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The steady planar Poiseuille flow generated by a constant external force is analyzed in the 
context of the nonlinear Bhatnagar-Gross-Krook kinetic equation for a gas of Maxwell 
molecules. An exact solution is found for a particular value of the force parameter. At a 
hydrodynamic level, the solution is characterized by a parabolic profile of the flow velocity 
with respect to a space variable scaled with the local collision frequency, a parabolic profile of 
the temperature with respect to the same variable, and a constant pressure. The 
(dimensionless) ratios between the quadratic coefficients and the external force are equal to 
146 for the flow velocity and 65 for the temperature, as compared with the values l/2 and 0, 
respectively, in the Navier-Stokes order. The fluxes of momentum and energy are explicitly 
evaluated. The anisotropy of the velocity distribution is made evident by the diagonal elements 
of the pressure tensor: PYY/Pm = 0.03 1, PJP, = 0.08 1. Finally, the velocity distribution 
function is obtained in terms of quadratures. 

I. INTRODUCTION 

Transport phenomena in dilute gases are a subject of 
long-lasting interest.’ At a fundamental level, they are 
usually studied in the framework of the Boltzmann equation 
and related kinetic equations.’ The well-known Chapman- 
Enskog theory3 provides a method for solving the Boltz- 
mann equation that is useful in many situations of practical 
interest. Nevertheless, the Chapman-Enskog method fails 
when the boundary effects are dominant (large Knudsen 
numbers) and/or the system is arbitrarily far from equilibri- 
um. For the sake of simplicity, one generally separates both 
situations. On the one hand, a great deal of attention has 
been devoted to the solution of kinetic equations linearized 
around (local) equilibrium, but with realistic boundary con- 
ditions.‘r4 On the other hand, recent advances have been 
achieved in the search of solutions of fully nonlinear kinetic 
equations valid in the bulk, i.e., in the limit of vanishing 
Knudsen number.’ In this paper, we will be concerned with 
the latter approach applied to planar Poiseuille liow induced 
by a constant external force. 

Perhaps, the best known example in fluid dynamics is 
the Poiseuille flow” that was first studied by Poiseuille and 
Hagen about 150 years ago. It consists of the steady flow 
along a channel of constant cross section produced by a pres- 
sure difference at the distant ends of the channel. To fix 
ideas, consider a fluid enclosed between two infinite parallel 
plates at rest, orthogonal to the y axis and located at 
y = + H/2. A pressure gradient app/dx exists along the x 
direction. Also, a constant external force per unit mass 
F = F’ii is assumed. In practice, F, can be the component of 
gravity in the direction of motion. The balance equation for 
momentum reads 

-g+” V-P + WVU - F=O, 
P 

(1) 

a> Permanent address: Dbpartment de Physique, UniversitC de Moulay Is- 
mail, Meknb, Morocco. 

where u is the flow velocity,p is the mass density, and P is the 
pressure tensor. The Navier-Stokes equation is obtained by 
supplementing Eq. ( 1) with the constitutive equation 

Pij =ps, --v $+$+J.u 
( 

-&V.U, (2) 
J I ) 

where r] is the shear viscosity and < is the bulk viscosity. In 
the Poiseuille flow, &r/at = 0 and u(r) = U, (y>ri. Conse- 
quently, the Navier-Stokes equation now becomes 

ap --$=o, (3a) 

(3b) 

Equations (3) show that dp/dx = const. The solution of Eq. 
(3b) with the boundary condition of zero flow velocity near 
the walls is 

U,(Y) = -$-(pF, -%)(y+). (4) 

This gives the parabolic profile for the flow velocity that is 
characteristic of the Poiseuille flow. In most textbooks, the 
external force is omitted (Fx = 0). However, it is noticeable 
that the same kind of profile is obtained as well in absence of 
pressure gradient (p = const) ifthe external force is present. 
Thus, at the Navier-Stokes order, one may conclude that the 
role of the force is to mimic a pressure gradient, and vice 
versa: pFxtt - Jp/dx. 

Kadanoff et al.’ have recently used a constant external 
force to induce a Poiseuille flow in the lattice gas automaton 
proposed by Frisch et al8 Their simulation results agree 
with Eq. (4) (with ap/ax = 0), from which they get the 
shear viscosity 7. This supports the validity of a hydrody- 
namic description for lattice gas automata. 

The main goal of this paper is to study the departure 
from equilibrium in a dilute gas because of the action of the 
external force considered above. Conditions will be such that 
a bulk domain can be identified far from the range of bound- 
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ary layers. Some of the questions we want to address are: (i) 
Is the velocity profile still parabolic if the external force is so 
strong that a Navier-Stokes description is not expected to 
hold? (ii) At the Navier-Stokes order, the coefficient of the 
quadratic term in u, is just proportional to F, . Is that rela- 
tionship still valid beyond the Navier-Stokes limit? (iii) 
How are the other hydrodynamic variables (pressure and 
temperature) affected by the force? (iv) How do the fluxes 
responsible for momentum and energy transport behave? 
(v) How large is the distortion from equilibrium in the ve- 
locity distribution function? 

The above questions are extremely hard to answer by 
using the Boltzmann equation. We prefer to gain insight into 
the problem at the expense of describing the system by 
means of the Bhatnagar-Gross-Krook (BGK) model ki- 
netic equation.’ The BGK equation is a model of the Boltz- 
mann equation where the detailed collision term is replaced 
by a single-time relaxation term toward local equilibrium: 

Here, f(r,v;t) is the velocity distribution function, y( r,t) is 
the collision frequency, and fLE (r,v;t) is the local equilibri- 
um velocity distribution function: 

fLELEr9v;t) =n(r,t)(2Tk,mT(r,tj)‘I 

Cv - uW> I2 > , 

(6) 

where k, is the Boltzmann constant, m is the mass of a parti- 
cle, n (r,t) is the local number density, u( r,t) is the local flow 
velocity, and T(r,t) is the local temperature. These fields are 
defined as 

(7) 

(8) 

p=nk,T= y 
s 

dv(v - u)‘J: (9) 

The transport of momentum and energy are described by the 
pressure tensor 

Pii=m dv(v,-q)(v/-q)f 
s (10) 

and the heat flux 

q=y dv(v-u)‘(v-u)J; 
I (11) 

respectively. In the case of steady planar Poiseuille flow driv- 
en by a constant external force F = F,%, Eq. ( 5) reduces to 

uy -$f + Fx $f = - df-f,,>. 
x 

Upon writing Eq. ( 12)) we have assumed that the boundary 
conditions are such that Vf [If. This rules out the trivial solu- 
tion of Eq. (5) corresponding to the canonical equilibrium 

distribution f = fLE with u = const, T = const, and 
n(r) aexp(F*r/k,T). 

It is illustrative to get the solution of Eq. ( 12) up to first 
order in F, ( Navier-Stokes order). As can be easily verified, 
it is given by 

p = const, (13) 
T = const, (14) 

ak Y _ -- 
dy2 

F 
k,T/m x’ 

fLE 

(15) 

=fLE[l+ 
Fx(vx -u,! v2 

vk, T/m 
l+UyYY-L , 

k, T/m k, T/m )I 
(16) 

where in the last step the origin of they axis has been chosen 
at the vertex of the velocity parabola. As expected, Eq:( 15) 
agrees with Eq. (3b) if one takes into account that the shear 
viscosity in the BGK model is given by 7 = p/~.~ From Eq. 
( 16)) one can also get the fluxes to first order in F, : 

P,, = Pyy = P, ==p, (17) 
Pxy = nmFxy, (1W 

au = -7 ?, 3 
9x = - rlFx, 
qu =o. 

(18b) 

(19) 
(20) 

Equation ( 18b) is consistent with the hydrodynamic equa- 
tion (2). On the other hand, Eq. ( 19) shows that, despite the 
absence of a thermal gradient at this order, there exists a 
uniform heat flux opposite to the direction of motion. This 
apparent violation of the Fourier law reminds us of the fact 
that, in this problem, the role of a nonequilibrium perturba- 
tion parameter is played by F,, rather than by the hydrody- 
namic gradients. 

The organization of this paper is as follows. A simple 
self-consistent solution of the nonlinear equation (12) is 
found to exist in Sec. II for a particular value of the external 
force. This solution is characterized by constant pressure 
and parabolic velocity and temperature profiles with respect 
to a conveniently scaled space variable. The most relevant 
fluxes are then obtained in Sec. III. The explicit form for the 
velocity distribution function is derived in Sec. IV. Finally, 
Sec. V offers some comments and conclusions. 

II. HYDRODYNAMIC FIELDS 

In the BGK model, all the details of the interaction po- 
tential are grossly taken into account through the tempera- 
ture dependence of v/n. In the special case of Maxwell mole- 
cules (which interact via a potential inversely proportional 
to the fourth power of the distance), v/n is just a constant. 
Henceforth, we will restrict ourselves to this interaction. 

In order to solve Eq. ( 12)) one needs to add appropriate 
boundary conditions. Complete accommodation of the par- 
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titles on interaction with the walls is described by diffuse 
boundary conditions:3*9 

f*(Y= f=$,v)=n d2T;Tw Pp( -&)* 
(21) 

Here, f f = 0 ( f: u,, )A 9 being Heaviside’s step function, 
T, represents the temperatures of the walls at y = T H/2, 
and n, is twice the density of particles coming off the walls. 
The latter parameter must be determined self-consistently 
along with the solution of Eq. ( 12). Given the geometry of 
the problem, the following symmetry relations hold: 

ftYdwy,~z 1 =f(Y&uy, - u, 1, (22) 

flYdJ,PyJ,> =f( -Y& - UyP,>. (23) 
In particular, the three hydrodynamic fields (p, u,, and 7’) 
are even functions ofy. In principle, the solution of the prob- 
lem defined by Eqs. ( 12) and (21) implies to solve a set of 
three coupled singular nonlinear integral equations, which 
requires the use of numerical methods.“*” Furthermore, 
the solution is expected to include boundary layers within a 
few mean-free paths from the plates. The influence of the 
boundary layers is measured by the Knudsen number (ratio 
of the mean-free path to the system size). 

One can get rid of undesired boundary effects by apply- 
ing idealized boundary conditions such that the local Knud- 
sen number vanishes near the walls. This can be accom- 
plished if one chooses infinitely cold walls (T, = 0) .*’ 
Thus, Rq. (2 1) becomes 

“f* (Y= T$V) =o. 

The formal solution of Eq. ( 12) is then 

f+ (Y,V> ==-A- y 
s 

dY* -w, 1 
UY -H/2 

Notice that the other half-distribution, f _ , can be obtained 
from& by making use of Eq. ( 23 ) . The solution ( 25 ) has a 
formal character because Y and fLE still depend onf through 
the hydrodynamic fields. The set of coupled integral equa- 
tions for p, u, , and T can be obtained by taking moments in 
Eq. (25). 

Rather than solving the problem numerically, we are 
going to use an heuristic approach in the same spirit as in 
previous works.i2*i3 On the basis of simplicity and symmetry 
arguments, we “guess” the profiles and then verify their con- 
sistency. The solution in the linear case, Eqs. (13)-( 15), is a 
good starting point. First, it is reasonable to expect that the 
uniformity of pressure (a quantity related to normal transfer 
of momentum) is a property more related to the stationary 
character of the flow than to the linear approximation. In 
fact, it is easy to check from Eq. ( 12) the exact property 
Pyy = const. We assume that the same happens with the oth- 
er diagonal elements of the pressure tensor, so that 

p = const. (35) 
This assumption is also supported by the cases of pure heat 
flow” and planar Couette flow.13 On the other hand, there 
is no reason to expect Eq. ( 14) to hold beyond the linear 
regime. Since the walls are very cold, one can argue that the 
most energetic particles tend to concentrate far from the 
walls. Let To be the temperature at y = 0, which is expected 
to be the highest temperature in the system. We will take To 
as a convenient unit of temperature and u, E (k, To/m) 1’2 
as a convenient unit of velocity. Since T fconst, Eq. (26) 
implies that n fconst. Therefore the rate at which collisions 
take place, as measured by V, is nonuniform, so that it is not 
very convenient to measure distance with the linear space 
variable y. We take instead the scaled space variables detined 
as 

0) =J-& 
s 

ydY, Y(Yl>. (27) 
0 

The variables measures distance in units of mean-free paths. 
Of course, the symmetry relation (23 ) is also true when y is 
replaced by s. The simplest nonconstant even function one 
can propose for the temperature is a quadratic one: 

T= To(l -&‘), (28) 

where WI’-- =s(y = H/2). Finally, we borrow from Eq. 
( 15) the parabolic shape of the velocity profile and suggest 

1 a% 
--x= -&=, (29) 
U, as2 

where E is a parameter to be determined. 
Equations (26)) (28)) and (29) constitute our guess of 

hydrodynamic profiles for an exact solution of Eq. ( 12). 
Notice that the simplicity of the profiles (28) and (29) is not 
so apparent if one uses the variable-v. For Maxwell molecules 
and constant pressure, Y(Y) = y. To/T(y), where V” is the 
collision frequency at y = 0. Thus Eqs. (27) and (28) give 
the following nonlinear relationship between y and s: 

y= (uo/Vo)s(l -+A?>. (30) 
Hence H = ( u,/v, > (4/3w). Equations (28) and (29) can 
be combined to show that Tis a linear function of U, with a 
slope equal to ( To ho ) w2/e. 

Once the hydrodynamic profiles (26), (28), and (29) 
are inserted into the right side of Eq. (25), we obtain an 
explicit expression for the velocity distribution function. 
This gives the solution of the problem, however, only if the 
following self-consistency conditions are verified: 

j-W=~W,, (3la) 

j-dvvf=~Wrx, (31b) 

j-dvuf=sdvz?& (31c) 

In order to check these conditions, a series representation for 
f is far more convenient than the integral representation 
(25). First, we rewrite Eq. ( 12) as 

f=.fh - u,* if -pT* +--t; 
x 
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where p = Fx/ (u, v. ) is a dimensionless parameter measur- 
ing the strength of the external force, T * = T/T,, and 
v* ZZV/U,. Assumption (26) has already been taken into ac- 
count in Eq. (32). Repeated iteration of Eq. (32) yields 

f=fLE + 2 ( - w(q a, +/.~T*Dx)kf,,, (33) 
k=l 

where a, =a /as and D, =d /au,*. The expansion of the op- 
erator acting on fLE in Eq. (33) has the form 

Cu,* a, +pT*D,lk 
k -- 1 

= U*ka,“+u;k-lpDx c apa,k-l-1 Y 
I=0 

k--2k--2-l 
+ u,* k - 2$D ; 

,zo rzo aiT* 
Xa;T*a;---l--r+ . . . . (34) 

where the ellipsis denotes terms involving at least D f . The 
consistency conditions (3 1) are then equivalent to 

k$ ( - l)“~dv*(u; as +pT*Dx)kfT, =O, 
W-4 

kIi, ( - 1)“s dv*v*(um:c3s+pT*D,lkf& =O, 

(35b) 

kq (- llkJ dv* u*“(u,*cY, +~T*DJkf& =0, 

(35c) 
where 

f & = (k, To/p)u& 
= (27T) -““T*-5’2exp[ - (v* -uu’)2/2~*], 

u*al/u 0’ 

Let us start with Eq. (35a). In that case, only the first 
term in the right side of Eq. (34) matters: 

s dv*(u,*a, +,uT*D,)kf& = c, a;T*ck-2)‘2, (36) 

where C, E (k - 1 )!I if k is even and zero otherwise. So far, 
only Eq. (26) has been used. In addition, Eq. (29) shows 
thata,“T*(k-2)/2=O(k>2),sothatEq. (35a)isautomati- 
tally satisfied. The same happens in Eq. (35b) with they and 
z components of the velocity. Nevertheless, the consistency 
condition for the x component imposes the following rela- 
tionship between w, e, and ,u (see Appendix A) : 

E=@(ol)r 1 - s”m”[F, (w> + 2F, (a)] 
24 (~1 

f (37) 
P 

where the functions F, (w) are defined by Eqs. (A5 ) and 
(A6). The first few terms in the (asymptotic) expansion of 
@ (0) around the origin are 

Q>(w)=J+17&-2028w4+~... (38) 
Figure 1 shows that Q>(w) is a rapidly increasing function. 
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w 

FIG. 1. Plot of the function Q(o). This function gives the ratio e/p. 

The last consistency condition, Eq. (35c), is much more 
difficult to deal with. The detailed calculations are done in 
Appendix B and here we only quote the result: 

$u2Y(w) fp20(m) - n(w) = 0, (39) 
where Y(w), O(w), and a(w) are expressed in terms of 
F. (w), Fl (o), and F2 (w) in Appendix B. The asymptotic 
series of these functions are 

Y(w) = 2 - 82~’ + 38 6280~ - -0-, (40) 
O(w) = 14 - 3916w’f 2 599 128~~ - *--, (41) 
cl(w) = loo2 - 504w” + ... . (42) 

Complete consistency of the assumed profiles, Eqs. (26)) 
(28), and (29), requires Eq. (39) to be verified at any point. 
Thus 

Y(w) = 0, (43) 
p2 = A(w) =n(w)/o(w), (4W 

= +o* + %6@” _ . . . . (Mb) 

Equation (44b) shows that o* = O(p*). So, in the linear 
limit (i.e., all terms of order ,u’ and higher are neglected), 
Eq. (39) is identically satisfied. In that order, Eq. (37) gives 
E/,U = l/2. Consequently, Eqs. (26), (28), and (29) be- 
come Eqs. ( 13)-( 15), respectively. On the other hand, Eqs. 
(26), (28), and (29) also hold in the fully nonlinear case, 
provided that the parametersp, e, and w take values given by 
the solution of Eqs. (37), (43 ) , and (44a). The functions 
Y(w) and A(w) are plotted in Figs. 2 and 3, respectively. 
The solution of Eq. (43) is 

o = 12.797. (45) 
For this value, one finds F, = 1.0048x lo-‘, 
Fl = 2.3821 X 10B3, and F, = 2.0947~ 10W4. Thus Eqs. 
(44a) and (37) give 
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-2 

-1 

-6 
0 1 2 3 4 5 8 7 a s 10 11 12 13 14 15 

RG. 2. Plot of the function Y(w). The zero of this function gives the value 
of the parameter o in the self-consistent solution. 

p = 2.5240, (46) 
E = 367.78. (47) 
To sum up, we have proved that there exists an exact 

solution of the nonlinear equation ( 12) that is consistent 
with the hydrodynamic profiles given by Eqs. (26), (28), 
and (29). This solution does not apply to arbitrary values of 
the external force, but only to the (dimensionless) value giv- 
en by Eq. (46). In that case, the parameters w and eappear- 
ing in Eqs. (28) and (29) take the values (45) and (47), 
respectively. The temperature is a linear function of the flow 
velocity with a (dimensionless) slope w2/e = 0.445. We re- 

7 , , , , I,, , I * , , I I 

0 1 2 3 4 5 6 7 a Q  10 11 12 13 14 15 

UJ 

mind that Eqs. (26), (28), and (29) also hold ifp is asymp- 
totically small (linear regime), in which case w2 = 0, 
E = p/2, and s cc y. The importance of nonlinear effects is 
made evident by the contrast with Eqs. (45) and (47). 

Ill. FLUXES 

In the previous section, a particular exact solution of the 
Poiseuille problem in the presence of an external force has 
been identified by the hydrodynamic variables. We proceed 
now to the calculation of some of the fluxes. Let us define the 
moments 

Mklr = 
s 

dv*(v,* - u:)~v,*‘v:~*, (48) 

where f * = (/cn To/p) vz Equation (32) then yields the fol- 
lowing hierarchy: 

$“kl+ IJ - 2EksM,- l,l+~,r 

-,uk(l -o”s”)&-,,I,, = -Mklr +Mi;. (49) 
Here, MkE = CkCICrT*(k+1+r-‘2)/2, where ck iS defined 
below Eq. (36) and Co = 1. Equation (49) allows one to 
obtain dM,,/ds in terms of moments Mk,r,r with k ‘gk, 
k’+ I’<k+ 1. Starting from Mm = T*-‘, MI,, 
= MoIo = Moo1 = 0, it is straightforward to see that Mklr, 

with 2k + I + r>2, is a polynomial in s of degree 
2k + I + r - 2 and the same parity as I. The latter property 
is a direct consequence of the symmetry relation (23). Also, 
as can be seen from Eq. (22 ) , Mklr = 0 if r is odd. From Eq. 
(49), one can get the moments of odd degree from the 
knowledge of lower degree moments. On the other hand, Eq. 
(49) does not provide the values of even moments at s = 0. 
To get those values, one needs to perform calculations simi- 
lar to the ones in Appendix B. 

The first nontrivial odd moment is M, i. = Px,,/p. Equa- 
tion (49) yields 

pxy = PI% (5W 
au =-- 

3 x. 
ay 

Equation (50a) shows that Pxy is a linear function of s with a 
coefficient that is just proportional to the external force. 
Thus this result formally coincides with that obtained in the 
linear approach, Eq. ( 18a), if s is replaced by 
(m/k, 7’) v, voy. On the other hand, Eq. (50b) differs from 
Eq. ( 18b), except in the limit p e 0, in which case ,u/~E = 1. 
According to Eqs. (46) and (47) ,~/2e = 0.003 43, which is 
a value clearly associated to non-Newtonian effects. 

The remaining nonzero elements of the pressure tensor 
are even moments, so that Eq. (49) is not helpful. According 
to Eqs. (33) and (Bl), 

pyy =p(l t-&h 

=pCl - 244 (WI + W;;Cw>]h (51) 
where use has been made of Eq. (B2) in the last step. Simi- 
larly, 

P, =p(l + 4) 

=p[l-2w2F1(w)]. (52) FIG. 3. Plot of the function h(o). Thii function gives the parameter p*. 
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Finally, P, = 3p - Pyy - P,,, which implies 

P,, =pCl + 4w2[F, (WI + F&)]k (53) 
In the linear limit, we recover Eq. ( 17). On the other hand, 
nonlinear effects give rise to a large anisotropy, as shown up 
by the particular solution reported in this paper. For the 
value given by Eq. (45), we have PxJp = 2.6976, 
PJp = 0.0826, and PJp = 0.2198. 

Let us consider now the next odd moments. Making 
(klZ,r) = (2,0,0), (0,2,0), and (0,0,2) in Eq. (49), one ob- 
tains, respectively, 

~210 = -b2[F, (WI +F,(w)]s+@?, (54) 

-~0030 = 2w2[F, (0) + 2F, (w)]s, (55) 
Mo,z = 2w2FI (w)s. (56) 

They component of the heat flux is simply 

qy = @vo (Mao ,t Mo,, + %2 1, 

= pv,&Ls? (57) 
Notice that qY is opposite to the thermal gradient. However, 
it is proportional to s’, rather than to s, as could be expected 
from the Fourier law. The failure of the Fourier law is relat- 
ed to nonlinear effects and also to the fact that the relevant 
nonequilibrium parameter is the external force instead of the 
hydrodynamic variables. In this sense, Eq. (19) shows that 
the Fourier law fails even in the linear regime. 

IV. VELOCITY DISTRIBUTION 

Although the velocity moments provide a good deal of 
knowledge about the nonequilibrium state of the system, the 
most complete information is contained in the velocity dis- 
tribution function. The formal solution to Eq. ( 12) with the 
boundary conditions (24) is given in Eq. (25). After having 
found in Sec. II a self-consistent solution in terms of the 
hydrodynamic profiles, Eq. (25) is no longer a formal 
expression. Inserting Eqs. (26)-( 29)) we have 

1 S f 7 (s,v*) = - 
V* s 

s---s1 +luDx 
Y - l/m 

>I1 f&(s,,v*>. (58) 

In this equation, the velocity is measured in the laboratory 
frame and is reduced with respect to the thermal velocity at 
the middle layer. Physically, it is more interesting to adopt 
the Lagrangian reference frame and refer the velocity to the 
local thermal velocity. Thus we deline 

f- (v* - u*)/J(Fq (59) 
and 

$m,g, =f*cs,v*wzE hv*). (60) 
After carrying out the change of variable 
s, -+ t = (1 + osi )/( 1 + OS), Fq. (58) becomes 

r$+ (s,@ = d(s) $j-‘dt [S?(s,t)] -s’2 
Y O 

Xe - (1 - o.dsl(svcy 
L 

1 exp -- 
23 W) 

x lx - AZ w - f 9 (SJ) 2 + g; + ,g , 
Y II 

(61) 
where 

d(s) = ’ +ws =;(2;~;s,)1’2~ 
~[2T*(s)]‘~ 

(62) 

T*b > .A% (SJ) EE- = 2- (1 +WS)tt 
T*(s) l--us ’ (63) 

$9 (SJ) 5 
2-g 

[2T*(s)]“’ 

= f ( 2;~31’2 [OS- 1 +2t--t2(1 +OJs>], 

(64) 

23 (SJ) z 
s-s* - (02/3)(s3 -4) 

2T*(s) 

=6ti;l+T;s) C2-m+t2[(1+os)t-31). 

(65) 

The other half-distribution can be obtained from Eq. ( 61) by 
changing s to - s and {,, to - 5,: 

2/( 1 + OS) 

dt [B(s,t)] -sn 

Xe -cc- l)~(w15yl 
( 

1 exp -~ 
58 (s,t) 

(66) 

where we have performed the change of variable 
t-t’ = [2 - (1 - ws)t]/(l + US). Equations (61) and 
(66) give the explicit expression of the velocity distribution 
function corresponding to the solution found in Sec. II. A 
more closed expression can be obtained for the distribution 
of particles moving with a velocity orthogonal to the gradi- 
ent. Performing the change of variable t-t r = ( 1 - t)/cy in 
Eqs. (61) or (66) and then taking the limit g,, -+ 0, we obtain 

4M-A-y = fxi) 

(67) 
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FIG. 4. Surface plot of the reduced velocity distribution function &s,5;,cY ) 
at the points = 0. 

For plotting purposes, it is convenient to integrate over 
thez component of the velocity. Thus we define the distribu- 
tion 

,jqs,5x,<y) _ J-F m 4% 4(&e - 6’ - 

J-Y., dcze-“2 * 
(68) 

Figure 4 is a surface plot of 3 at s = 0, where both the ther- 
mal and the velocity gradients are zero. The distortion with 
respect to local equilibrium (7 = 1) is quite apparent. In 
particular, we can observe the strong concentration of the 
particle population along the axis gX. This gives rise to a 

FIG. 5. Surface plot ofthe reduced velocity distribution function $(~$~,g,,) 
at the points = - 0.01. 

value of P, about 33 times larger than that of P,,,,, as seen in 
Sec. III. This anisotropy feature appears again in Fig. 5, 
where 7 is plotted at s = - 0.01. (The maximum absolute 
value of s is l/w = 0.078 143.) However, the symmetry 
lY,- - lY has now disappeared, so that Px. < 0, as indicated 
by Eq. (50a). 

v. CONCLUSlONS 

In this paper, we have been concerned with the planar 
Poiseuille flow induced by a constant external force in the 
absence of gradients along the flow direction. An exact solu- 
tion of the steady nonlinear Bhatnagar-Gross-Krook 
(BGK) equation for Maxwell molecules has been found. 
The solution holds for a particular value of the external force 
and is characterized by a constant pressure and parabolic 
profiles for the temperature and the flow velocity. As a mat- 
ter of fact, the parabolic dependence does not take place with 
respect to the actual distance (y), but with respect to a space 
variable (s) conveniently scaled with the local collision fre- 
quency. Equation (30) gives the relationship between y and 
s. The hydrodynamic profiles are given by Eqs. (26), (28), 
and (29)) where the parameters w and E take the values (45) 
and (47)) respectively; the dimensionless value of the exter- 
nal force (,u) is given by Eq. (46). Idealized boundary con- 
ditions of zero wall temperatures get rid of boundary layers, 
so that the solution applies to the bulk region of the system. 

It is remarkable that the nonlinear BGK equation ad- 
mits such a simple solution. Similar examples are provided 
by the planar Fourier” and Couette13 flows. In contrast to 
the latter cases, however, the solution reported here is re- 
stricted to a particular value of the parameter measuring the 
distance from equilibrium. If the force parameter,u does not 
take exactly the value (46), then the mathematical expres- 
sions for the hydrodynamic fields are not as simple as found 
here, even with idealized boundary conditions of infinitely 
cold walls. Numerical solution of a set of three coupled non- 
linear integral equations seems to be unavoidable. Nonethe- 
less, one may argue that the difference is not so large at a 
qualitative level. We expect the velocity profile to be parabo- 
liclike, the pressure to be nearly uniform, and the tempera- 
ture to have a strong space dependence. The parameters E 
and w could then be interpreted as measures of the degree of 
curvature of the velocity and temperature profiles, respec- 
tively, at the middle layer s = 0. In fact, Eq. (43) is not 
necessary if we take the license of making s = 0 in Eq. (39). 
Although this line of reasoning lacks mathematical rigor, we 
speculate that decent estimates of E and o for any value of ,u 
would be provided by Eqs. (37) and (44a). 

In the limit of a force so weak that terms of second and 
higher order in ,u can be neglected ( Navier-Stokes order), 
the profiles are given by Eqs. (13)-( 15) and the fluxes by 
Eqs. ( 17)-(20). The main effects due to nonlinear terms can 
be inferred from the particular solution discussed here. Some 
key points are (i) the parabolic velocity profi;e, characteris- 
tic of the Poiseuille flow, no longer exists in real space. Of 
course, any profile can be mapped onto a parabola with an 
appropriate change of space variable. (ii) The coefficient 
measuring the curvature of the velocity is not just propor- 
tional to the strength of the force. The ratio 2e/p is equal to 1 
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in the Navier-Stokes regime, while it takes the value 29 1.43 
in our particular solution. (iii) Concerning the remaining 
hydrodynamic variables, the hydrostatic pressure does not 
change over the scale of variation of the velocity. In fact, 
conservation of momentum implies that the element P,,y of 
the pressure tensor is strictly constant. The temperature is 
also constant in the linear limit. However, our results indi- 
cate that the space dependence of the temperature is coupled 
to that of the velocity. The former is a linear function of the 
latter with a (dimensionless) slope equal to &/E = 0.445. 
(iv) The fluxes exhibit a rich nonlinear behavior. In contrast 
to Eq. ( 17), one has P,., > P, > P,,,,. In particular, we have 
found PJP, = 0.031 and PJP,, = 0.081 if,u = 2.5240. 
The Newton law, Eq. ( 18b), is generalized by Eq. (50b), 
where P/~E = 0.003 43 (shear thinning effect). The heat 
flux parallel to the gradient direction, Eq. (57), is a nonlin- 
ear function of the distance, while it vanishes in the limit of 
small force strength. (v) Finally, the explicit expression for 
the velocity distribution function allows one to analyze with 
more detail the anisotropy and nonlinear features already 
learned from its first few moments. 

planar Poiseuille flow). It must be emphasized that the sys- 
tem has been assumed to be described by the BGK model, 
rather than by the Boltzmann equation. The latter would 
require the use of numerical techniques, such as the direct 
simulation Monte Carlo method. l4 
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The solution derived in this paper can be useful to gain- 
ing insight into some of the peculiarities of the nonlinear 
behavior of even simple systems (such as a dilute gas of Max- 
well molecules) in simple nonequilibrium states (such as the 

1 
T- 

APPENDIX A: CONSISTENCY CONDITION FOR THE 
FLOW VELOCITY 

The consistency condition (35b) for thex component of 
the velocity is analyzed in this appendix. Only the first two 
terms in the right side of Eq. (34) contribute. Therefore 

I 
k-l 

dv* v:(v,* 8, +pT*Dx)kfg = C, cY,“uz T*‘k--2)/2-pCk-, , C ,;T*a,“-1-‘T*(k-3)‘2 
I=0 

k-l 
-‘ -ECkk!( .42)(~--e.-pCk-~( -&(k--1)/2 (AlI 

for k>2. The summation in the last term is 
k-l k-1 
l~oa:2a:-I-I,*-3 = (k-3)! C Z(Z- 1) =y. 

I=0 

(AZ) 
On the other hand, for k = 1 we have 

s dv* v:(v,* a, +p~*~,)f;, = -p. (A3) 

Putting together all of this in Eq. (35b), we obtain 

-5= Q(w) 
P 

1 - (w”/3) 2;=, (2k + 3)!(2k + l)!!( - w’)~ 
E 

.&yzo (2k+2)!(2k+ l)!!( -w’)~ ’ 
(A4) 

The function Q(w) is expressed in terms of asymptotic se- 
ries. A more useful representation can be obtained by means 
of Bore1 summations.‘3Q’5 Let us introduce the auxiliary 
function 

Fe(w) =J- 
s 

m 

cd2 0 
dt te-““K, (2Jt/w), (A5) 

K, being the zeroth-order modified Bessel function. For 
computational purposes, the function F. can also be repre- 
sented by a generalized Frobenius series around the point at 
infinity (w 1 = 0). Its explicit expression has been obtained 
elsewhere16 and will not be repeated here. We also define 
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I 
FrCw) =(&$a2~o(m). (A61 

The expansion of F, around w = 0 is asymptotic.16 From it, 
one can obtain that of F’,: 

F,(w) = 2 (k + 1)‘(2k+ 1)!(2k+ l)!!( -w’)~. 
k=O 

(A7) 
Comparison with Eq. (A4) shows that 

Q(w) = 
I- +Y’[F, (WI + 2F2 (WI] 

24 (~1 

C-48) 

APPENDIX B: CONSISTENCY CONDITION FOR THE 
TEMPERATURli 

The implications of Eq. (35~) are worked out in this 
appendix. First, we deline 

I x.y,z=kg, ( - l)‘sdv* uZ,;,z 

xCv;& f/~T*Dx)~f& (Bl) 
Equation (35~) is then equivalent to 1, + 1, + 1, = 0. 
Here, I, and I, are easy to compute: 

I, = 2 ( - l)k dv* vV*k+2a,kf;IjE 
k=l s 

= k$, c,,, aJkT*k’2 
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= - w2 kTo (2k + 3)!(2k + l)!!( - a2)k. 

= -2aqF, (0) +2F,(w)], (B2) 

I, = 2 ( - l)k dv* v,*“v,*kd,kf& 
k-l s 

= kz, ck a:T*k/2 

= -u2kTo (2k+2)!(2k+ l)!!( -C02)k 

= - 2w’F, (u), (B3) 

where in the last steps we have made use of Eq. (A7). 
We proceed now to the evaluation of I,. Only the three 

terms explicitly written in Eq. (34) give nonvanishing con- 
tributions. Let us analyze each one separately: 
I =ICl'+fi2) +1'3' 

5 x x x , where 

II;“= k& ( - l)“Jdv* v,*“v,*“ak& 

1;2’= -+ 2 (- l)kk-$,*af-‘-’ 
k=l I=0 

(J34) 

x dv” VIVID- ’ XY f LE, CBS) 

k-2k-2 --I 
1'3' = 2/LZkE2 ( - l)k *z. x 2 a:r* a:r* 

r=o 

Xc?:-=-‘-’ dv* v,*k-ZfLE. 036) 

The first contribution is 

I$” = I, + 2 Ck a$@ T*‘k-2)‘2 
k=l 

= I, + t3[O"'(w> +s2W1)(w)], U37) 
where 

O”‘(w) = 2 (2k+4)!(2k+3)!!(k+ l)( --w’)~ 
k-0 

=2w-=[F, (w) -F2(w)], (B8) 

Y(‘)(w) = + kzo (2k + 4)!(2k + l)!!( - u’)~ 

=Fl(w) +21;;(w) +F [l -Wd]. 
(B9) 

Next, we consider 1:‘): 

p=2p u,*+ 
k=3 I=0 

Xdk-'-Iue T*'k-3'/2 
s 5 (BlO) 

The I summation yields 
k-l 
~~oa~T*a,k-'--1U:T*(k-3)'2= +[$( -u~)(~--)'~ '"2 ')I ;z; (I+ l)(Z+2) 

k-1 
+ ( -u2)(k--)'2(k- 3)! c (k-l)(k-22)+ 

I=0 
yz(z- 1) >I 

zzc-- E _ &(k- I)/2 (k + 2)! + ( _ u2)(k-3V2 i-$&l . 
> 

(Bll) 
6 

Thus Eq. (BIO) becomes 

rz2”= -2#LLE[W’(W) +sv2’(w)], 

I 

(B12) 
=+[l+Fo(d+Fdd] 

where 

@‘2’(w) =+ kzo (2k + 3)!(2k + l)!!( k+ 3)( -u2)k 

=F,(w) +2&(w) +w +1 -FoOm)], 

-+2[F,(d t=‘,(w)]. (B14) 

Finally, we evaluate I, r3). After performing the velocity inte- 
gration, Eq. (B6) becomes 

1’3) =&” 
x 

T* + 2 C,_, ‘2’ k-fm’afT* 

k=4 I=0 r=O 

(B13) 

‘P’2’(w) = 1 + f kg,, (2k + 3)!(2k - l)!!( - u2)k 
xd;T* ,J-2-I-rT*Ck-44)/2 

>. (B15) 

After a tedious calculation, the r and 1 summations yield 

k-2 k-2--1 
*go r'. a;'-* a;T* ~,k--2-~-~T~(k--4)/2 

= d( _ u2)k/2 Ck - 4)1 k-2 k-2-l 

2 ,go rzo (l+2)(1+ l)(Z+r)(Z+r-- 1) + ( -u2)(k-22)‘2(k-6)!(k-4) 
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k-2k-2-I 

xIzo rgo [(k-5)(1+r)(l+r--1)+1(z-l) 

=~c-m2)k~ (k+2)! 

36 
+ ( _ u2)(k-22)/2 Tk!. 

Insertion of Eq. (B16) into Eq. (B15) gives 

II;” =p2[W’(o) +s2Y(3’(u)], 

where 

cY3’ (w) 

(B17) 

= 2 + $ kz, (2k + 2)!(2k - l)!!(k + 5)( - tiZ)k 

=+[25+9FoO+2F,(o)] 

-w2[t;;(d +2F2(w)], (B18) 

= - $ {9 + 3Fo (w) + 4F, (w) + 2F2 (co) 

- 6w2[F, (WI + ~F;GD)]~ (B19) 
Consequently, the condition (35) implies that 

s?[2Y”‘(W) - 2E/+P’(W) +p2Y’3’(w)] 
+ [&w’(w) - 2@‘2’(w) 
+p2W’(w)] - cl(w) = 0, 0320) 

with 

a(u) = - (I, +21,) =2w2[3F,(w) +2F,(w)]. 
(I3211 

Taking into account that E, p, and w are already related by 
Eq. (37)) Eq. (B20) becomes 

s2p2Y(w) +p20(w) - i-l(o) = 0, 0322) 
where 

@ l(u) =p’(u) [@P(w) I2 

- 2l/P’(w)~(‘(w) + ?p(w,, (~23) 

(J316) 

o(w)dY”(w) [Q(w)]” - 2cY2’(w)aqw) + @ ‘3’(w). 
(B24) 
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