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ABSTRACT
In general, the total kinetic energy in a multicomponent granular gas of inelastic and rough hard spheres is unequally partitioned among the
different degrees of freedom. On the other hand, partial energy equipartition can be reached, in principle, under appropriate combinations of
the mechanical parameters of the system. Assuming common values of the coefficients of restitution, we use kinetic-theory tools to determine
the conditions under which the components of a granular mixture in the homogeneous cooling state have the same translational and rotational
temperatures as those of a one-component granular gas (“mimicry” effect). Given the values of the concentrations and the size ratios, the
mimicry effect requires the mass ratios to take specific values, the smaller spheres having a larger particle mass density than the bigger
spheres. The theoretical predictions for the case of an impurity immersed in a host granular gas are compared against both direct simulation
Monte Carlo and molecular dynamics simulations with a good agreement.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097398

I. INTRODUCTION

Bird was a gigantic figure in the field of rarefied gas dynam-
ics. He developed an intuitive and original stochastic algorithm—
the direct simulation Monte Carlo (DSMC) method—that obtains
exact numerical solutions of the Boltzmann equation.1,2 The DSMC
method boosted a fruitful new area of research with many impor-
tant applications in science and engineering alike.3–8 This tech-
nique was later imported into the field of granular gas dynamics
(gases of macroscopic particles that undergo inelastic collisions),
where the total kinetic energy associated with translational and rota-
tional motion is not preserved. Due to the flexibility of the DSMC
method, its adaptation to granular gases is relatively straightfor-
ward, even if rotational motion of grains is taken into account. The
present work is a sincere tribute to Bird’s long-lasting influence and
accomplishments.

One of the most intriguing phenomena displayed in granular
gases (and not present in its monatomic molecular gas counterpart,
where collisions are elastic) is the absence of energy equipartition
among the different degrees of freedom, even in homogeneous and
isotropic states.9,10 In particular, for systems of mechanically differ-
ent grains (granular mixtures), the mean kinetic translational and
rotational energies of each component are, in general, different.11–13

The lack of energy equipartition is also present in the special cases
of one-component rough granular gases14–26 and smooth granular
mixtures.27–33

It must be noticed that the meaning of inelastic collisions used
throughout this paper should be distinguished from the one com-
monly used in polyatomic molecular gases, where collisions make
the translational energy to be converted to rotational and vibrational
energies or even lead to dissociation or ionization. See, for instance,
Refs. 34–39.
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A simple but realistic way of accounting for the effect of inelas-
ticity in the translational and rotational degrees of freedom is by
means of a model of inelastic and rough hard spheres. In this model,
collisions between spheres of components i and j are characterized
by two independent constant coefficients of normal (αij) and tangen-
tial (βij) restitution.14,40 While the coefficient 0 < αij ≤ 1 characterizes
the decrease in the magnitude of the normal component of the rel-
ative velocity of the points at contact of the colliding spheres, the
coefficient−1 ≤ βij ≤ 1 takes into account the change of the tangential
component of the relative velocity. Except for αij = 1 and either βij
= −1 (perfectly smooth spheres) or βij = 1 (perfectly rough spheres),
the total kinetic energy is not conserved in a collision for this model.
An interesting feature of the model is that the rotational and trans-
lational degrees of freedom of the spheres are coupled through the
inelasticity of collisions.25

Since the study of energy nonequipartition in gas mixtures of
inelastic rough hard spheres is, in general, quite complex, it is conve-
nient to consider simple nonequilibrium situations in order to gain
some insight into more general problems. In this paper, we con-
sider the so-called homogeneous cooling state (HCS), namely, a spa-
tially uniform state where the (granular) temperature monotonically
decays in time.41

As mentioned before, one of the novel features arising from
inelasticity is that the partial temperatures (measuring the mean
kinetic translational and rotational energies of each component) are,
in general, different. More specifically, for a granular mixture, one
generally has Trot

i ≠ Ttr
i for any component i, and Ttr

i ≠ Ttr
j and

Trot
i ≠ Trot

j for any pair i and j. Here, Ttr
i and Trot

i refer to the trans-
lational and rotational temperatures, respectively, of component i.
The HCS conditions for determining the dependence of the temper-
ature ratios Trot

i /Ttr
i , Ttr

i /Ttr
j , and Trot

i /Trot
j on the set of coefficients

of restitution ({αij} and {βij}), the concentrations, and the mechan-
ical parameters of the mixture (masses, diameters, and moments
of inertia) were obtained in Ref. 11 by neglecting (i) correlations
between translational and angular velocities and (ii) deviations of the
marginal translational velocity distribution from the Maxwellian. In
spite of those approximations, the theoretical results for the tem-
perature ratios have been recently shown12,13 to present a general
good agreement with computer simulations in the tracer limit (a
binary mixture where the concentration of one of the components
is negligible).

Yet, the fact that energy equipartition is, in general, violated in
granular mixtures does not preclude that, under certain conditions,
partial or total equipartition might be present. To simplify the anal-
ysis, we consider here mixtures with common coefficients of restitu-
tion (α, β) and reduced moment of inertia (κ). Thus, the goal now
is to explore whether a particular choice of concentrations, masses,
and diameters of the mixture components leads to partial energy
equipartition, namely, Ttr

i = Ttr and Trot
i = Trot (for all i) so that

the common rotational-to-translational temperature ratio Trot/Ttr

coincides with that of a one-component gas of inelastic rough hard
spheres.17,20 We can think of this phenomenon by imagining that a
number of intruder spheres are added to a one-component gran-
ular gas and their partial temperatures mimic the corresponding
values of the host gas.42,43 Our results show that, in fact, there are
regions in the parameter space of an s-component system displaying
this mimicry effect. More specifically, for given values of the s − 1
concentration parameters and the s − 1 diameter ratios, there are

s − 1 conditions whose solution gives the s − 1 mass ratios such that
partial equipartition (in the sense described before) exists.

To assess the accuracy of our approximate theoretical predic-
tions, a comparison with computer simulations has been carried
out. In particular, we have numerically solved the Boltzmann kinetic
equation via the DSMC method.1,2 In addition, event-driven molec-
ular dynamics (MD) simulations for very dilute systems have also
been performed. While the DSMC results assess the reliability of the
approximate solution (statistical independence of the translational
and angular velocities plus Maxwellian translational distribution),
the comparison against MD can be considered as a stringent test of
the kinetic equation itself since MD avoids any assumption inherent
to kinetic theory (molecular chaos hypothesis). The simulations have
been performed in the simple case of a binary mixture (s = 2) where
one of the components (say i = 1) is present in tracer concentration
(i.e., n1/n2 → 0, ni being the number density of component i). This
problem is equivalent to that of an impurity or intruder immersed
in a granular gas of rough spheres (component 2).44,45 This implies
that (a) the state of the excess component is not perturbed by the
presence of the tracer particles (so that its velocity distribution func-
tion f2 obeys the closed Boltzmann equation for a one-component
granular gas) and, additionally, (b) collisions among tracer particles
can be neglected in the kinetic equation for the distribution func-
tion f1 (Boltzmann–Lorentz equation). In this limiting case, the three
relevant temperature ratios (namely, Ttr

1 /Ttr
2 , Trot

1 /Ttr
1 , and Trot

2 /Ttr
2 )

are, in general, functions of α, β, κ, the mass ratio m1/m2, and the
diameter ratio σ1/σ2. As we will see, the conditions for mimicry (i.e.,
Ttr

1 /Ttr
2 = 1, Trot

1 /Ttr
1 = Trot

2 /Ttr
2 ) stemming from our approximation

turn out to be independent of α, β, and κ.
The paper is organized as follows. The kinetic theory for

multicomponent granular gases is briefly summarized in Sec. II.
Section III deals with the explicit determination of the so-called pro-
duction rates when the marginal translational distribution is approx-
imated by a Maxwellian distribution. Starting from these general
expressions, the conditions for the mimicry effect are obtained in
Sec. IV for an s-component mixture and, next, particularized to a
binary mixture (s = 2). Section V focuses on the comparison between
the approximate results and computer simulations performed in the
tracer limit for some representative systems. The paper is closed in
Sec. VI with a brief discussion of the main results reported here.

II. BOLTZMANN EQUATION FOR GRANULAR
MIXTURES OF ROUGH SPHERES

We consider an s-component gas of inelastic rough hard
spheres. Particles of component i have a mass mi, a diameter σi, and
a moment of inertia Ii = κimiσ2

i /4. The reduced moment of inertia κi
ranges from κi = 0 (mass concentrated in the center) to κi = 2

3 (mass
concentrated in the surface). If the mass of a particle of component
i is uniformly distributed, then κi = 2

5 . The inelasticity and rough-
ness of colliding particles are characterized by the set of coefficients
of normal (αij) and tangential (βij) restitution. Those coefficients of
restitution are defined by the collision rule

σ̂ ⋅w′ij = −αijσ̂ ⋅wij, σ̂ ×w′ij = −βijσ̂ ×wij, (2.1)

where wij and w′ij are the precollisional and postcollisional relative
velocities of the points at contact of two colliding spheres of compo-
nents i and j, and σ̂ is the unit vector joining their centers. As said
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before, while the coefficient αij ranges from αij = 0 (perfectly inelastic
particles) to αij = 1 (perfectly elastic particles), the coefficient βij runs
from βij = −1 (perfectly smooth particles) to βij = 1 (perfectly rough
particles). Except if αij = 1 and |βij| = 1, kinetic energy is dissipated
upon a collision ij.

At a kinetic level, all the relevant information is contained
in the velocity distribution function fi(v, ω; t) of each compo-
nent, where we have particularized to homogeneous states. Here, v
and ω denote the translational and angular velocities, respectively.
From the knowledge of fi, one can obtain the number density and
the so-called translational and rotational (partial) temperatures of
component i as

ni = ∫ dv∫ dω fi(v,ω; t), (2.2a)

Ttr
i (t) =

mi

3ni ∫
dv∫ dω v2fi(v,ω; t), (2.2b)

Trot
i (t) = Ii

3ni ∫
dv∫ dωω2fi(v,ω; t). (2.2c)

As a measure of the total kinetic energy per particle, one can define
the total temperature as

T =
s
∑
i=1

ni
2n

(Ttr
i + Trot

i ), (2.3)

where n = ∑s
i=1 ni is the total number density.

In the low density regime (niσ3
i ≪ 1), the velocity distribution

functions obey a closed set of coupled Boltzmann equations9–11

∂tfi(v,ω; t) =
s
∑
j=1

Jij[v,ω; t∣ fi, fj], (2.4)

where

Jij[v1,ω1; t∣ fi, fj] = σ2
ij ∫ dv2 ∫ dω2 ∫ d σ̂Θ(v12 ⋅ σ̂)(v12 ⋅ σ̂)

×
⎡⎢⎢⎢⎢⎣

1
α2
ijβ2

ij
fi(v′′1 ,ω′′1 ; t)fj(v′′2 ,ω′′2 ; t)

− fi(v1,ω1; t)fj(v2,ω2; t)
⎤⎥⎥⎥⎥⎦

(2.5)

is the collision operator. Here, Θ(x) is the Heaviside step function,
σij ≡ (σi + σj)/2, v12 = v1 − v2 is the relative translational velocity,
and the double primes denote precollisional velocities. Note that
Eq. (2.4) describes a freely cooling (or undriven) granular gas so
that the total kinetic energy decays monotonically in time.10,41,46 The
evolution equations for the partial translational (Ttr

i ) and rotational
(Trot

i ) temperatures can be obtained by multiplying Eq. (2.4) by miv
2

and Iiω2, respectively, and integrating over the velocities. The results
are

∂tTtr
i = −ξtr

i T
tr
i , ∂tTrot

i = −ξrot
i Trot

i , (2.6)
with

ξtr
i =

s
∑
j=1
ξtr
ij , ξrot

i =
s
∑
j=1
ξrot
ij . (2.7)

Here,

ξtr
ij ≡ −

mi

3niTtr
i
∫ dv∫ dω v2Jij[v,ω; t∣ fi, fj], (2.8a)

ξrot
ij ≡ − Ii

3niTrot
i
∫ dv∫ dωω2Jij[v,ω; t∣ fi, fj] (2.8b)

are energy production rates.
Binary collisions produce two main effects.47,48 On the one

hand, a certain energy transfer exists between the two components
involved and also from rotational to translational (or vice versa)
kinetic energy. On the other hand, part of the total kinetic energy
of both particles is dissipated and goes to increase the internal agita-
tion of the molecules the grains are made of. Thus, as said before, in
the absence of any external driving, the total granular temperature
T monotonically decays with time (Haff ’s law41). However, after a
certain transient stage lasting typically less than 100 collisions per
particle,25 a scaling regime is reached (the so-called HCS) such that
all the time dependence of the distributions fi occurs through T.25,49

This implies ∂t(Ttr
i /T) = ∂t(Trot

i /T) = 0 for all i, and hence

ξtr
1 = ⋯ = ξtr

s = ξrot
1 = ⋯ = ξrot

s . (2.9)

It must be stressed that the energy production rates ξtr
ij and ξrot

ij
are, in general, complex functionals of the distribution functions fi
and fj so that the set of Eq. (2.6) is not closed and Eq. (2.9) cannot be
solved exactly, unless an approximate closure is assumed.

III. MAXWELLIAN APPROXIMATION
In order to determine the production rates ξtr

ij and ξrot
ij in terms

of the partial temperatures Ttr
i , Trot

i , Ttr
j , and Trot

j , we assume that
the velocity distributions in Eq. (2.8) can be approximated by con-
sidering that (i) the translational and rotational velocities are statis-
tically independent and (ii) the marginal translational distribution is
a Maxwellian function. More specifically,

fi(v,ω) → ( mi

2πTtr
i
)

3/2
exp(−miv

2

2Ttr
i
) f rot

i (ω), (3.1)

where f rot
i (ω) is the marginal rotational distribution function. By

inserting Eq. (3.1) into Eq. (2.8) and after some algebra, one obtains
the explicit expressions11,47,48

ξtr
ij =

2m2
ijνij

3miTtr
i

⎡⎢⎢⎢⎢⎣
(αij + βij)

2Ttr
i

mij
− (α2

ij + β
2
ij)(

Ttr
i

mi
+
Ttr
j

mj
)

−β2
ij(

Trot
i

miκi
+

Trot
j

mjκj
)
⎤⎥⎥⎥⎥⎦

, (3.2a)

ξrot
ij =

2m2
ijνijβij

3miκiTrot
i

[2Trot
i

mij
− βij(

Ttr
i

mi
+
Ttr
j

mj
+

Trot
i

miκi
+

Trot
j

mjκj
)], (3.2b)

where we have introduced the quantities

αij ≡ 1 + αij, βij ≡
κij

1 + κij
(1 + βij), (3.3a)

mij ≡
mimj

mi + mj
, κij ≡ κiκj

mi + mj

κimi + κjmj
, (3.3b)
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and the effective collision frequencies

νij ≡ 2
√

2πnjσ2
ij

¿
ÁÁÀTtr

i
mi

+
Ttr
j

mj
. (3.4)

In summary, in an s-component mixture, insertion of Eq. (3.2) into
Eq. (2.9) provides a closed set of 2s − 1 coupled algebraic equations
for the 2s − 1 independent temperature ratios, which, in general,
must be solved numerically.

It must be remarked that, due to the inelastic character of
collisions, the HCS distribution is known to deviate from the
simple form (3.1). First, the translational distribution function
presents fat high-velocity tails50,51 and the velocity cumulants are
not negligible;25,52–55 second, statistical correlations between trans-
lational and angular velocities have been predicted theoretically
and confirmed by simulations.25,26,55–57 However, the impact of
those limitations of Eq. (3.1) on the evaluation of the granular
temperatures is not strong.25 Thus, despite the simplicity of the
approximation (3.1), numerical results obtained from the DSMC
and MD methods for a binary mixture with a tracer compo-
nent compare very well with the theoretical results derived from
Eq. (3.2).13

The parameter space in an s-component mixture is made of s2

+ 5s − 3 quantities: s(s + 1)/2 coefficients of normal restitution, s(s
+ 1)/2 coefficients of tangential restitution, s − 1 mole fractions, s − 1
mass ratios, s − 1 diameter ratios, and s reduced moments of inertia.
To illustrate the impact of both mass and size on the temperature
ratios, let us consider a binary mixture (s = 2) with common coeffi-
cients of restitution and common reduced moments of inertia (i.e.,
αij = α, βij = β, and κi = κ). Without loss of generality, we assume that
n1 ≤ n2. Otherwise, the size ratio σ1/σ2 and the mass ratio m1/m2 are
arbitrary.

Let us first suppose that m1/m2 = 1 and qualitatively analyze the
influence of the diameter ratio σ1/σ2 on the component-component
temperature ratios Ttr

1 /Ttr
2 and Trot

1 /Trot
2 . According to Eq. (3.4), if

σ1/σ2 < 1, component 1 collides less frequently than component 2,
and hence it dissipates less kinetic energy. Therefore, one may expect
Ttr

1 /Ttr
2 > 1 and Trot

1 /Trot
2 > 1. The opposite can be expected if σ1/σ2

> 1. This qualitative analysis is confirmed by Fig. 1(a) for a repre-
sentative case, where it can be observed that the temperature ratios
Ttr

1 /Ttr
2 and Trot

1 /Trot
2 monotonically decrease with increasing σ1/σ2,

regardless of the value of the concentration. As for the influence of
the mass ratio (assuming now σ1/σ2 = 1), it is less straightforward
than the influence of the size ratio. If initially all the temperatures are
equal, Eqs. (3.2) and (3.4) show that the more massive particles have
a smaller cooling rate. As a consequence, once the asymptotic HCS is
reached, one expects the more massive spheres to have a larger tem-
perature. This is confirmed by Fig. 1(b), which shows a monotonic
increase in both Ttr

1 /Ttr
2 and Trot

1 /Trot
2 with increasing m1/m2, again

with independence of the concentration.
Typically, the bigger spheres are also the heavier ones and,

therefore, whether the ratios Ttr
1 /Ttr

2 and Trot
1 /Trot

2 are smaller or
larger than unity results from the competition between both mech-
anisms exemplified by Fig. 1. Thus, it might be possible that a cer-
tain coupling between σ1/σ2 and m1/m2 leads to Ttr

1 /Ttr
2 = 1 and

Trot
1 /Trot

2 = 1. As mentioned in Sec. I, this is what we refer to as the
mimicry effect.

FIG. 1. Plot of the temperature ratios T tr
1/T

tr
2 (thick red lines) and Trot

1 /T
rot
2 (thin

blue lines) for the extreme concentrations n1/n2 = 0 (solid lines) and n1/n2 = 1
(dashed lines). In panel (a), the temperature ratios are plotted vs the size ratio
σ1/σ2 at equal masses (m1/m2 = 1), while in panel (b), the temperature ratios are
plotted vs the mass ratio m1/m2 at equal sizes (σ1/σ2 = 1). In both cases, α = 0.8
and β = 0.

IV. MIMICRY EFFECT
Let us consider again an s-component mixture particularized

to the case of equal coefficients of restitution and reduced moments
of inertia, i.e., αij = α, βij = β, and κi = κ. The question we want
to address is under which conditions the mixture exhibits par-
tial equipartition in the sense that Ttr

i = Ttr and Trot
i = Trot,

even though Ttr ≠ Trot, the ratio Trot/Ttr being the same as that
of a one-component granular gas.17,20 If that is the case, we can
say that the mixture mimics a one-component gas in the above
sense.

By setting Ttr
i = Ttr and Trot

i = Trot in Eq. (3.2), one obtains

ξtr
ij = Xij

√
TtrFtr(θ), (4.1a)

ξrot
ij = Xij

√
TtrFrot(θ), (4.1b)

where θ ≡ Trot/Ttr and

Xij =
4
√

2π
3

√mijnjσ2
ij

mi
, (4.2a)
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Ftr(θ) = α(2 − α) + β(2 − β) − β
2

κ
θ, (4.2b)

Frot(θ) = β
κ2θ

[(2κ − β)θ − βκ]. (4.2c)

Here, according to Eq. (3.3), α = 1 + α and β = (1 + β)κ/(1 + κ). It
is noteworthy that in the factorizations (4.1), the quantity Xij is the
same in ξtr

ij and ξrot
ij and depends only on the concentrations, masses,

and diameters of the spheres. By contrast, the functions Ftr(θ) and
Frot(θ) only depend on the temperature ratio θ and the mechanical
parameters α, β, and κ.

The HCS conditions (2.9) decouple into

X1 = ⋯ = Xs, Xi ≡
s
∑
j=1

Xij, (4.3)

and Ftr(θ) = Frot(θ). From the latter equality, one easily gets

θ =
√

1 + h2 + h, (4.4a)

h = (1 + κ)2

2κ(1 + β)2 [1 − α2 − (1 − β2)1 − κ
1 + κ

]. (4.4b)

For a general s-component mixture, Eq. (4.3) gives s − 1 conditions
for the 3(s − 1) density, mass, and diameter ratios. In the particular
case of a binary mixture (s = 2), the single condition on n1/n2,m1/m2,
and σ1/σ2 is

n1

n2
=

(1 + σ1
σ2
)2
√

m2
m1
− 4

√
m1+m2

2m2

(1 + σ1
σ2
)2
√

m1
m2
− 4 σ

2
1
σ2

2

√
m1+m2

2m1

. (4.5)

Equation (4.5) is equivalent to a quadratic equation for σ1/σ2 and
a quartic equation for m1/m2. In the special tracer limit (n1/n2 →
0), the quartic equation for the mass ratio reduces to a quadratic
equation whose solution is

m1

m2
= 1

2

⎡⎢⎢⎢⎢⎣

√
1 +

1
2
(1 +

σ1

σ2
)

4
− 1

⎤⎥⎥⎥⎥⎦
. (4.6)

In this tracer limit, m1/m2 has a lower bound µ−(0) = (
√

3/2
− 1)/2 ≃ 0.11 (corresponding to σ1/σ2 → 0), but it does not have
any upper bound. However, for finite concentration (n1/n2 ≠ 0), an
additional finite upper bound (corresponding to σ1/σ2 →∞) exists,
namely, µ−(n1/n2) ≤m1/m2 ≤ µ+(n1/n2), where

µ−(x) =
2
√

2
√

3 + x − x − 4
8 − x2 , µ+(x) =

1
µ−(x−1) . (4.7)

The dependence of µ−(n1/n2) and µ+(n1/n2) on the concentra-
tion parameter n1/n2 is shown in Fig. 2. We observe that µ−(n1/n2)
presents a very weak dependence on the concentration. On the other
hand, µ+(n1/n2) increases rapidly as one approaches the tracer limit,
diverging at n1/n2 = 0. The mimicry effect is possible only inside
the shaded region of Fig. 2; outside of that region, Eq. (4.5) fails to
provide physical solutions for σ1/σ2.

FIG. 2. Plot of µ−(n1/n2) (lower curve) and µ+(n1/n2) (upper curve) vs the concen-
tration parameter n1/n2. The mimicry effect is possible only in the region µ−(n1/n2)
≤ m1/m2 ≤ µ+(n1/n2).

Figure 3 plots the values of m1/m2 vs σ1/σ2 exhibiting the
mimicry effect for two extreme concentrations, i.e., n1/n2→ 0 (tracer
limit) and n1/n2 = 1 (equimolar mixture). The curves correspond-
ing to intermediate concentrations lie in the region between those

FIG. 3. Phase diagram in the plane m1/m2 vs σ1/σ2. The solid (dashed) curve
represents the locus of mimicry in the tracer (equimolar) limit n1/n2 → 0 (n1/n2 →

1). Panel (a) shows the region 0 ≤ σ1/σ2 ≤ 2 and 0 ≤ m1/m2 ≤ 2, while panel (b)
shows (in logarithmic scale) the region 1 ≤ σ1/σ2 ≤ 100 and 1 ≤ m1/m2 ≤ 100.
In panel (b), the horizontal dotted line is the asymptote m1/m2 → µ+(1) ≃ 10.657
corresponding to the limit σ1/σ2 →∞ in the equimolar case.
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two lines. While a weak influence of the concentration can be
observed if σ1/σ2 ≲ 2, the influence becomes very strong if σ1/σ2
is very large. In particular, in the limit σ1/σ2 → ∞, the mass ratio
m1/m2 tends to its asymptotic value µ+(1) ≃ 10.657 in the equimo-
lar case, but it diverges as m1/m2 ≈ (σ1/σ2)2/2

√
2 in the tracer

limit.
Given a value of n1/n2, the locus m1/m2 vs σ1/σ2 splits the plane

into two regions. In the points below the locus curve, Ttr
1 < Ttr

2 and
Trot

1 < Trot
2 as a consequence of the competition between the size and

mass effects previously discussed in connection with Fig. 1. Alterna-
tively, Ttr

1 > Ttr
2 and Trot

1 > Trot
2 in the points above the locus curve. It

is interesting to note that the curve representing equal particle mass
density, m1/m2 = (σ1/σ2)3, lies below the mimicry curve if σ1 < σ2
and above it if σ1 > σ2. Thus, if the mass density of both types of
spheres is the same, the bigger spheres have a larger (translational or
rotational) temperature than the smaller spheres. On the other hand,
the mimicry effect requires the bigger spheres to be less dense than
the smaller spheres.

Since the mimicry conditions (4.3) are independent of the val-
ues of α, β, and κ, they are the same conditions as for equipartition in
the smooth-sphere case (β = −1), where only the translational tem-
peratures are relevant. In the rough-sphere case, however, complete
equipartition is not fulfilled since Ttr and Trot are, in general, dif-
ferent. Full energy equipartition (i.e., Ttr = Trot) is achieved if Ftr(1)
= Frot(1), i.e., α2(1 + κ) = β2(1 − κ) + 2κ.

V. COMPARISON WITH COMPUTER SIMULATIONS
The theoretical predictions discussed in Sec. IV for the mimicry

effect are based on the simple ansatz (3.1). On the other hand, previ-
ous results25,55,56 show that statistical correlations between the trans-
lational and angular velocities, as well as cumulants of the transla-
tional distribution, can be observed. Therefore, it is important to
assess the reliability of the theoretical results based on Eq. (3.1) by
comparison with computer simulations.

For the sake of simplicity, we consider here an intruder (com-
ponent 1) immersed in a one-component granular gas (component
2). This is equivalent to a binary mixture in the tracer limit (n1/n2
→ 0). In addition, α12 = α22 = α, β12 = β22 = β, and κ1 = κ2 = κ.
Two representative cases are studied: a small intruder (σ1/σ2 = 1

2 )
and a big intruder (σ1/σ2 = 2). The masses of the intruders are
taken as the values for which, according to Eq. (4.6), a mimicry
effect is expected. More specifically, m1/m2 =

√
113
28 − 1

2 ≃ 0.440

and m1/m2 =
√

83
8 − 1

2 ≃ 2.721 for σ1/σ2 = 1
2 and σ1/σ2 = 2,

respectively. Thus, the small intruder is (m1/σ3
1)/(m2/σ3

2) = 3.52
times denser than a particle of the host gas, while the big intruder is
(m2/σ3

2)/(m1/σ3
1) = 2.94 times less dense than a particle of the host

gas.
In the simulations, the values of the coefficient of tangential

restitution are β = −0.75, −0.25, 0.25, 0.75 (DSMC) and β = −0.5,
0, 0.5, 1 (MD), while the coefficient of normal restitution in both
sorts of simulation is chosen as α = 0.9. Figure 4 displays the sim-
ulation values of the three independent temperature ratios Ttr

1 /Ttr
2

[panel (a)], Trot
1 /Ttr

1 , and Trot
2 /Ttr

2 [panel (b)]. One can observe from
Fig. 4(a) that the translational temperatures of both the small and
big intruders are indeed very close to that of the host gas. The larger
deviation of Ttr

1 /Ttr
2 from unity (about 5%) appears at β = 1, but even

FIG. 4. Plot of the simulation results for (a) T tr
1/T

tr
2 and (b) Trot

i /T
tr
i (i = 1, 2) vs

the coefficient of tangential restitution β at α = 0.9 and κ = 2
5 . In panels (a) and

(b), the (red) down triangles correspond to a small intruder with σ1/σ2 =
1
2 and

m1/m2 = 0.440, while the (blue) up triangles correspond to a big intruder with σ1/σ2
= 2 and m1/m2 = 2.721. In panel (b), the (black) circles represent the temperature
ratio Trot

2 /T
tr
2 of the host gas, while the solid line is the one-component theoretical

prediction. The filled symbols at β = −0.75, −0.25, 0.25, 0.75 represent DSMC
data, and the open symbols at β = −0.5, 0, 0.5, 1 represent MD data. The error
bars are of similar size as the symbols.

in that case, Ttr
1 is practically the same for the small and big intrud-

ers. As a complement, Fig. 4(b) exhibits a rather good collapse of
the rotational-to-translational temperature ratio for the small and
big intruders and the host gas. On the other hand, the simulation
data show a tendency of that ratio to be slightly smaller (larger)
for the small (big) intruder than for the host gas. Apart from that,
the theoretical prediction (4.4) for Trot

i /Ttr
i agrees well with the

simulation results although it tends to overestimate them. In sum-
mary, Fig. 4 shows that the simulation data confirm reasonably well
the theoretical prediction of the mimicry effect. Interestingly, at |β|
= 0.75, the DSMC results exhibit a high degree of full equipartition,
in agreement with the theoretical expectation at ∣β∣ =

√
167
300 ≃ 0.746.
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VI. DISCUSSION

It is well known that in a multicomponent gas of inelastic and
rough hard spheres, the total kinetic energy is not equally parti-
tioned among the different degrees of freedom. This implies that
the translational and rotational temperatures associated with each
component are, in general, different.

It is of physical interest to find regions of the system’s param-
eter space where a certain degree of energy equipartition shows up
(effect that we denote as mimicry). Here, we have focused on the
HCS of systems with common values of the coefficients of normal
and tangential restitution (i.e., αij = α, βij = β), as well as of the
reduced moment of inertia (i.e., κi = κ), and have addressed the
question of whether all the components of the mixture mimic a one-
component system in the sense that they adopt the same rotational
and translational temperatures as the latter.

From a simple approximation, where (i) the statistical cor-
relations between the translational and angular velocities are
neglected and (ii) the marginal translational distribution function
is approached by a Maxwellian, we have determined the conditions
(4.3) for the mimicry effect. Interestingly, those approximate condi-
tions are “universal” in the sense that they are independent of the
values of α, β, and κ. In fact, they are the same conditions as for
equipartition in the case of smooth spheres (β = −1). For a mix-
ture with an arbitrary number of components and given the mole
fractions and the diameter ratios, those conditions provide the mass
ratios for which mimicry is present. In the particular case of a binary
mixture, there is a single condition given by Eq. (4.5). As can be
seen from Fig. 2, the mass ratio has lower and upper bounds, which
depend on the concentration. This means that if the mass ratio is
outside of the above interval, no mimicry effect is possible, no matter
the value of the size ratio.

To assess the theoretical predictions, computer simulations
have been carried out in the tracer (or impurity) limit, where the
mimicry condition becomes quite simple, as can be seen from
Eq. (4.6). Both DSMC and MD simulations present a good agree-
ment with the theoretical results, as shown in Fig. 4. While the
DSMC results gauge the reliability of the assumptions (i) and (ii)
described in the preceding paragraph, the MD results go beyond
that since they are free from the molecular chaos assumption. There-
fore, the agreement between the kinetic theory approximations and
the MD data can be considered as a relevant result of the present
paper.

The simplicity of the theoretical analysis for mimicry carried
out in this work is heavily based on the assumption that the coeffi-
cients of normal and tangential restitution and the reduced moment
of inertia of the impurity are the same as those of the particles of
the host gas. This seems to be at odds with the fact that the mimicry
effect requires the smaller spheres to have a higher particle mass den-
sity than the bigger spheres. A way of circumventing this problem is
by tailoring the impurity particles with a nonuniform mass distribu-
tion made of three concentric shells so that the external shell is made
of the same material as that of the host particles. This is worked out
in the Appendix.

While in this paper, our focus has been mainly academic and
driven by purely scientific interest, the mimicry effect discussed
here might find some practical applications. For instance, the trans-
lational and rotational temperatures of a granular gas could be

probed by introducing in the gas a few bigger tracer particles with
appropriate particle mass densities.
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APPENDIX: TAILORING THE MOMENT OF INERTIA
AND MASS OF A SPHERE

Consider a sphere of mass m1 and radius R1 = 1
2σ1 with

a nonuniform radial distribution of mass. More specifically, we
assume that the sphere is made of an inner core of density ρA and
radius RA, a spherical shell of density ρB and radii RA and RB, and
finally an outer spherical shell of density ρ2 and radii RB and R1 [see
Fig. 5(a)]. The total mass of the sphere is

m1 =
4π
3

[ρAR3
A + ρB(R3

B − R3
A) + ρ2(R3

1 − R3
B)] (A1)

so that the average density is

ρ1 =
m1

4π
3 R

3
1

= ρAz3
A + ρB(z3

B − z3
A) + ρ2(1 − z3

B), (A2)

where zA ≡ RA/R1 and zB ≡ RB/R1. Note that 0 < zA < zB < 1.
Equation (A2) expresses ρ1 as a weighted average of ρA, ρB, and ρ2,
Obviously, min{ρA, ρB, ρ2} ≤ ρ1 ≤ max{ρA, ρB, ρ2}.

FIG. 5. (a) Sketch of a sphere with a nonuniform mass distribution of average
density ρ1 and a reduced moment of inertia κ = 2

5 . In this case, ρB < ρ1 < ρA = ρ2

so that RA/R1 ≃ 0.61 and RB/R1 ≃ 0.90. (b) The same, except that ρB > ρ1 > ρA =
ρ2. (c) Sphere with a uniform mass distribution of density ρ2 and reduced moment
of inertia κ =

2
5 . Panels (a) and (b) represent intruders with σ1/σ2 = 2 and 1

2 ,
respectively, while panel (c) represents a particle of the host gas. If (a) m1/m2 =
2.721 and (b) m1/m2 = 0.440, then ρB/ρ2 = 0.32 and 6.04, respectively.
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The moment of inertia of a spherical shell of density ρB and
radii RA and RB is 8π

15 ρB(R
5
B − R5

A). Thus, the moment of inertia of
our sphere is

I1 =
8π
15

[ρAR5
A + ρB(R5

B − R5
A) + ρ2(R5

1 − R5
B)], (A3)

and its reduced value being

κ = I1

m1R2
1
= 2

5
[ ρA
ρ1
z5
A +

ρB
ρ1

(z5
B − z5

A) +
ρ2

ρ1
(1 − z5

B)]. (A4)

Therefore, given ρA/ρ1, ρB/ρ1, ρ2/ρ1, and κ, Eqs. (A2) and (A4) allow
one to obtain zA and zB.

Henceforth, we assume that the particle mimics a sphere with
a uniform mass distribution, i.e., κ = 2

5 . In that case, Eqs. (A2) and
(A4) can be rewritten as

1 = YB2z3
B − YBAz3

A = YB2z5
B − YBAz5

A, (A5)

where
YB2 ≡

ρB − ρ2

ρ1 − ρ2
, YBA ≡

ρB − ρA
ρ1 − ρ2

. (A6)

It can be checked that the condition 0 < zA < zB < 1 implies 1 < YB2
< 1 + YBA, which yields ρA < ρ1 < ρB and ρB < ρ1 < ρA for ρ1 > ρ2 and
ρ1 < ρ2, respectively. For simplicity, let us choose the same density
for the inner core and the outer shell, i.e., ρA = ρ2. In that case, YBA
= YB2 = Y and Eq. (A5) yields

1
Y
= z3

B − z3
A = z5

B − z5
A. (A7)

In particular, if one chooses Y = 2, the solution is zA = 0.605 907 and
zB = 0.897 293.

In the case of a (big) intruder with σ1/σ2 = 2 and m1/m2 = 2.721
[see Fig. 5(a)], then ρ1/ρ2 = m1σ3

2/m2σ3
1 = 0.34 and (1 − ρ1/ρ2)−1 =

1.52, so it is possible to choose Y = 2. In such a case, the density of
the middle shell is ρB/ρ2 = 1 − 2ρ1/ρ2 = 0.32.

Alternatively, for a (small) intruder with σ1/σ2 = 1
2 and m1/m2

= 0.440 [see Fig. 5(b)], ρ1/ρ2 = m1σ3
2/m2σ3

1 = 3.52. If we again choose
Y = 2, the density of the middle shell is ρB/ρ2 = 2ρ1/ρ2 − 1 = 6.04.
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