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Steady state in a gas of inelastic rough spheres heated
by a uniform stochastic force
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We study here the steady state attained in a granular gas of inelastic rough spheres
that is subject to a spatially uniform random volume force. The stochastic force has
the form of the so-called white noise and acts by adding impulse to the particle
translational velocities. We work out an analytical solution of the corresponding ve-
locity distribution function from a Sonine polynomial expansion that displays energy
non-equipartition between the translational and rotational modes, translational and
rotational kurtoses, and translational-rotational velocity correlations. By comparison
with a numerical solution of the Boltzmann kinetic equation (by means of the direct
simulation Monte Carlo method), we show that our analytical solution provides a
good description that is quantitatively very accurate in certain ranges of inelasticity
and roughness. We also find three important features that make the forced granular
gas steady state very different from the homogeneous cooling state (attained by an
unforced granular gas). First, the marginal velocity distributions are always close to a
Maxwellian. Second, there is a continuous transition to the purely smooth limit (where
the effects of particle rotations are ignored). And third, the angular translational-
rotational velocity correlations show a preference for a quasiperpendicular mutual
orientation (which is called “lifted-tennis-ball” behavior). C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934727]

I. INTRODUCTION

Systems composed of a large number of particles with a characteristic length bigger than about
1 µm (granular systems) are ubiquitous in nature1,2 and applications.3 Therefore, the study of the
transport processes in this kind of systems (generically called granular matter) has been of interest
and subject of systematic study for a long time (see, for instance, the work by Reynolds4). The most
generic property of granular matter is the non-conservation of kinetic energy after contact between
particles, and hence the term inelastic particles.1,3

Attending to the nature of the mechanical interaction among grains, granular matter may be
classified into two groups: wet granular matter (grains tend to stick together after contact and they
are usually called cohesive powders, since they usually predominate in the smaller range of grain
sizes5) and dry granular matter (grains do no not show this sticky behavior). Of course, both types
of granular systems are equally relevant in industry and technology.1,3,6,7 Moreover, the finding of a
meaningful theoretical description also poses fundamental challenges for researchers of a number of
fields.1 Since the nature of particle contacts essentially determines the granular dynamics, theoretical
developments frequently study granular systems as composed by only dry or only wet particles
(or, at its most elaborate, simple combinations of both).

Let us focus on dry granular matter. Here, we can find persistent contacts as well, but they are
always due to a high fraction of the volume occupied by grains. When this happens, available space
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limitations result in lasting contacts. As a consequence, mechanical force transmission throughout
the system occurs;8,9 i.e., one particle may be in contact with not just one another particle but a set
of them, thus propagating mechanical information to large parts of the system.10 Correlations in
this case are obviously strong, much in the same way as in atomic solid matter.9 On the contrary,
in less dense systems, particles are less correlated and contacts among three or more grains tend
to be statistically rare events; i.e., contacts typically become only binary.7 At the same time, in
the low density regime, those contacts between pairs of dry grains tend to be very short in time
(as compared with the characteristic mean free time), and hence the term inelastic collision.11

Binary and instantaneous collisions are also characteristic features of low density molecular gases,
for which the so-called molecular chaos assumption (Stosszahlansatz) is commonly used;12,13

i.e., colliding particle velocities are supposed to be uncorrelated. In those circumstances, the
Boltzmann equation or, at low but finite density, the Enskog equation (properly modified in order to
take into account inelasticity in the collisions11,13) applies. While inelastic collisions may originate
velocity correlations,14 these effects tend to be more important at higher densities15 and thus they
can usually be ignored for low densities.7,11,16 Since the theoretical approach to both the high and
low density limits for granular matter is radically different1 (actually, just in the same way as it is
for conventional matter17), it is convenient to focus on just one density regime. In this case, we are
interested in the low density limit, the so-called granular gases.18

Given that most granular particles do not have a regular shape and differ in size and mass,19

granular collisions (even if short in time) can be very complex events.20,21 It is thus important that
granular collision models can accordingly capture as many features as possible, without otherwise
compromising their tractability. For instance, the coefficient of normal restitution (that characterizes
translational kinetic energy loss upon collisions) depends in general on the impact velocity11,21

(a viscoelastic collision model may be used to take this into account22). Nevertheless, it has been
found that an important set of the main features at a macroscopic level (i.e., average field behavior)
can be described with models that ignore the effects of impact velocity on the restitution properties.7

In an effort to simplify the collision process, one can sequentially describe it as (i) an impact
between both colliding particles, after which they suffer a mechanical impulse that produces a linear
momentum transfer; (ii) a friction process, tangent to the contact interface, generating an angular
momentum transfer; and (iii) a sliding process, that describes the relative translational displacement
of the colliding particles in the direction of the contact interface. All these three features were
captured in previous research that includes experimental work (see, for instance, Ref. 23) by using
a collision model based on three collisional constant parameters: a coefficient of normal restitution,
a coefficient of tangential restitution, and a friction coefficient.

In spite of the intrinsic polydispersity of granular systems in nature,2 a variety of generic
granular dynamics phenomena can be described by means of kinetic theory for a monodisperse
granular gas. In a granular gas of identical particles, the relevance of collision models based on
constant coefficients of restitution is exemplified by the correct description that the simple inelastic
smooth hard-sphere model gives of the clustering instability of the so-called homogeneous cooling
state (HCS), i.e., an unforced state with uniform hydrodynamic quantities and a time decaying
granular temperature.24–26 Furthermore, simplifications of the collision model alleviate the involved
mathematical task of integrating the Boltzmann equation, especially for states more complex than
the HCS.27,28 In turn, solutions of the Boltzmann equation have allowed for finding new fundamental
properties of granular gas dynamics by means of consistent derivations of the corresponding
hydrodynamic theories.18 Another important example of this is the inelastic rough hard-sphere
model that is able to detect correlations between the angular and translational velocity components
in granular gases.29,30 Therefore, it is fruitful to compromise between simple collision models and
more sophisticated theoretical developments at a kinetic theory level, in order to discover new
fundamental transport properties of granular gases.

In its basic implementation, the rough hard-sphere model neglects the effects of eventual sliding
in collisions but is capable of showing a number of relevant results for the dynamics of granular gases.
For instance, it has shown that energy non-equipartition between translational and rotational modes
occurs31–33 and that the distribution function of particle velocities can exhibit strong non-Maxwellian
effects.34–36 It has also been determined that strong inelasticity or angular-translational correlations
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do not necessarily lead to difficulties for reaching a normal (or hydrodynamic) state.36 This
observation has important consequences for the development of hydrodynamic theories for granular
gases.7,37 However, most of these works addressed only the HCS. Useful and fundamental as this
state may be as a reference for transport theories of granular gases,34,37 it is hard to observe its
spontaneous appearance in nature and also difficult to reproduce in laboratory experiments. In fact,
granular gases are most frequently observed under a forcing that keeps the system steadily fluidized
and at low density.

In this paper, we study the homogeneous steady state of a granular gas of rough spheres
excited by a stochastic volume force that is modeled by means of the so-called white noise,38–43

as usually named in statistical physics. We extend previous theoretical results35 by taking into
account the effects of orientational correlations in particle velocities and, in addition, by comparing
the theoretical predictions with computer simulations. As we will see, even though the velocity
kurtoses and correlations are still not negligible, the heated granular gas has a more Maxwellian-like
distribution function for all values of the roughness parameter than the HCS.30,36 This justifies
the practical validity of our theoretical perturbation approach (truncated Sonine expansion) and its
excellent agreement with simulation data. In contrast, the HCS is characterized by large deviations
from the Maxwellian distribution for small roughness (especially in what concerns the angular
velocity), in which case the perturbation method is valid only semi-quantitatively.36 Moreover, no
singularity exists in the smooth-sphere limit for the heated gas, again in contrast to what happens in
the HCS.

Another important and distinctive feature that we will find is that the forced granular gas shows
an average preference for quasiperpendicular relative orientation of translational and rotational
particle velocities, in contrast to the behavior found in the unforced granular gas,29,30,36,44 where
quasiparallel translational and rotational particle velocities are also present. This result is of interest
for a number of experimental works, where the most common situation is that of an excited granular
gas (see, for instance, Ref. 45).

The structure of this work is as follows. In Sec. II, we write the corresponding kinetic
(Boltzmann) equation. By defining adequate time and velocity units, we also derive the dimensionless
counterparts of the Boltzmann equation and its derived moment equations, which are the ones we
will work with. In Sec. III, a theoretical solution to the moment equations, by means of a Sonine
polynomial expansion around the Maxwellian distribution function, is derived by keeping terms up
to order two (fourth-degree polynomials). In this way, the state of the system is solved at all times,
including the final steady state. In particular, the theoretical parameters characterizing kurtoses,
correlations, and average relative orientation of translational and rotational particle velocities are
analyzed. As said before, we will find that excited rough grains do not show the relevance of
quasiparallel relative orientation behavior present in the HCS.29,36 Next, in Sec. IV, we compare the
theoretical results with an “exact” numerical solution of the Boltzmann equation obtained by means
of the direct simulation Monte Carlo (DSMC) method,46 a very good agreement being observed.
Finally, the results are briefly discussed in Sec. V.

II. BOLTZMANN EQUATION AND MOMENT HIERARCHY

A. Collision rules

Let us consider a homogeneous dilute granular gas of identical hard spheres with mass m,
diameter σ, and moment of inertia I, subject to a stochastic volume force Fwn (also called thermostat)
with the properties of a Gaussian white noise.38–42,47 This kind of forcing can model, for example,
the energy input to grains immersed in a gas in turbulent flow.48

We denote the translational and angular (or rotational) particle velocities with v and ω,
respectively. Binary collisions are characterized here by two material parameters, namely, the
coefficient of normal restitution α and the coefficient of tangential restitution β, which determine
the shrinking of the normal and tangential component, respectively, of the relative velocity of the
two surface points at contact. They are defined by (see, for instance, Refs. 37, 49, and 50),

σ · u′ = −α(σ · u), σ × u′ = −β(σ × u). (2.1)
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Here, the primes denote post-collisional values, σ is the unit collision vector joining the centers of
the two colliding spheres (and pointing from the center of particle 1 to the center of particle 2), and

u = v1 − v2 −
σ

2
σ × (ω1 + ω2) (2.2)

is the relative velocity of the points of the spheres which are in contact during a binary encounter.
The coefficient of normal restitution α takes values between 0 (completely inelastic collision)

and 1 (completely elastic collision), while the coefficient of tangential restitution takes values
between −1 (completely smooth collision, implying that rotational velocities are unchanged) and
1 (completely rough collision).12,49 Equation (2.1) supplements the linear and angular momentum
conservation laws to yield the collision rules,11,35,37,49

mv′1,2 = mv1,2 ∓Q, Iω′1,2 = Iω1,2 −
σ

2
σ ×Q, (2.3)

where the impulse exerted by particle 1 on particle 2 is given by

Q = mα(σ · u)σ − mβσ × (σ × u). (2.4)

Here, we have introduced the abbreviations

α ≡ 1 + α

2
, β ≡ 1 + β

2
κ

κ + 1
, κ ≡ 4I

mσ2 . (2.5)

While collisions (except if α = 1 and β = ±1) dissipate kinetic energy (translational plus
rotational), the homogeneous stochastic force Fwn injects translational kinetic energy to grains. It
has properties of a Gaussian white noise, i.e.,

⟨Fwn
i (t)⟩ = 0, (2.6a)

⟨Fwn
i (t)Fwn

j (t ′)⟩ = Im2χ2
0δi jδ(t − t ′), (2.6b)

where indexes i, j refer to particles, I is the 3 × 3 unit matrix, and χ2
0 measures the characteristic

strength of the stochastic force.

B. Boltzmann equation

In homogeneous states, the Boltzmann equation corresponding to the stochastic external force
Fwn becomes41,42

∂ f (v,ω; t)
∂t

−
χ2

0

2

(
∂

∂v

)2

f (v,ω; t) = J[v,ω | f (t)], (2.7)

where f (v,ω; t) is the velocity distribution function and J[v,ω | f ] is the collision integral in the
(inelastic) Boltzmann equation for rough spheres, which accounts for collision rules (2.3) and (2.4).

Given a certain function A(v,ω), we define its average as

⟨A(t)⟩ = 1
n


dv


dω A(v,ω) f (v,ω; t), n =


dv


dω f (v,ω; t), (2.8)

where n is the number density. By Galilean invariance, we choose ⟨v⟩ = 0. Moreover, we assume
isotropic states, so that ⟨ω⟩ = 0.37 Thus, the basic quantities are the translational (Tt), rotational (Tr),
and total (T) granular temperatures,

Tt =
m
3
⟨v2⟩, Tr =

I
3
⟨ω2⟩, T =

Tt + Tr

2
= Tt

1 + θ
2

, (2.9)

where the temperature ratio θ ≡ Tr/Tt is an important quantity in this system because, as we will
see, its steady-state value is independent of the level of forcing (χ2

0).
The evolution equations for the granular temperatures Tt and Tr are obtained by just multiplying

both sides of Eq. (2.7) by the particle translational and rotational kinetic energies, respectively, and
integrating over all velocity values. This gives

∂tTt − m χ2
0 = −ξtTt, ∂tTr = −ξrTr , ∂tT −

m χ2
0

2
= −ζT. (2.10)
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Here, the translational (ξt) and rotational (ξr) production rates and the cooling rate (ζ) are defined
by the collision integrals35,37

ξt = −
m

3nTt


dv


dω v2J[v,ω | f ], ξr = −

I
3nTr


dv


dωω2J[v,ω | f ], (2.11a)

ζ =
ξtTt + ξrTr

2T
=

ξt + ξrθ

1 + θ
. (2.11b)

C. Reduced variables and velocity moments

For convenience, let us rewrite Boltzmann equation (2.7) in dimensionless form. For this, we
first define the reduced velocity distribution function

φ(c,w; τ) ≡ 1
n

(
4Tt(t)Tr(t)

mI

)3/2

f (v,ω; t), (2.12)

where the reduced particle velocities are

c(t) ≡ v
2Tt(t)/m

, w(t) ≡ ω
2Tr(t)/I

. (2.13)

In addition, time is measured by the parameter τ defined by

τ(t) =
 t

0
dt ′ ν(t ′), ν(t) = 2nσ2


πTt(t)/m, (2.14)

where ν(t) is the (time-dependent) collision frequency. Thus, τ(t) measures the accumulated number
of collisions per particle up to time t. With this time scale, we can measure relaxation times
to the steady state that are physically meaningful, since they coincide with the aging times to
hydrodynamics.36

The moments of the reduced distribution function φ(c,w; τ) are

M (r )
pq(τ) ≡ ⟨cpwq(c · w)r⟩ =


dc


dw cpwq(c · w)rφ(c,w; τ), (2.15)

with p,q,r = even, by symmetry. Note that M (r )
pq is a moment of degree p + q + 2r and M (0)

0,0 = 1,
M (0)

2,0 = M (0)
0,2 =

3
2 . The dimensionless measure of the noise intensity is defined by

γ(τ) ≡ 3
2

χ2
0

ν(t)Tt(t)/m
=

3χ2
0

4
√
πnσ2[Tt(t)/m]3/2

. (2.16)

Notice that although χ2
0 is a constant, its dimensionless counterpart γ is time-dependent due to

the scaling with the temperature Tt. Of course, once a steady state is reached, γ becomes constant
too. Note also that γ−2/3 can be seen as the translational temperature Tt in units of a reference
temperature Tref = m(3χ2

0/4
√
πnσ2)2/3 defined from the white noise parameter χ2

0.
Let us finally define the reduced collisional moments

µ
(r )
pq(τ) ≡ −


dc


dw cpwq(c · w)rJ [c,w|φ(τ)], (2.17)

where

J [c,w|φ(τ)] = 1
nν(t)


4Tt(t)Tr(t)

mI

3/2

J[v,ω | f (t)] (2.18)

is the dimensionless form of the collision integral. From definitions (2.11a) and (2.17), it is easy
to see that ξt = 2

3 νµ
(0)
20 , ξr = 2

3 νµ
(0)
02 . The evolution equations for the temperature ratio θ(τ) and the

reduced noise strength γ(τ) can be obtained from Eq. (2.10) as

∂ ln θ(τ)
∂τ

=
2
3


µ
(0)
20(τ) − µ

(0)
02(τ) − γ(τ)


,

∂ ln γ(τ)
∂τ

= µ
(0)
20(τ) − γ(τ). (2.19)

Note that since v and ω are scaled each with a different temperature in Eq. (2.13), collision rules
(2.3) and (2.4), when expressed in terms of c and w, depend parametrically on θ.35 This dependence
is obviously transferred to collisional moments (2.17).
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Taking into account the previous dimensionless quantities and making use again of temperature
evolution equations (2.10), one can obtain the dimensionless version of Boltzmann equation (2.7) as

∂φ(c,w; τ)
∂τ

+
µ
(0)
20(τ) − γ(τ)

3
∂

∂c
· [cφ(c,w; τ)] + µ

(0)
02(τ)
3

∂

∂w
· [wφ(c,w; τ)]

− γ(τ)
6

(
∂

∂c

)2

φ(c,w; τ) = J [c,w|φ(τ)]. (2.20)

Multiplying both sides by cpwq(c · w)r and integrating over c and w, we get the moment hierarchy

∂ ln M (r )
pq(τ)

∂τ
=

p + r
3


µ
(0)
20(τ) − γ(τ)


+

q + r
3

µ
(0)
02(τ) −

µ
(r )
pq(τ)

M (r )
pq(τ)

+
γ(τ)

6

p(p + 1 + 2r)M (r )
p−2,q(τ) + r(r − 1)M (r−2)

p,q+2(τ)
M (r )

pq(τ)
. (2.21)

This equation must be supplemented with Eq. (2.19). As will be seen later, the steady-state
distribution function is independent of the precise value of the stochastic force intensity χ2

0 or,
equivalently, of the initial value γ(0), although of course the transient states are dependent on it.

D. Exact Sonine expansion

In principle, the reduced distribution function φ(c,w) would be a function of six velocity
components. On the other hand, since we restrict ourselves to isotropic states, φ is actually a
function of three scalar quantities: the norms c2 and w2, and the squared dot product (c,w)2.35 Thus,
it makes sense to represent φ(c,w) as an expansion in a complete set {Ψ(ℓ)

jk
(c,w)} of orthogonal

polynomials,

φ(c,w; τ) = φM(c, w)
∞
j=0

∞
k=0

∞
ℓ=0

a(ℓ)
jk
(τ)Ψ(ℓ)

jk
(c,w), φM(c, w) ≡ π−3e−c

2−w2
, (2.22)

where

Ψ
(ℓ)
jk
(c,w) ≡ L

(2ℓ+ 1
2 )

j (c2)L(2ℓ+ 1
2 )

k
(w2) �c2w2�ℓP2ℓ(cos ϑ), cos ϑ ≡ c,w

cw
, (2.23)

where L
(2ℓ+ 1

2 )
j (x) and P2ℓ(x) are the Laguerre and Legendre polynomials, respectively.51 Defining

the scalar product of two arbitrary isotropic (real) functions Φ1(c,w) and Φ2(c,w) as

⟨Φ1|Φ2⟩ ≡


dc


dw φM(c, w)Φ1(c,w)Φ2(c,w), (2.24)

one can obtain the orthogonality relation

⟨Ψ(ℓ)
jk
|Ψ(ℓ′)

j′k′⟩ = N (ℓ)
jk
δ j, j′δk,k′δℓ,ℓ′, N (ℓ)

jk
≡
Γ( j + 2ℓ + 3

2 )Γ(k + 2ℓ + 3
2 )

(π/4)(4ℓ + 1) j!k!
. (2.25)

As a consequence, the coefficients in expansion (2.22) are

a(ℓ)
jk
=

⟨Ψ(ℓ)
jk
⟩

N (ℓ)
jk

=

j
j1=0

k
k1=0

ℓ
ℓ1=0

(−1) j1+k1+ℓ1(π/4) j!k!(4ℓ + 1)(4ℓ − 2ℓ1 − 1)!!M (2ℓ−2ℓ1)
2( j1+ℓ1),2(k1+ℓ1)

j1!( j − j1)!Γ � j1 + 2ℓ + 3
2

�
k1!(k − k1)!Γ �k1 + 2ℓ + 3

2

�
2ℓ1ℓ1!(2ℓ − 2ℓ1)!

, (2.26)

where in the second step use has been made of the explicit expressions of the Laguerre and Legendre
polynomials.51 We observe that a(ℓ)

jk
is a linear combination of the moments M (r )

pq with p,q,r = even
and degree 2ℓ ≤ p + q + 2r ≤ 2( j + k + 2ℓ). By normalization, a(0)

00 = 1, a(0)
10 = a(0)

01 = 0. Therefore,
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the first nontrivial coefficients are those associated with moments of degree four, namely,

a(0)
20 =

4
15

⟨c4⟩ − 1, a(0)
02 =

4
15

⟨w4⟩ − 1, (2.27a)

a(0)
11 =

4
9
⟨c2w2⟩ − 1, a(1)

00 =
8

15


⟨(c · w)2⟩ − 1

3
⟨c2w2⟩


. (2.27b)

These are the fourth-degree cumulants, which measure the basic deviations of the velocity
distribution function φ(c,w) from the (two-temperature) Maxwellian φM(c, w). While a(0)

20 and a(0)
02

measure the kurtosis of the (marginal) translational and rotational velocity distribution functions,
respectively, the coefficient a(0)

11 characterizes the scalar translational-rotational correlations,
i.e., ⟨c2w2⟩ , ⟨c2⟩⟨w2⟩. Finally, a(1)

00 informs us about the possible existence of orientational
correlations, i.e., ⟨c2w2cos2ϑ⟩ , ⟨c2w2⟩⟨cos2ϑ⟩ and ⟨cos2ϑ⟩ , 1

3 . To disentangle the latter two
effects, let us define the quantities

h ≡ 5
8

 ⟨(c · w)2⟩
⟨c2w2⟩⟨cos2ϑ⟩ − 1


, b ≡ 10

3

(
⟨cos2ϑ⟩ − 1

3

)
. (2.28)

The parameters h, b, a(0)
11 , and a(1)

00 are related by

h =
1

16

25a(1)
00 − 9b

(
1 + a(0)

11

)
�
1 + 9

10 b
� (

1 + a(0)
11

) . (2.29)

In previous works,29,30,44 the angle ϑ between translational and rotational particle velocities has
been used for measuring orientational correlations in a granular gas of rough spheres, by tracking
the quantity ⟨cos2ϑ⟩ or, equivalently, b. The use of b has the advantage over a(1)

00 of being more
intuitive (since it directly refers to the angle between translational and rotational particle velocities).
However, it has the disadvantage that since cos ϑ = c · w/cw is not a polynomial, the parameter b
involves an infinite number of coefficients in expansion (2.22). More specifically, it is easy to find

b =
∞
j=0

∞
k=0

a(1)
jk
. (2.30)

Analogously, the quantity h also involves an infinite number of coefficients. For this reason, we
prefer instead to use the single coefficient a(1)

00 for measuring the orientational correlations in a
granular gas of rough spheres.36

Taking into account general moment hierarchy (2.21), the evolution equations for the fourth-
degree cumulants are

∂ ln

1 + a(0)

20 (τ)


∂τ
=

4
3
µ
(0)
20(τ) −

4
3
γ(τ) − 4

15
µ
(0)
40(τ) − 5γ(τ)
1 + a(0)

20 (τ)
, (2.31a)

∂ ln

1 + a(0)

02 (τ)


∂τ
=

4
3
µ
(0)
02(τ) −

4
15

µ
(0)
04(τ)

1 + a(0)
02 (τ)

, (2.31b)

∂ ln

1 + a(0)

11 (τ)


∂τ
=

2
3
µ
(0)
20(τ) +

2
3
µ
(0)
02(τ) −

2
3
γ(τ) − 4

9
µ
(0)
22(τ) − 3

2γ(τ)
1 + a(0)

11 (τ)
, (2.31c)

∂ ln

1 + a(0)

11 (τ) + 5
2 a(1)

00 (τ)


∂τ
=

2
3
µ
(0)
20(τ) +

2
3
µ
(0)
02(τ) −

2
3
γ(τ) − 4

3
µ
(2)
00(τ) − 1

2γ(τ)
1 + a(0)

11 (τ) + 5
2 a(1)

00 (τ)
. (2.31d)

In the steady state (∂τ → 0), Eqs. (2.10) and (2.31) imply the conditions

γ = µ
(0)
20 , µ

(0)
02 = 0, (2.32a)

1
5
µ
(0)
40 =

2
3
µ
(0)
22 = 2µ(2)00 = µ

(0)
20 , µ

(0)
04 = 0. (2.32b)
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Before closing this section, and for further use, let us define the marginal distributions φc(c),
φw(w), φcw(c2w2), φc·w((c · w)2), and φϑ(cos2ϑ) from the joint velocity distribution function φ(c,w)
as

φc(c) = 4πc2


dw φ(c,w), φw(w) = 4πw2


dc φ(c,w), (2.33a)

φcw(c2w2) =


dc′


dw′ δ(c′2w ′2 − c2w2)φ(c′,w′), (2.33b)

φc·w((c · w)2) =


dc′


dw′ δ((c′ · w′)2 − (c · w)2)φ(c′,w′), (2.33c)

φϑ(cos2ϑ) =


dc′


dw′ δ(cos2ϑ′ − cos2ϑ)φ(c′,w′). (2.33d)

Less conventional marginal distribution functions (2.33b)–(2.33d) are directly related to the scalar
and orientational correlations between the translational and rotational particle velocities. More
specifically,

⟨c2w2⟩ =
 ∞

0
dx xφcw(x), ⟨(c · w)2⟩ =

 ∞

0
dx xφc·w(x), ⟨cos2ϑ⟩ =

 1

0
dx xφϑ(x). (2.34)

III. APPROXIMATE SOLUTION FROM A TRUNCATED SONINE EXPANSION

All of the equations in Sec. II are formally exact. On the other hand, the collisional moments
µ
(0)
20 , µ(0)02 , µ(0)40 , µ(0)04 , µ(0)22 , and µ

(2)
00 , defined by general expression (2.17), are functionals of φ(c,w),

and thus they depend on the whole set of expansion coefficient {a(ℓ)
jk
}. They also depend on the

temperature ratio θ through the collision rules. Therefore, Eqs. (2.19) and (2.31) do not make a
closed set of equations.

Nevertheless, expansion (2.22) is especially useful for states with a distribution function close
to the Maxwellian φM(c, w), in which case an approximate closure can be applied. In a previous
work,36 we used expansion (2.22) for describing the HCS distribution function. We found that the
HCS is very far from the Maxwellian for a certain range of values of the roughness parameter
β, thus limiting the practical validity of this kind of theoretical description for the unforced gas.
However, we can expect that the white noise thermostat keeps the distribution function closer to the
Maxwellian, in analogy with what happens in the smooth-sphere case.42 If so, a better accuracy of
expansion (2.22) can be expected in the present case. We will confirm this property in Sec. IV.

A. Maxwellian approximation

The simplest approximation consists in neglecting all the cumulants a(ℓ)
jk

, j + k + 2ℓ ≥ 2, in
Eq. (2.22), i.e., φ(c,w) ≃ φM(c, w). This Maxwellian approximation is of course unable to account
for the evolution and steady-state values of the cumulants. However, it can capture the main features
of the temperature ratio θ(τ) and the reduced noise intensity γ(τ). When φ(c,w) ≃ φM(c, w) is
inserted into Eq. (2.17), one obtains

µ
(0)
20,M = 1 − α2 +

κ(1 + β)
(1 + κ)2 [2 + κ(1 − β) − θ(1 + β)] , (3.1a)

µ
(0)
02,M =

κ(1 + β)
(1 + κ)2

�
2 + κ−1(1 − β) − θ−1(1 + β)� . (3.1b)

Using these expressions in (2.19), one gets a closed set of two coupled nonlinear differential
equations that can be numerically solved for arbitrary initial values θ(0) and γ(0). Regardless of the
values of θ(0) and γ(0), common steady-state values are reached after a few collisions per particle.
They are explicitly obtained from Eq. (2.32a) as

θM =
1 + β

2 + κ−1(1 − β) , γM = 1 − α2 +
2(1 − β2)

2 + κ−1(1 − β) . (3.2)
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It is interesting to note that the Maxwellian prediction for the steady-state value of the temperature
ratio is independent of the coefficient of normal restitution α. Moreover, θM is always smaller than
unity (i.e., Tr < Tt), except in the limit of completely rough spheres (β = 1), where θM = 1. In the
case of the reduced noise intensity, we can observe that γM monotonically decreases as α increases
at fixed β, as a consequence of a progressively smaller cooling effect. Because of the same reason,
γM presents a non-monotonic behavior with respect to β at fixed α, reaching a maximum value
γM,max = 1 − α2 + 4κ(1 + 2κ − 2

√
κ + κ2) at β = 1 − 2(√κ + κ2 − κ). However, as we will see in

Sec. IV, θ actually depends on α but much more weakly than it depends on β. Also, θ can reach
values slightly larger than unity if β is very close to 1 and α is small enough. In any case, as shown
later, Maxwellian expressions (3.2) are indeed rather accurate.

The marginal distribution functions defined by (2.33) adopt simple forms in the Maxwellian
approximation,

φc,M(c) = 4
√
π

c2e−c
2
, φw,M(c) = 4

√
π
w2e−w

2
, (3.3a)

φcw,M(c2w2) = 8cw
π

K0(2cw), φc·w,M((c · w)2) = 4
π

K1(2|c · w|), φϑ,M(cos2ϑ) = 1
2| cos ϑ| ,

(3.3b)

where Kn(x) is a modified Bessel function of the second kind.51 Upon deriving (3.3b)
use has been made of the mathematical properties δ(c′2w ′2 − x) = δ(w ′ − √x/c′)/2c′2w ′,
δ((c′ · w′)2 − x) = δ(| cos ϑ| − √x/cw)/2c2w2| cos ϑ|, and δ(cos2ϑ − x) = δ(| cos ϑ| − √x)/2| cos ϑ|,
respectively. Apart from ⟨c4⟩ = ⟨w4⟩ = 15

4 , it is straightforward to check from Eqs. (2.34) and (3.3b)
that ⟨c2w2⟩ = 9

4 , ⟨(c · w)2⟩ = 3
4 , and ⟨cos2ϑ⟩ = 1

3 in the Maxwellian approximation, as expected.

B. Truncated Sonine approximation

As a much more elaborate approximation that captures the most important non-Maxwellian
features of the velocity distribution function, we truncate exact expansion (2.22) after j + k + 2ℓ = 2,
i.e.,36

φ(c,w)
φM(c, w) ≃ 1 + a(0)

20Ψ
(0)
20 (c,w) + a(0)

02Ψ
(0)
02 (c,w) + a(0)

11Ψ
(0)
11 (c,w) + a(1)

00Ψ
(1)
00 (c,w)

= 1 + a(0)
20

15 − 20c2 + 4c4

8
+ a(0)

02
15 − 20w2 + 4w4

8
+ a(0)

11

�
3 − 2c2� �3 − 2w2�

4

+ a(1)
00

3(c · w)2 − c2w2

2
. (3.4)

This approximation differs from that considered in Ref. 35 by the addition of the term headed by
the coefficient a(1)

00 . The associated marginal distributions are

φc(c)
φc,M(c) = 1 + a(0)

20
15 − 20c2 + 4c4

8
,

φw(w)
φw,M(w) = 1 + a(0)

02
15 − 20w2 + 4w4

8
, (3.5a)

φcw(c2w2)
φcw,M(c2w2) = 1 +

a(0)
20 + a(0)

02

8


15 + 4c2w2 − 16cw

K1(2cw)
K0(2cw)



+
a(0)

11

4


9 + 4c2w2 − 12cw

K1(2cw)
K0(2cw)


, (3.5b)

φc·w((c · w)2)
φc·w,M((c · w)2) = 1 +

a(0)
20 + a(0)

02

8


3 + 4(c · w)2 − 12|c · w|K0(2|c · w|)

K1(2|c · w|)


+
a(0)

11

4


1 + 4(c · w)2 − 8|c · w|K0(2|c · w|)

K1(2|c · w|)


−
a(1)

00

2


1 − 2(c · w)2 + |c · w|K0(2|c · w|)

K1(2|c · w|)

, (3.5c)
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φϑ(cos2ϑ)
φϑ,M(cos2ϑ) = 1 +

9a(1)
00

8
�
3cos2ϑ − 1

�
. (3.5d)

This yields ⟨c4⟩ = 15
4 (1 + a(0)

20 ), ⟨w4⟩ = 15
4 (1 + a(0)

02 ), ⟨c2w2⟩ = 9
4 (1 + a(0)

11 ), ⟨(c · w)2⟩ = 3
4 (1 + a(0)

11 +
5
2 a(1)

00 ), and ⟨cos2ϑ⟩ = 1
3 (1 + 9

10 a(1)
00 ), as expected. The latter equality implies b = a(1)

00 , in consistency
with the neglect of a(ℓ)

jk
with j + k + 2ℓ ≥ 3 in Eq. (2.30). If, additionally, terms nonlinear in the

cumulants are neglected in Eq. (2.29), we have

h ≃ b ≃ a(1)
00 (3.6)

in Sonine approximation (3.4). Thus, if a(1)
00 < 0 (as will be seen to be the case for most values

of α and β in the case of uniform spheres), we can expect that ⟨cos2ϑ⟩ < 1
3 . This implies a

tendency of the vectors c and w to favor quasinormal mutual orientations (“lifted-tennis-ball”
effect).

If Eq. (3.4) is inserted into Eq. (2.17) and terms nonlinear in a(ℓ)
jk

are neglected, one obtains
explicit (yet not exact) expressions of µ

(r )
pq with p + q + 2r = 2 and 4. Those expressions were first

displayed in the supplementary material of Ref. 36 but for the sake of completion, they can be
found here in the Appendix. Once Eqs. (A1)–(A6) are introduced into Eqs. (2.19) and (2.31), the
resulting closed set of six equations can be numerically solved for arbitrary initial values to get the
time-dependent functions θ(τ), γ(τ), a(0)

20 (τ), a(0)
02 (τ), a(0)

11 (τ), and a(1)
00 (τ).52 We will include in Sec. IV

graphs of those functions and compare them with the “exact” numerical solution of the Boltzmann
equation obtained by means of the DSMC method.46

As for the steady state, by applying state-state conditions (2.32) and Sonine expressions
(A1)–(A6), we are able to obtain fully analytical explicit expressions for the temperature ratio
θ, the dimensionless noise intensity γ, and the four cumulants a(0)

20 , a(0)
02 , a(0)

11 , and a(1)
00 . The method

is quite simple.52 First, the relations in Eq. (2.32b) are used to express the four cumulants in terms
of the yet unknown quantity θ. Inserting those expressions into µ

(0)
02 = 0, one gets a closed quartic

equation for θ, whose physical solution is identified as the one closer to θM [see Eq. (3.2)]. Finally,
γ is obtained from γ = µ

(0)
20 .

Figure 1 presents density plots of the steady-state values for uniform spheres (κ = 2
5 ) of θ, γ,

a(0)
20 , a(0)

02 , a(0)
11 , and a(1)

00 . In Fig. 1(a), we may point out that iso-θ curves are almost perpendicular to
the β axis, indicating that θ depends almost entirely on the coefficient of tangential restitution and
hardly on α, as anticipated by the Maxwellian approximation θM in Eq. (3.2). Also, θ < 1, except,
and this is not visible in Fig. 1(a), if β > 0.994 336 and 0 ≤ α < α1(β), where α1(0.994 336) = 0
and α1(1) = 1/

√
2. The maximum value θmax = 1.009 85 takes place at α = 0 and β = 1, i.e., in the

completely inelastic and rough limit. The behavior of γ observed in Fig. 1(b) is in good agreement
with the one expected from the Maxwellian approximation γM in Eq. (3.2). The latter predicts, at fixed
α, a maximum value γM,max ≃ 1.4853 − α2 at β ≃ 0.3033. In the Sonine approximation, we find that
the location and value of the maximum slightly changes from β ≃ 0.301 and γmax + α2 ≃ 1.512 at
α = 0 to β ≃ 0.304 and γmax + α2 ≃ 1.486 at α = 1.

Since θ and γ are well represented by Maxwellian approximation (3.2), the most interesting
panels in Fig. 1 are those related to the cumulants. The first feature to be noted is that all of them have
a relatively small magnitude |a(ℓ)

jk
| < 0.1, implying that a good performance of Sonine approximation

(3.4), and hence the validity of (3.6), can be expected. This expectation will be confirmed in Sec. IV.
We can also see that, at given α, the maximum value of |a(ℓ)

jk
| is typically reached in the region of

intermediate roughness (β ∼ 0), which differs from the behavior detected for the HCS, where the
maximum values (which are also much larger than here) occur in the region close to the smooth
limit.36

Figure 1(c) shows that the translational kurtosis a(0)
20 takes negative values in the top and bottom

right corners of the map. In contrast, the region where the rotational kurtosis a(0)
02 is negative reduces to

a small top-right corner (α, β . 1) [see Fig. 1(d)]. The analogous top-right corners where a(0)
11 < 0 and

a(1)
00 > 0, respectively, are even smaller in the cases of the correlation cumulants a(0)

11 and, especially,
a(1)

00 [see Figs. 1(e) and 1(f)].
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FIG. 1. Density plots, for uniform spheres (κ = 2
5 ), of the steady-state values of (a) the temperature ratio θ =Tr/Tt , (b)

the dimensionless noise intensity γ [see Eq. (2.16)], (c) the translational kurtosis a
(0)
20 [see Eq. (2.27a)], (d) the rotational

kurtosis a(0)
02 [see Eq. (2.27a)], (e) the scalar correlation cumulant a(0)

11 [see Eq. (2.27b)], and (f) the orientational correlation

cumulant a(1)
00 [see Eq. (2.27b)]. The contour lines correspond to (a) θ = 0.1,0.2, . . .,0.9, (b) γ = 0.1,0.2, . . .,1.5, (c) a(0)

20 =

−0.01,0.00, . . .,0.09, (d) a(0)
02 = 0.00,0.01, . . .,0.05, (e) a(0)

11 = 0.00,0.01, . . .,0.09, and (f) a(1)
00 =−0.07,−0.06, . . .,0.00.

Therefore, the typical non-Maxwellian features of the joint velocity distribution function φ(c,w)
that can be extracted from Figs. 1(c)–1(f) are (i) platykurtic translational (a(0)

20 > 0⇒ ⟨c4⟩ > 15
4 ) and

rotational (a(0)
02 > 0⇒ ⟨w4⟩ > 15

4 ) velocity distributions; (ii) particles with larger (smaller) transla-
tional velocities tend to have larger (smaller) rotational velocities (a(0)

11 > 0⇒ ⟨c2w2⟩ > ⟨c2⟩⟨w2⟩ =
9
4 ); and (iii) quasinormal orientations between the vectors c and w tend to be favored against
quasiparallel orientations (a(1)

00 < 0⇒ ⟨cos2ϑ⟩ < 1
3 ). Exceptions to these general features in the cases

of a(0)
02 , a(0)

11 , and a(1)
00 are limited to small regions with α . 1 and β . 1 (top-right corners). For the

kurtosis a(0)
20 , the size of the top-right exception region is significantly larger and, moreover, another

even larger bottom-right corner appears.
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It is worth remarking that while there still exists a prevalence of ⟨cos2ϑ⟩ < 1
3 (lifted-tennis-ball

effect) for the unforced granular gas in the HCS,29,30,36,44 a significantly larger region with ⟨cos2ϑ⟩ > 1
3

(“cannon-ball” effect) appears close to α, β . 1 and a second region with the same behavior appears
in the opposite perfectly smooth limit (α . 1, β & −1). The counterpart of this second region is
completely absent in the case of a heated granular gas considered here. This is closely related to
the fact that while the quasismooth limit β → −1 is singular in the HCS,29,36 it becomes regular in
the heated case. Taking carefully the limit β → −1 in the analytical expressions for θ, γ, and a(ℓ)

jk
, one

gets35

θ → 61 − 45α + 6α2(1 − α)
15 − 11α + 2α2(1 − α)

1 + β

8
κ

κ + 1
→ 0, γ → 4(1 − α2) 61 − 45α + 6α2(1 − α)

241 − 177α + 30α2(1 − α) , (3.7a)

a(0)
20 → 16(1 − α) 1 − 2α2

241 − 177α + 30α2(1 − α) , a(0)
02 → 0, a(0)

11 → 0, a(1)
00 → 0. (3.7b)

The expression of a(0)
20 in Eq. (3.7b) coincides with the one derived directly for strict smooth

spheres (β = −1).41 Interestingly, in the latter case, the rotational distribution function (and hence
the temperature Tr) is not uniquely defined since it preserves with time its initial arbitrary form. On
the other hand, the limit β → −1 shows that the rotational degrees of freedom become decoupled
from the translational ones (a(0)

11 → 0, a(1)
00 → 0) but the rotational distribution function tends to a

Maxwellian a(0)
02 → 0 with a temperature much smaller than the translational one (Tr/Tt → 0).

Of course, the theoretical results presented in this section are valid only if they agree with a direct
comparison with a solution of Boltzmann equation (2.7) free from any additional hypotheses. This
comparison will be done in Sec. IV.

IV. COMPARISON OF THEORETICAL RESULTS WITH DSMC DATA

We display in this section detailed comparisons of the theoretical results with accurate DSMC
data, as obtained from a code we wrote specifically for Boltzmann equation (2.7) for this system.
For data noise reduction, we have used 2 × 106 simulation particles for all cases in this work. More
details on the implementation of DSMC in a heated granular gas can be found in Ref. 42. We fixed
the value κ = 2

5 (uniform spheres) for the reduced moment of inertia and varied either the coefficient
of normal restitution α (at fixed β) or the coefficient of tangential restitution β (at fixed α). The
noise intensity parameter was typically chosen as χ2

0 =
24
5 nπσ2[Tt(0)/m]3/2, which corresponds to

γ(0) = 18
5

√
π ≃ 6.381, but other values were also considered to check the independence of the steady

state on the precise value of χ2
0. In all the cases, the particle velocities were initially sampled from a

Maxwellian distribution [i.e., a(ℓ)
jk
(0) = 0] with a common temperature Tr(0) = Tt(0) [i.e., θ(0) = 1].

For each different system, the corresponding data for both transient and steady states were recorded.

A. Transient behavior

As an illustration of the relaxation towards the steady state, and for the case α = 0.9, β = 0,
and γ(0) = 18

5

√
π ≃ 6.381, we show in Fig. 2 the evolution of the temperature ratio θ(τ) and the

dimensionless noise intensity γ(τ) in panel (a) and of the four cumulants a(0)
20 (τ), a(0)

02 (τ), a(0)
11 (τ), and

a(1)
00 (τ) in panel (b). A very good agreement between theory and simulation is observed. In the case of

γ(τ), the Maxwellian and Sonine approximations give results practically indistinguishable from the
DSMC ones. For θ(τ), the Sonine approximation is still virtually perfect, while the Maxwellian one
tends to slightly overestimate this quantity. The initial reduced white noise intensity γ(0) = 18

5

√
π is

larger than the initial cooling rate µ
(0)
20(0), and therefore, the external-force heating effect dominates

over the inelastic cooling. As a consequence, γ(τ) monotonically decays in time [see Eq. (2.19)] until
the steady state is reached (after about 10 collisions per particle). In this respect, note that according
to Eq. (2.16), the normalized quantity γ(τ)/γ(0) plotted in Fig. 2(a) is equivalent to [Tt(τ)/Tt(0)]−3/2.
Thus, the steady-state value γ(τ)/γ(0) → 0.099 implies Tt(τ)/Tt(0) → 4.66. The heating is much
less efficient in the case of Tr since the stochastic force acts directly on the translational velocity
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FIG. 2. Evolution for α = 0.9, β = 0, and γ(0)= 18
5
√
π ≃ 6.381 of (a) temperature ratio θ(τ) and reduced noise intensity

(normalized to its initial value) γ(τ)/γ(0) and (b) cumulants a
(ℓ)
jk
(τ). Time is measured in units of number of collisions per

particle, τ. Solid lines stand for DSMC results, dashed lines for the Sonine approximation, and dotted lines [only in panel
(a)] for the Maxwellian approximation.

only. Therefore, the rotational-to-translational temperature ratio decays (but non-monotonically) to
Tr(τ)/Tt(τ) → 0.217 and the rotational temperature has hardly increased to Tr(τ)/Tr(0) → 1.010.

The evolution of the cumulants is much less intuitive. As can be observed in Fig. 2(b), for
the case under consideration (α = 0.9, β = 0), the translational kurtosis a(0)

20 hardly increases, the
rotational kurtosis a(0)

02 grows non-monotonically, and the more relevant non-Maxwellian properties
are associated with the correlation quantities a(0)

11 and a(1)
00 . All these features are well captured by our

Sonine approximation, although it tends to slightly overestimate a(0)
02 and underestimate a(0)

11 and |a(1)
00 |.

B. Steady state

Now, we focus on the steady state. The influence of the coefficient of tangential restitution β
on θ, γ, and a(ℓ)

jk
at a fixed coefficient of normal restitution α = 0.9 is shown in Fig. 3. The DSMC

data for the correlation quantities b and h [see Eq. (2.28)] are also plotted in panel (c). Panels (a) and
(b) confirm the excellent performance of simple Maxwellian approximation (3.2) and of the more
elaborate Sonine approximation in what concerns θ and γ. The temperature ratio θ monotonically
increases from θ → 0 in the smooth limit β → −1 [see (3.7a)] to θ ≃ 1 at the perfectly rough case
β = 1. Although not visible on the scale of Fig. 3(a), the DSMC value at β = 1 is actually θ = 0.998.
The quantity γ exhibits a non-monotonic dependence on β, as already discussed in connection with
Fig. 1(b), with a maximum γmax ≃ 0.675 at β ≃ 0.3.

Regarding the cumulants, the behaviors observed in Fig. 3(c) agree with what might have been
anticipated by imagining a vertical slice α = 0.9 in Figs. 1(c)–1(f). While a(0)

02 , a(0)
11 , and |a(1)

00 | vanish

FIG. 3. Steady-state values of (a) the temperature ratio θ, (b) the reduced noise intensity γ, and (c) the cumulants
a
(ℓ)
jk

as functions of β for α = 0.9. Circles stand for DSMC data [with γ(0)= 18
5
√
π ≃ 6.381], solid lines for the Sonine

approximation, and dashed lines [only in panels (a) and (b)] for the Maxwellian approximation. The DSMC data for the
quantities b (×) and h (+) [see Eq. (2.28)] are also included in panel (c).
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FIG. 4. Steady-state values of (a) the temperature ratio θ, (b) the reduced noise intensity γ, and (c) the cumulants a
(ℓ)
jk

as functions of α for β =−0.9. Circles stand for DSMC data [with γ(0)= 18
5
√
π ≃ 6.381], solid lines for the Sonine

approximation, and dashed lines [only in panels (a) and (b)] for the Maxwellian approximation. The DSMC data for the
quantities b (×) and h (+) [see Eq. (2.28)] are also included in panel (c).

at β → −1, are very small at β = 1, and present maxima in the medium-roughness region β ∼ 0,
the translational kurtosis a(0)

20 has a more complex behavior with a (positive) maximum at β ≃ 0.34
and two (negative) local minima at β ≃ −0.79 and β ≃ 0.93. We can also observe that expectations
(3.6) are indeed satisfied. Actually, the only visible differences between a(1)

00 , b, and h occur in the
region β ∼ 0, where one has |h| . |a(1)

00 | . |b|. As is apparent from Fig. 3(c), the performance of
the Sonine approximation is very good, although small discrepancies, especially in the case of the
rotational kurtosis a(0)

02 , appear in the region of medium roughness (β ∼ 0), where the magnitudes
of the cumulants are higher. Although hardly visible in Fig. 3(c), the theory succeeds in predicting
that a(1)

02 < 0 (leptokurtic rotational velocity distribution), a(0)
11 < 0 (high c correlated with low w,

and vice versa), and a(1)
00 > 0 (cannon-ball effect) in the regions 0.89 . β ≤ 1, 0.92 . β ≤ 1, and

0.94 . β ≤ 1, respectively. Partially due to the fact that the translational kurtosis a(0)
20 is the cumulant

of smaller magnitude in the central region, its Sonine prediction is excellent for all β.
Now, we turn to the analysis of the influence of α at fixed β. To that end, we have chosen the

characteristic values β = −0.9 (weak roughness), β = 0 (medium roughness), and β = 0.9 (strong
roughness). The results are displayed in Figs. 4–6, respectively. Note that in Fig. 5, the plotted
DSMC data correspond to six different values of the initial reduced noise intensity ranging from
γ(0) = 3

10

√
π ≃ 0.532 to γ(0) = 18

5

√
π ≃ 6.381. The almost perfect collapse of the points confirms

the independence of the steady state on the values of χ2
0 and, equivalently, γ(0).

From Figs. 4(a), 5(a), and 6(a), we observe that even though the Maxwellian approximation
states that the temperature ratio θ is independent of α, this quantity tends to increase with increasing
inelasticity, except near the elastic limit (α . 1) for β = −0.9 and 0.9, where a minimum value is

FIG. 5. Steady-state values of (a) the temperature ratio θ, (b) the reduced noise intensity γ, and (c) the cumulants a
(ℓ)
jk

as

functions of α for β = 0. Circles stand for DSMC data [with γ(0)= 3
10
√
π, 3

5
√
π, 6

5
√
π, 9

5
√
π,3
√
π, 18

5
√
π], solid lines for the

Sonine approximation, and dashed lines [only in panels (a) and (b)] for the Maxwellian approximation. The DSMC data for
the quantities b (×) and h (+) [see Eq. (2.28)] are also included in panel (c).
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FIG. 6. Steady-state values of (a) the temperature ratio θ, (b) the reduced noise intensity γ, and (c) the cumulants
a
(ℓ)
jk

as functions of α for β = 0.9. Circles stand for DSMC data [with γ(0)= 18
5
√
π ≃ 6.381], solid lines for the Sonine

approximation, and dashed lines [only in panels (a) and (b)] for the Maxwellian approximation. The DSMC data for the
quantities b (×) and h (+) [see Eq. (2.28)] are also included in panel (c).

reached. These fine-grained phenomena are very well accounted for by our Sonine approximation,
although the latter tends to slightly overestimate θ (note the magnified vertical scales). At fixed β, a
decrease of α produces an increase of dissipation and, consequently, an increase of γ. According
to Figs. 4(b), 5(b), and 6(b), the parabolic dependence of γ on α predicted by the Maxwellian
approximation [see Eq. (3.2)] tends to lie slightly below the DSMC points for small α. This
deviation is satisfactorily corrected by the Sonine approximation. In what concerns the cumulants,
Figs. 4(c), 5(c), and 6(c) show again a very good predictive power of the Sonine approximation. As
in Fig. 3(c), the larger discrepancies are found for a(0)

02 for medium roughness (β = 0). Interestingly,
the translational kurtosis becomes larger than the rotational one, i.e., a(0)

20 > a(0)
20 if α is small enough.

Also, the practical equivalence between the correlation quantities a(1)
00 , b, and h is maintained for all

α, although small deviations can be observed at β = −0.9 and β = 0.

C. Marginal velocity distribution functions

The four fourth-degree cumulants a(0)
20 , a(0)

02 , a(0)
11 , and a(1)

00 encapsulate the basic piece of informa-
tion about the deviations of the true velocity distribution function φ(c,w) from the (two-temperature)
Maxwellian φM(c, w) = π−3 exp(−c2 − w2). On the other hand, it seems interesting to perform a more
direct comparison between φ(c,w) and φM(c, w) and assess to what extent φ(c,w) can be represented
by truncated Sonine expansion (3.4). Given that φ(c,w) depends on the three quantities c2, w2, and
(c · w)2 (or, analogously, cos2ϑ), a plot of φ(c,w), or of the ratio φ(c,w)/φM(c, w), would require
a four-dimensional space. Therefore, it is convenient to analyze instead the projections of φ(c,w)
represented by five marginal distributions (2.33).

Figure 7 displays the ratios Rc(c) = φc(c)/φc,M(c), Rw(w) = φw(w)/φw,M(w), Rcw(c2w2) =
φcw(c2w2)/φcw,M(c2w2), Rc·w((c · w)2) = φc·w((c · w)2)/φc·w,M((c · w)2), and Rϑ(cos2ϑ) =
φϑ(cos2ϑ)/φϑ,M(cos2ϑ) for the representative system α = 0.9, β = 0. As we saw from Fig. 3(c),
at this value of the coefficient of normal restitution β, the magnitudes of all the cumulants except the
translational kurtosis a(0)

20 are close to their maxima for α = 0.9. As can be observed from Fig. 7(a),
although the Sonine approximation predicts very accurately the small value of a(0)

20 (a(0)
20 = 0.001 44

versus the DSMC value 0.001 37), the function Rc(c) is only qualitatively captured by Eq. (3.5a).
In particular, the high-velocity tail of Rc(c) (for c & 2.5) is higher than predicted by the Sonine
approximation. In contrast, even though the Sonine approximation overestimates the rotational
kurtosis by about 12% (a(0)

02 = 0.0343 versus the DSMC value 0.0305), Fig. 7(b) shows that the
predicted function Rw(w) is rather accurate up to w ≃ 3.4, where Rw(w) reaches values as high as 2.5.
Again, however, the high-velocity tail of Rw(w) is more overpopulated than the Sonine prediction. In
fact, the high-velocity tails of the velocity distribution, which typically do not influence the first few
cumulants, are not expected to be accounted for by any truncated Sonine expansion.

Now, we turn to the three marginal distribution functions related to the translational-rotational
correlations. Figure 7(c) shows that small (c2w2 . 0.56) and large (c2w2 & 6.15) values of c2w2 are
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FIG. 7. Ratios of marginal distribution functions (a) Rc(c)=φc(c)/φc,M(c), (b) Rw(w)=φw(w)/φw,M(w),
(c) Rcw(c2w2)=φcw(c2w2)/φcw,M(c2w2), (d) Rc·w((c ·w)2)=φc·w((c ·w)2)/φc·w,M((c ·w)2), and (e) Rϑ(cos2ϑ)=
φϑ(cos2ϑ)/φϑ,M(cos2ϑ) for α = 0.9 and β = 0. Symbols stand for DSMC results and lines for the Sonine approximation
theory [see Eq. (3.5)].

more probable than it might be expected from the Maxwellian distribution. This phenomenon is
well described by Sonine approximation (3.5b), although some differences are observed around the
minimum of Rcw(c2w2). Anyway, the error in ⟨c2w2⟩ − 9

4 is less than 3% ( 9
4 a(0)

11 = 0.162 versus the
DSMC value 0.167). According to Fig. 7(d), most of the values of (c · w)2 within the “thermal” range
are less probable than the Maxwellian expectations. This agrees with a negative value of ⟨(c · w)2⟩ − 3

4 ,
which is very well described by the Sonine approximation ( 3

4 a(0)
11 +

15
8 a(11)

00 = −0.0518 versus the
DSMC value −0.0520). Note that the positive value of a(0)

11 (i.e., ⟨c2w2⟩ > ⟨c2⟩⟨w2⟩) is dominated
by a negative value of 5

2 a(1)
00 (i.e., 3⟨(c · w)2⟩ < ⟨c2w2⟩), resulting in 3⟨(c · w)2⟩ < ⟨c2⟩⟨w2⟩ < ⟨c2w2⟩.

Obviously, in order to preserve normalization, Rc·w((c · w)2)must be larger than unity for values of (c ·
w)2 higher than those considered in our DSMC simulations (according to the Sonine approximation,
this would happen for (c · w)2 > 19.26), but they do not affect the sign of ⟨(c · w)2⟩ − 3

4 . Finally,
Fig. 7(e) confirms the lifted-tennis-ball effect, i.e., the values of cos2ϑ smaller than about 1

3 are more
probable than one could expect from a Maxwellian distribution, so that ⟨cos2ϑ⟩ − 1

3 =
3

10 b < 0. The
Sonine approximation predicts the former difference within an error smaller than 5% ( 3

10 b = −0.0169
versus the DSMC value−0.0177). Apart from the average value ⟨cos2ϑ⟩, Sonine approximation (3.5d)
describes rather accurately the whole distribution Rϑ(cos2ϑ), as Fig. 7(e) shows.

V. CONCLUSION

We have developed in this work a kinetic theory for a dilute granular gas of rough hard spheres that
is heated by a uniform stochastic volume force. Our theory is based on a Sonine polynomial expansion
of the granular gas distribution function around the Maxwellian. Thus, we obtain a numerical solution
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of the velocity distribution function at all times and an analytical solution for the uniform steady state
that is reached after a relatively short relaxation time. We have tested our theoretical approach against
DSMC data, obtaining a very good agreement between simulation and theory.

Contrary to the results for a freely cooling granular gas of rough spheres in a recent work,36

the cumulants of the distribution function reach low values (always below 0.1, as measured from
simulations and theory) and thus, our theoretical approach works in the whole range of inelasticity
and roughness values. In other words, it would not be necessary for the heated granular gas to add
higher order terms in the truncated Sonine expansion that we have considered, as done in recent works
on the HCS for inelastic rough spheres.30 Also, thanks to the existence of a true steady state (where
inelastic cooling and external heating balance each other), the quasismooth limit β → −1 is regular
and thus, the results for purely smooth spheres (β = −1) are recovered in that limit. Again, this differs
from the situation in the HCS.29,36,44

Another relevant result for the heated granular gas is that the translations and rotations in particles,
although still correlated as in the HCS,29 show a very mince cannon-ball effect region and this effect
completely disappears from the nearly smooth region, appearing only near the completely elastic and
rough limit. This is in contrast with the behavior in the HCS, where two neat cannon-ball regions may
be found.29,30,44

Summarizing, the white noise force has an effect of making the distribution function more similar
to the Maxwellian for the whole range of coefficients of normal and tangential restitution. Since our
Sonine expansion is done around the Maxwellian, we expect the theoretical solution that we provide
in this work to be an accurate description and a reference for researchers interested in the description
of the transport properties of a heated granular gas of rough spheres.
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APPENDIX: COLLISIONAL MOMENTS

We write in this appendix the Sonine-approximation expressions of the collisional moments
µ
(2r )
pq (with p + q + 2r = 2 and 4) as linear functions of the cumulants a(ℓ)

jk
(with j + k + 2ℓ = 2) and

nonlinear functions of the temperature ratio θ. Those expressions, where we make use of parameters
(2.5), are

µ
(0)
20 = 4


α (1 − α) + β

(
1 − β

) *
,
1 +

3a(0)
20

16
+
-
− 4β2θ

κ
*
,
1 −

a(0)
20

16
+

2a(0)
11 − a(1)

00

8
+
-
, (A1)

µ
(0)
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κ
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,
1 −
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+
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*
,
1 −

a(0)
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16
+

2a(0)
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00
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+
-
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16
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15
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+
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µ
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