are collisions.
More specifically,

�tT
tr = − �trTtr, �tT

rot = − �rotTrot, �4.2�

�tT = − �T . �4.3�

The evolution equation for the temperature ratio 
=Trot /Ttr is
�t
=−��rot−�tr�
.

Carrying out the change to dimensionless variables de-
fined by Eqs. �3.1� and �3.2�, Eq. �4.1� can be rewritten as

�s� +
�20

3

�

�c
· �c�� +

�02

3

�

�w
· �w�� = J��c,w��� , �4.4�

where �s��n�2�2Ttr /m�−1�t and use has been made of Eq.
�3.13�. Taking moments in Eq. �4.4� we get

− �s
cpwq� + 1
3 �p�20 + q�02�
cpwq� = �pq. �4.5�

After a certain transient period, it is expected that the
system reaches an asymptotic regime where all the time de-
pendence of f appears through one temperature �say Ttr� and
the temperature ratio 
 remains constant. This implies a
similarity solution of Eq. �4.1� of the form given by Eq. �3.2�
with �s�=0. Moreover, the condition �t
=0 implies �tr

=�rot=� or, equivalently,

�20 = �02. �4.6�

In the asymptotic regime, Eq. �4.5� yields

5�20 =
�40

1 + a20
, �4.7�

3

2
��20 + �02� =

�22

1 + a11
, �4.8�

5�02 =
�04

1 + a02
. �4.9�

The objective now is to estimate the temperature ratio 

and the cumulants a20, a11, and a02 in the HCS. To that end,
we insert the approximate expressions given by Eqs. �3.18�,
�3.19�, and �3.23�–�3.25� into Eqs. �4.6�–�4.9�, neglecting
again terms nonlinear in a20, a11, and a02. Note that, for
instance, Eq. �4.7� could also be written as 5�20�1+a20�
=�40.

41 However, the linearization process gives a result dif-
ferent from the one obtained from the form Eq. �4.7�, as
discussed in Ref. 43. We have chosen the route Eq. �4.7�
because it yields results more accurate for smooth spheres
than the other one.42,43

From the linearized versions of Eqs. �4.6�–�4.8� one can
obtain the three cumulants a20, a11, and a02 as nonlinear
functions of �, �, and 
. Insertion into Eq. �4.9� yields an
eighth-degree equation for 
, whose physical solution is cho-
sen as the one close to the solution Eq. �1.8� in the Maxwell-
ian approximation. The final expressions are too cumber-
some to be explicitly reproduced here but they are easy to
deal with the help of a computer algebra system.

To illustrate the dependence of 
, a20, a11, and a02 on
both � and �, we plot those quantities as functions of � for
three representative values of the coefficient of tangential
restitution: �=−0.9 �small roughness�, �=0 �medium rough-
ness�, and �=0.9 �large roughness�. In all the cases the den-
sity of the spheres has been assumed to be uniform, so that
�=2 /5. The results are displayed in Figs. 2 and 3. In Fig. 2
we observe that the Maxwellian approximation �cf. Eq. �1.8��
does an excellent job in estimating the temperature ratio
Trot /Ttr, as confirmed by simulations.25,29 This is especially
true for both small ��=−0.9� and large ��=0.9� roughness.
While the Maxwellian approximation overestimates the tem-
perature ratio Trot /Ttr for �=−0.9 and �=0, it slightly under-
estimates this ratio for �=0.9. It is interesting to note that,
for nearly smooth spheres ��=−0.9�, Trot /Ttr abruptly
changes from small values for nearly elastic spheres
���0.97� to very large values for inelastic spheres

FIG. 2. �Color� Plot of the HCS temperature ratio Trot /Ttr vs the coefficient
of normal restitution � for �=−0.9 �top panel�, �=0 �middle panel�, and
�=0.9 �bottom panel�. The inset in the top panel is a blow-up of the region
0.95���1. The dashed and solid lines are the Maxwellian and Sonine
approximations, respectively.
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���0.95�. This effect becomes more and more dramatic as
one approaches the smooth-sphere limit ��→−1�.34

As for the cumulants, Fig. 3 shows some interesting fea-
tures. In general, for large roughness ��=0.9� the magni-
tudes of the three cumulants are relatively small, meaning
that the velocity distribution function is not far from a
Maxwellian. This agrees with the almost indistinguishability
between the Maxwellian and Sonine approximations ob-
served in the bottom panel of Fig. 2. For medium roughness
��=0� and large inelasticity ���0.9�, however, the cumu-
lants reach relatively important values, especially in the case
of a11. This trend is continued as roughness decreases
��=−0.9�, except in the case of a02. The latter quantity takes
a high maximum value at ��0.95. This value is even higher
than 1, thus invalidating �at a quantitative level� the linear-
ization method followed to estimate it. In any case, we ex-
pect that the Sonine method employed in this paper captures
the main qualitative behavior of the cumulants for �=−0.9
and ��0.95. The peculiar change in the behavior of the
cumulants when going from inelastic to nearly elastic
spheres for small roughness ��=−0.9� is correlated with the
one observed in the case of the temperature ratio.

The smooth-sphere limit �→−1 �or, equivalently,

�̃→0� deserves a separate treatment. According to Eq. �1.8�,
one can expect in that limit34 the asymptotic behaviors


 ���1��̃−2, � � 1,

�2�̃ , � = 1,
� �4.10�

with �1= �̃�1− �̃� and �2=1 / �1−�� in the Maxwellian ap-
proximation. Let us assume that ��1. Thus, inserting


=�1��̃−2 into Eqs. �3.18�, �3.19�, and �3.23�–�3.25�, and

taking the limit �̃→0, one gets

�20 = 4�2		�̃�1 − �̃��1 +
3a20

16
� − �1�1 −

a20

16
+

a11

4
�
 ,

�4.11�

�02 = 4�2	
�̃

�
�1 −

a20

16
+

a11

4
� , �4.12�

�40 = 16�2	��̃3�2 − �̃� +
�̃

8
�11 − 19�̃�

+ 	�̃3�2 − �̃� +
�̃

120
�269 − 357�̃�
15a20

16

−
11�1

8
�1 +

41a20

176
+

3a11

4
� + �1�̃�1 − �̃�


 �1 +
3a20

16
+

3a11

4
� − �1

2�1 −
a20

16
+

a11

2
+

a02

2
�� ,

�4.13�

�22 = 3�2		2�̃�1 − �̃��1 +
3a20

16
+

3a11

4
�

−
8�1

3
�1 −

a20

16
+

a11

2
+

5a02

8
� + �̃a11
 , �4.14�

�04 = 20�2	
�̃

�
�1 −

a20

16
+

a11

2
+ a02� . �4.15�

Since �02=O��̃�, Eqs. �4.6�–�4.8� imply that, in the smooth-
sphere limit,

�20 = 0, �40 = 0, �22 = 0. �4.16�

Substitution of Eqs. �4.12� and �4.15� into Eq. �4.9�, and
neglecting nonlinear terms, gives a11=0. Next, from Eqs.
�4.11� and �4.14�, together with �20=�22=0, we obtain

a20 = 16
�1 − �̃�1 − �̃�

�1 + 3�̃�1 − �̃�
, �4.17�

a02 = −
8

5

�̃�1 − �̃�
�1 + 3�̃�1 − �̃�

. �4.18�

Finally, from Eqs. �4.13�, �4.17�, and �4.18�, together with
the condition �40=0, we get a closed quadratic equation for
�1,

�65 − 8�̃�1 − �̃���1
2 − 40�̃�9 − 12�̃ + 4�̃2�2 − �̃���1

+ 5�̃2�1 − �̃��59 − 75�̃ + 24�̃2�2 − �̃�� = 0. �4.19�

FIG. 3. �Color� Plot of the HCS cumulants a20 �top panel�, a11 �middle
panel�, and a02 �bottom panel� vs the coefficient of normal restitution � for
�=−0.9 �solid lines�, �=0 �dashed lines�, and �=0.9 �dash-dotted lines�.
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Figure 4 shows lim�→−1�1+��2Trot /Ttr= �4�1+��2 /���1,
where �1 is the physical solution of Eq. �4.19�, as a function
of �. We observe again a very good agreement between the
Maxwellian and the Sonine approximations.

Insertion of the solution of Eq. �4.19� into Eqs. �4.17�
and �4.18� gives a20 and a02, respectively. In the elastic limit
��→1� Eq. �4.19� yields �1→1− �̃, what implies a20→0
and a02→−2 /5. In fact, �1� �̃�1− �̃� even in the inelastic
case, so that a02�−2 /5 for all �.

The cumulant lim�→−1 a20 is plotted in Fig. 5. For com-
parison, this figure also includes the curve representing a20 in
the pure smooth case ��=−1 from the very beginning�. In the
latter case, the translational and rotational degrees of free-
dom are absolutely decoupled and, in addition, each particle
keeps its initial angular velocity, so the arbitrary initial dis-
tribution of angular velocities does not change with time.
This implies that only Eq. �4.7� keeps being meaningful if

�=−1. Inserting Eqs. �3.18� and �3.23� with �̃=0 into
Eq. �4.7� one gets42,43

a20 = − 16�1 − �̃�
1 − 8�̃�1 − �̃�

63 − 23�̃ − 8�̃2�2 − �̃�

= 16�1 − ��
1 − 2�2

97 − 33� − 2�2�1 − ��
. �4.20�

We observe that a20 at �=−1 differs from lim�→−1 a20. This
singular effect of a20 is analogous to the one observed for the
ratio 
�c ·w�2� / 
c2w2�,32,33 as well as in the case of the
translational/translational temperature ratio in mixtures.34,35

The explanation of this interesting phenomenon is similar in
all these situations. While for smooth particles ��=−1� the
rotational temperature is totally isolated from the transla-
tional one �so that the dotted arrows in Fig. 1 disappear�, in
the case of quasi-smooth particles ���−1� a weak channel
of energy transfer exists between the rotational and transla-
tional degrees of freedom and also the rotational temperature
is subject to a weak cooling. Even though � might be very
close to �1, the transfer of energy eventually becomes acti-
vated when the rotational temperature is sufficiently larger
than the translational one. In other words, even if the dotted
arrows in Fig. 1 are very weak, the great disparity between
Trot and Ttr triggers the flux of energy from the rotational

toward the translational degrees of freedom, thus signifi-
cantly modifying the cumulant a20 with respect to the case of
strict smooth spheres.

V. APPLICATION TO THE WHITE-NOISE THERMOSTAT

As a second application, we consider now a homoge-
neous granular gas subject to a stochastic thermostat force
with properties of a Gaussian white noise.38–42 The corre-
sponding Boltzmann equation reads41

�t f + v · �f −
�0

2

2
� �

�v
�2

f = J�v,��f� , �5.1�

where �0
2 is a measure of the strength of the stochastic force.

This force acts as a “thermostat” that injects energy to the
system, thus compensating for the collisional energy loss un-
til a steady state is eventually reached. The evolution equa-
tions for the temperatures are

�tT
tr − m�0

2 = − �trTtr, �tT
rot = − �rotTrot, �5.2�

�tT −
m�0

2

2
= − �T . �5.3�

In terms of the dimensionless variables defined by Eqs.
�3.1� and �3.2�, Eq. �5.1� becomes

�s� +
�20 − 3�

3

�

�c
· �c�� +

�02

3

�

�w
· �w�� −

�

2
� �

�c
�2

�

= J��c,w��� , �5.4�

where

� �
�0

2

n�2�2Ttr/m�3/2 . �5.5�

After taking moments in Eq. �5.4� one obtains

− �s
cpwq� +
1

3
�p��20 − 3�� + q�02�
cpwq� +

�

2
p�p + 1�



cp−2wq� = �pq. �5.6�

In the steady state, Eq. �5.2� implies that �trTtr=m�0
2 and

�rot=0. Equivalently,

�20 = 3� , �5.7�

FIG. 5. �Color� Plot of the HCS cumulant a20 vs the coefficient of normal
restitution � for �=−1 �dashed line� and in the limit �→−1 �solid line�.

FIG. 4. �Color� Plot of the HCS limit value lim�→−1�1+��2Trot /Ttr vs the
coefficient of normal restitution �. The dashed and solid lines are the Max-
wellian and Sonine approximations, respectively.
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�02 = 0. �5.8�

As a consequence, Eq. �5.6� yields, in the steady-state,

5�20 = �40, �5.9�

3
2�20 = �22, �5.10�

�04 = 0. �5.11�

Analogously to the HCS case, taking into account Eqs.
�3.18�, �3.19�, and �3.23� in the steady-state conditions Eqs.
�5.8�–�5.10� one obtains the cumulants a20, a11, and a02 as
functions of 
. Next, Eqs. �3.25� and �5.11� provide a closed
cubic equation for 
.

Figure 6 shows the temperature ratio as a function of �
for �=−0.9, 0, and 0.9. In the Maxwellian approximation
�cf. Eq. �1.10�� 
 is independent of �. On the other hand, we
observe that the Sonine approximation predicts a very weak
dependence on � �note the vertical scales�. Otherwise, the
maximum deviation between both approximations in the
range 0.5���1 is smaller than 1%, 2%, and 0.5% for
�=−0.9, 0, and 0.9, respectively. It is clearly apparent that
Trot /Ttr increases with increasing roughness, ranging from 0
in the smooth-sphere limit ��=−1� to about 1 in the opposite
limit �→1. In the latter limit the Maxwellian approximation
gives Trot /Ttr=1 for all �, while the Sonine approximation
gives Trot /Ttr�1.01 for �=0.

The cumulants are plotted in Fig. 7. Their magnitudes
are much smaller than in the HCS case �compare with

Fig. 3�. Apart from that, they are more significant for me-
dium roughness ��=0� than for large ��=1� or small
��=−0.9� roughness.

Again, it is worth analyzing separately the smooth-
sphere limit �→−1. From Eq. �1.10� we can expect


 � ��̃ , �5.12�

where �=1 in the Maxwellian approximation. Therefore, in

the limit �̃→0 Eqs. �3.18�, �3.19�, and �3.23�–�3.25� become

�20 = 4�2	�̃�1 − �̃��1 +
3a20

16
� , �5.13�

�02 = 4�2	
�̃

�
	1 −

a20

16
+

a11

4
−

1

�
�1 +

3a20

16
�
 , �5.14�

�40 = 16�2	�̃��̃2�2 − �̃� +
1

8
�11 − 19�̃�

+ 	�̃2�2 − �̃� +
1

120
�269 − 357�̃�
15a20

16
� , �5.15�

�22 = 3�2	�̃	2�1 − �̃��1 +
3a20

16
+

3a11

4
� + a11
 , �5.16�

FIG. 6. �Color� Plot of the WNS temperature ratio Trot /Ttr vs the coefficient
of normal restitution � for �=−0.9 �top panel�, �=0 �middle panel�, and
�=0.9 �bottom panel�. The dashed and solid lines are the Maxwellian and
Sonine approximations, respectively. FIG. 7. �Color� Plot of the WNS cumulants a20 �top panel�, a11 �middle

panel�, and a02 �bottom panel� vs the coefficient of normal restitution � for
�=−1 �dotted lines�, �=−0.9 �solid lines�, �=0 �dashed lines�, and
�=0.9 �dash-dotted lines�.
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�04 = 20�2	
�̃

�
	1 −

a20

16
+

a11

2
+ a02

−
1

�
�1 +

3a20

16
+

3a11

4
�
 . �5.17�

Equations �5.13� and �5.15� include only the parameter a20

and so they are exactly the same as those obtained in the case
of pure smooth spheres.41 Therefore, application of the
steady-state condition Eq. �5.9� gives

a20 = − 16�1 − �̃�
1 − 8�̃�1 − �̃�

239 − 327�̃ + 120�̃2�2 − �̃�

= 16�1 − ��
1 − 2�2

241 − 177� + 30�2�1 − ��
. �5.18�

Thus, in contrast to the HCS case, the cumulant a20 in the
WNS coincides in the limit �→−1 with that at �=−1. The
Sonine approximation in that limit, Eq. �5.18�, is also plotted
in Fig. 7, where we observe that the curve is close to the one
for
�=−0.9, especially for large inelasticity.

Application of Eqs. �5.13� and �5.16� in Eq. �5.10� im-
plies a11=0. Next, from Eqs. �5.8�, �5.14�, and �5.18� we get

� =
1 + 3

16a20

1 − 1
16a20

=
61 − 45� + 6�2�1 − ��

4�15 − 11� + 2�2�1 − ���
. �5.19�

Finally, Eqs. �5.11� and �5.17� imply a02=0. Therefore, in the
limit �→−1 the translational distribution function is non-
Maxwellian, as measured by a20�0, but the rotational dis-
tribution tends to a Maxwellian �a11=a02=0� with a tempera-
ture Trot much smaller than Ttr. Note that if the granular gas
is made of strict smooth spheres ��=−1� the rotational dis-
tribution function �and hence the temperature Trot� is not
uniquely defined since it preserves its initial form. The pa-
rameter lim�→−1�Trot /Ttr� / �1+��= �� /2�1+���� is plotted in
Fig. 8. Again, the relative difference between the Maxwellian
and the Sonine predictions is quite small �less than 0.7% in
the range 0.5���1�.

VI. DISCUSSION AND CONCLUDING REMARKS

The primary goal of this paper has been the derivation,
within the Sonine approximation given by Eq. �3.15�, of the
second- and fourth-degree collisional moments �cf. Eq.
�3.12�� in a granular gas made of inelastic rough hard
spheres. The results are given by Eqs. �3.18�, �3.19�, and
�3.23�–�3.25�. In particular, the second-degree collisional
moments �20 and �02 are not but dimensionless versions of
the collisional rates of change �tr, �rot, and � associated with
the temperatures Ttr, Trot, and T, respectively �cf. Eqs. �3.13�
and �3.14��. From that point of view, it is also worth empha-
sizing that Eqs. �2.26�–�2.28� are exactly derived from the
Boltzmann equation without any further assumption, so that
they are not restricted to any Sonine approximation.

Our results represent extensions of some previously de-
rived results. On the one hand, Eqs. �3.18�–�3.20� are Sonine
extensions of those obtained in the Maxwellian approxima-

tion defined by Eq. �1.2�.29,34 On the other hand, Eqs. �3.18�
and �3.23� are extensions to rough spheres of previous So-
nine derivations for smooth spheres.41

Since the Boltzmann collision operator �cf. Eq. �2.20�� is
local in time and space, Eqs. �3.18�–�3.25� keep being appli-
cable to inhomogeneous and unsteady states. They also hold
in the context of the Enskog equation for homogeneous
states, except that the collision frequency Eq. �1.7� must be
multiplied by the pair correlation function at contact,
g���. Apart from that, it is important to bear in mind that
some restrictions apply to the Sonine approximation
Eq. �3.15�. First, it has been assumed that the mean angular
velocity vanishes, i.e., 
��=0. This restriction is easy to cir-

cumvent by replacing �→�− 
�� and Trot→ T̄rot �see dis-
cussion below Eq. �2.25�� in Eqs. �1.2�, �3.1�, and �3.2�.
These changes would affect the collision rules in Eqs.

�3.3�–�3.5� by the changes 
→ T̄rot /Ttr and w1+w2→w1

+w2+2
�� / �2T̄rot / I�1/2, given that the angular velocity is not
a conserved quantity. For the expressions of �tr and �rot in the
Maxwellian approximation with 
���0, the reader is re-
ferred to Refs. 34 and 36.

As a second restriction, notice that Eq. �3.15� may be
less useful in strongly anisotropic states where the depen-
dence of ��c ,w� on the six velocity components is not ex-
hausted by the three scalar quantities c2, w2, and �c ·w�2.
Finally, while Eq. �3.15� treats the two second-degree mo-
ments as independent quantities, it does not do so with the
a priori four independent fourth-degree moments. Instead,
Eq. �3.15� assumes that the moment 
�c ·w�2� is enslaved to

c2w2� by Eq. �3.17�. Therefore, the study of the orientational
correlation between the translational and angular velocities
has not been included in our scheme.

We have applied Eqs. �3.18�–�3.25� to two paradigmatic
homogeneous and isotropic situations: the similarity solution
of the HCS and the steady-state solution of the WNS. In both
cases we have found that the Maxwellian approximation for
the temperature ratio Trot /Ttr, being much simpler than the
corresponding Sonine approximation, does a very good job,
especially for large or small roughness. On the other hand,
departures of the velocity distribution function from the
Maxwellian, as measured by the cumulants a20, a11, and a02,
cannot be ignored. This is especially true in the case of the
HCS for medium and small roughness. In fact, in the quasi-

FIG. 8. �Color� Plot of the WNS limit value lim�→−1�Trot /Ttr� / �1+�� vs the
coefficient of normal restitution �. The dashed and solid lines are the
Maxwellian and Sonine approximations, respectively.
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smooth limit �→−1 the HCS results differ markedly from
those obtained in the case of pure smooth spheres ��=−1�.
This interesting singular behavior is directly related to the
unsteady character of the HCS and thus it is absent in the
steady WNS.

We expect that this work can contribute to our under-
standing of the subtle interplay between roughness and in-
elasticity in granular gases and how the former feature modi-
fies the properties of inelastic smooth spheres. We plan to
assess the qualitative and quantitative results derived here by
comparison with computer simulations for several situations
of physical interest.
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