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A kinetic model for a dilute multicomponent gas system is proposed. It is constructed by 
replacing the Boltzmann collision operator with a relaxation-time term, in the same manner as 
in the Bhatnagar-Gross-Krook (BGK) model for a single gas. The model contains several 
parameters that are determined by keeping some of the main properties of the Boltzmann 
description. In contrast to previous works, the BGK equation is recovered when mechanically 
identical particles are considered. Thus the model can be expected to apply to systems in which 
masses are comparable. The transport properties to the Navier-Stokes level are studied and 
Onsager's reciprocal relations are found to hold. 

I. INTRODUCTION 

The mathematical complexity of the nonlinear Boltz­
mann equation has led to the proposal of several model ki­
netic equations. The general idea is to approximate the colli­
sion temi by a simpler expression keeping the main physical 
properties. For a single gas, the so-called Bhatnagar -Gross­
Krook (BGK) model 1 has been shown to be very fruitful. 
The effect of the molecular collisions in this model is repre­
sented by an exponential relaxation toward local equilibri­
um. For multicomponent systems, several models within the 
same spirit have been proposed.2-s Quite surprisingly, none 
of the models we are aware of reduce to the BGK equation 
when particularizing to mechanically identical components 
(e.g., self-diffusion). This is because of the highly nonlinear 
character of the modeled collision terms, in contrast to the 
bilinearity of the Boltzmann equation. It must be pointed out 
that these models are generally applied to the case of a dispa­
rate-mass binary mixture, and in this limit the above criti­
cism is meaningless. 

The aim of this paper is to present a kinetic model for a 
multicomponent gas that is compatible with the usual BGK 
equation for a single gas. Along with previous . models, it 
conserves mass, momentum, and energy. Although the 
model is not formally restricted to any range of mass ratios, 
we expect it to be more appropriate to systems in which 
masses are of the same order. In this sense, it can be consid­
ered as a complement to previous works.3-s In our model, 
the separation between self- and cross-collisions is not neat 
but rather effective: all the collision terms take into account 
the local state of the system as a whole. We think that this is 
close to the spirit of the BG K approximation. For the sake of 
simplicity, we shall restrict ourselves to Maxwell molecules, 
for which the collision frequency is temperature indepen­
dent. The generalization to other interaction potentials is 
straightforward. 

The plan of the paper is as follows. In Sec. II the nota­
tion is established and some properties of the Boltzmann 
description are discussed for further reference. The model is 
introduced in Sec. III through the definition of a reference 
distribution function. It contains parameters that are deter- · 
mined by requiring the conservation laws to be satisfied and 
also the collisional transfers of momentum and energy to 
agree with those of the Boltzmann description for Maxwell 

molecules. In Sec. IV the expressions for the fluxes of mass, 
momentum, and energy to Navier-Stokes order are derived, 
and Onsager's reciprocal relations are checked. Finally, 
some concluding remarks are made in Sec. V. 

II. BOLTZMANN DESCRIPTION 

We consider anN-component mixture. In the low-den­
sity limit, the time evolution of the system is described by the 
set of Boltzmann equations6 

a N 
-a/; +v·V/; =Kii + IKij, (1) 

t j#i 

where/; (r,v;t) is the one-particle distribution function of 
species i and Kii =Kii [ /;,Jj] is the nonlinear Boltzmann 
collision operator. The first and second terms on the right­
hand side of Eq. ( 1) describe self- and cross-collisions, re­
spectively. They obey the following collisional invariant 
conditions: 

J dv(l,m;v,m;v2 )Kii = 0, 

J dvK!i =0, 

J dv m;vK!i + J dv mjvKj; = 0, 

J dv m;v2Kii + J dv mjv2Kj; = 0, 

(2) 

with m; being the mass of a particle of species i. As a conse­
quence, the number of particles of each species, the total 
momentum, and the total energy are conserved. In terms of 
the distribution functions, the densities of these quantities 
are given by 

n; = J dv/;, (3) 

pu = ~Jdv m;v/; = ~p;U;, 
I I 

(4) 

3 k 1 2 ~ J d m; 2 • -n 8 T+-pu = L..J v-v J;• 
2 2 i 2 

(5) 

where p; = m;n; is the mass density of species i, p = l:; p; is 
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the total mass density, and n = .I; n; is the total number 
density. Equation ( 4) defines the local velocity of the mix­
ture, u. Equation ( 5) defines the local temperature of the 
mixture, T. It is convenient to define also a local "tempera­
ture" T; for each species as 

2.n; k 8 T; =JdvJ...m;(v-uYJ:. (6) 
2 2 

From Eqs. (5) and (6) it is easy to obtain 

2.nk8 T= L (2. n; k 8 T; + J_ m;n;(U;- u) 2
). (7) 

2 i 2 2 

It is worth remarking that in the special case of all the 
specie!: being mechanically identical, the total distribution 
function 

I=IJ: 
i 

itself obeys the Boltzmann equation 

~f+v·Vf=K[f,f]. ar 

(8) 

(9) 

This follows from the fact that all the cross sections are equal 
and from the bilinear character of the collision operator K. 
Of course, the above result is not accidental, but a direct 
consequence of mechanics laws. 

Before closing this section, we quote a result that will be 
used later. For Maxwell molecules, one obtains 7 

( 10) 

m.m. 
=-vij ' 1

2
n;[3k8 (T;-1j) 

(m; + mj) 

-mj(u; -u)2
], (11) 

where 

vij =Anj(Xij(m; + mj)/m;mj) 112 (12) 

is a collision frequency. Here, A is a pure number and Xij is 
the proportionality constant in the force law. Equations 
(10) and (11) characterize the collisional transfer of mo­
mentum and energy between particles of different species. 

Ill. DEFINITION OF THE MODEL 

As mentioned in the Introduction, several kinetic mod­
els for the Boltzmann equations ( 1) have been proposed.3

-
5 

The general idea is to approximate the Boltzmann collision 
operator Kij by a relaxation-time term of the form 

A I" R 
Kij = - ;ij<Ji-I ij). (13) 

Here, ;ij is an effective collision frequency of a particle of 
species i with particles of species j. It has the general proper­
ty n;;ij = nj;ji· Also,/~ is a reference distribution function 
whose functional dependence on the velocity is assumed. It 
contains position- and time-dependent fields that are deter­
mined by requiring K ij to keep some of the main properties of 
the Boltzmann operator. 

361 Phys. Fluids A, Vol. 1, No. 2, February 1989 

The original form proposed by Gross and Krook2 for f ~ 
IS 

/~ = n; ( m;I21Tk8 Tij )312 

Xexp[- (m;l2k8 Tij)(v- uij) 2
], {14) 

where uij and Tij are the above-mentioned fields. For the 
case of a disparate-mass binary mixture, some authors3- 5 

have used linearizations of ( 14) about the local equilibrium 
distribution function of species i. 

The collision term {13) with/~ given by Eq. (14) can 
be made to satisfy the conservation laws, but it has the fol­
lowing shortcoming. When a system of mechanically identi­
cal particles is considered, the total distribution function j, 
as defined by Eq. ( 8), does not obey a closed equation. This 
is due to the highly nonlinear character of/~ in Eq. ( 14). 
Although the same limitation is present in the forms pro­
posed in Refs. 3-5, it is not relevant as long as some limit of 
disparate masses is considered. 

In order to avoid the above difficulty, we propose for f ~ 
the form 

!~ = n; <m;I21Tks D 312 

Xexp(- m; V2/2k8 D (1 + Aij + Bij·V + Cij V 2
), 

(15) 

where V=v- u, and Aij, Bij, and Cij are parameters to be 
determined later. This expression has the same structure of 
some kind oflinearization about a local equilibrium charac­
terized by the temperat~re and the flow velocity of the whole 
system. In this sense, Kij now depends on the state of the 
system and not only on the species i and j. The physical 
picture is that the main global effect of the collisions on parti­
cles of species i is to produce a tendency toward the local 
equilibrium state defined by the parameters of the mixture. 
The peculiarities of collisions between two given species are 
taken into account as a correction through the parameters 
Aij, Bij, and Cij in Eq. {15). Because of this description of 
collisions, we do not expect our model to apply to a system 
composed of very dissimilar particles. Ill this latter case the 
effects of different collisions could not be treated in a global 
way. 

In order to specify the model, the 5N 2 parameters 
-1_ij, Bij, and Cij must be fixed. First, as usuaV-5 we require 
Kij to satisfy the conservation laws, Eqs. (2). This gives the 
following 3N 2 + 2N relations: 

Aij= -3(k8 Tim;)Cij, (16) 

Bij + Bji = (l/k8 D [m;(U;- u) + mj(uj- u) ], 
(17) 

+_1 __ + __ 1_ (u. _ u)2 . T.- T m. ) 

T 3k8 T 1 
(18) 

Thus it is seen that the self-collision terms are already univo­
cally identified, but 2N(N- I) additional conditions are 
needed in order to complete the specification of the cross­
collision terms. Before choosing them, we will show that 
Eqs. {16)-(18) are sufficient to guarantee that our model 
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reduces to a proper closed kinetic equation when mechani­
cally equivalent particles are considered. In this case, the 
exact velocity-dependent collision frequencies derived from 
the Boltzmann equation have the property 

(19) 

for any species i. This equation defines the collision frequen­
cy of the system {;, and holds for any interaction potential. 
We want the effective collision frequencies of our model to 
keep the above property. This implies that either {;ii is tem­
perature independent or that it depends only on the mixture 
temperature T. The former case corresponds to Maxwell 
molecules, while the latter is in the spirit of our approxima­
tion as discussed immediately after Eq. ( 15). 

a N 

-a/;+ v·V /; = - I {;ij(/;- /~), 
t j= I 

(28) 

with/~ given by Eqs. (15), (16), (24), and (25). 

IV. TRANSPORT PROPERTIES 

As an application of the model proposed in the previous 
section, we are going to study the transport properties in the 
first Chapman-Enskog approximation. Following the gen­
eral method, 6 we expand around the local equilibrium of the 
mixture: 

(29) 

where 

By addingthekineticequationsforall species, and using f ~o> = nj (m;/21Tk8 T) 312 exp( - mi V 2!2k8 T). (30) 
the relations (16)-(18) and the property (19), one easily.-· 
obtains · 

(20) 

where f is the distribution function defined by Eq. ( 8) and 
f LE is the l~al equilibrium distribution function: 

jLE = n(m/21Tk8 T) 312 exp(- mV2/2k8 T). (21) 

Equation (20) is the usual BGK kinetic equation. 1 There­
fore our model can be considered as a consistent extension to 
a multicomponent system ofthe BGK equation. 

As mentioned above, we still have 2N(N- I) free pa­
rameters. Following other authors,3

-
5 we require the colli­

sional transfer of momentum and energy to be the same as 
that of the Boltzmann equation for Maxwell molecules. 
Therefore, according to Eqs. ( 1 0) and ( 11 ) , we impose the 
conditions 

(22) 

(23) 

where the Boltzmann collision frequency vii has been re­
placed by the effective collision frequency {;ii. Equations 
(22) and (23) give 

Bii = (m;/k8 T)(u0 - u), (24) 

c .. = ....!!2__ ( Tii- T + ....!!2__ (u .. - u)2). 
u 2k8 T T 3k8 T u 

(25) 

In these expressions, 

uii = (miui + miui )/(mj + mi ), (26) 

Tii = Tj + 2[mjm/(mj + m) 2
] [ (Tj- Tj) 

+ (m/6k8 )(ui - ui )2
]. (27) 

It is worth noting that these are the same as those used by 
other authors in models based on Eq. ( 14). 3-

5 In summary, 
our model is defined by the set of coupled equations 
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A standard calculation yields, for the first-order correction, 

- itl {;ii { f ~~>- f ~o> [ k:~ V•(uii- u) 

+ ( mjV
2 _l_) Tii- T]} 

2k8 T 2 T 

where I is the unit tensor and 

n. P· 
di =....!... V ln(nikB T) -....!... V ln(nk8 T) 

n p 

(32) 

Here, we have introduced the chemical potential (per unit 
mass) J.li defined by8 

k8 T ( 3 2k8 T) J.li =-- lnni --In--- . 
mj 2 mi 

(33) 

Upon writing Eq. (31), we have neglected a term propor­
tional to (uii- u) 2

, since r ~o> gives ui = u and therefore 
(ui - u) is at least of first order. In fact, it is easy to show 
that Tii - T can also be neglected to first order. Multiplica­
tion of Eq. ( 31) by V 2 and integration give 

N m. I {;ij J 2 ( 1J - Tj) = 0, 
i=l (mj + mi) 

(34) 

whose solution is Tj = 1J for all i,j. Therefore Eq. (7) im­
plies that, to first order, Tj = T for all i. 

Now, we are going to use Eqs. (30) and (31) to com­
pute the fluxes in the system. As usual, we define the mass 
flux of species i, the pressure tensor, and the heat flux by 

Ji = J dv m;V /; 

=pi(ui -u), 

P= ~ f dvmjVV /;, 
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(37) 

respectively. From Eqs. (30) and (31) we easily obtain 

f tiJ m; (J; _P; JJ) 
J=l m1 +m1 p1 

= -p~ f (8q _Pi) (Vp.J)r, 
J=l p 

P = nk8 TI-7J[Vu + (Vu)+- ~(V•u) 1], 

5 N J; 
Jq =-kBT L --A.VT. 

2 i=l m1 

(38) 

(39) 

(40) 

In the last two equations, we have introduced the shear vis­
cosity coefficient 

N n. 
7]=kBT L -!.., 

I= I t1 

and the thermal conductivity coefficient 

5 2 ~ n1 
A. =-k 8 T £.. --, 

2 i=l m1 t 1 

where 
N 

(41) 

(42) 

t~ =I tlj <43> 
J=l 

is the total collision frequency for particles of species i. The 
linear set of equations (38) must be solved subject to the 
constraint 

(44) 

which follows from the definition (35). By taking this into 
account, Eqs. (38) can be rewritten as 

N N 

L AqJJ = L O.q(Vp.j)r, (45) 
J= I }=I 

where 

{

0, i=j, 

Aq = 1 ,. m1 1 ~ ,. mk 
- ~IJ +- £.., ~ik ' i"/=j, 
p1 m; + m 1 p1 k #t m; + mk 

and 

0.q=8q-P/P· 
Now, the set of equations ( 45) can be solved to give 

N ( Vp.1 ) J;=- ILIJ - ' 
J=l T T 

with the matrix of transport coefficients Lq being 
N 

Lq =- T L (A- 1);kO.kj• 
k=l 

(46) 

(47) 

(48) 

(49) 

Equations (39), (40), and (48), with transport coefficients 
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given by Eqs. ( 41), ( 42), and ( 49) are the constitutive equa­
tions to Navier-Stokes order of our model. They have a simi­
lar structure to those obtained with the Boltzmann equation 
for Maxwell molecules. 3 For more general interaction po­
tentials the Boltzmann equation leads to additional crossed 
contributions to the heat flux (the so-called Dufour effect) 
and to the mass fluxes (Soret effect).6.8 

Before closing this section, let us check that our model is 
consistent with Onsager's reciprocal relations. The general 
form of the constitutive equations to Navier-Stokes order is8 

VT ( Vp.i) 
J;= -L;q?-~Lij T r' (50) 

(51) 

Onsager's relations stateL19 = L 90 LIJ = L11 , whereas in our 
case, L 19 = L 91 = 0. Besides, from Eqs. (46) and (47) it is 
easily seen that O.A + = AO. +, and then from the definition 
(49) one obtains LIJ = L11 • 

V. CONCLUSIONS 

In this paper we have proposed a kinetic model for a 
multicomponent gas mixture that is an extension of the 
BG K kinetic equation for a single gas. The model is expected 
to be suitable for systems of like particles, in contrast to the 
results of some previous works. The proposed set of equa­
tions keeps the main properties of the Boltzmann descrip­
tion. In particular, Onsager's reciprocal relations are veri­
fied. Also the validity of the model is not restricted to 
near-equilibrium states, and therefore it may be useful to 
study general transport properties. Work is now in progress 
to extend to mixtures some recent results for monocompon­
ent systems. 9 
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