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A two-dimensional model of the Boltzmann equation including removal collisions is proposed. Its solution is found for a special 
value of the removal collision frequency. Unlike Maxwell molecules, the decreasing of the total number of particles is selective, 
the most energetic particles being more efficiently removed. 

In the last few years, a great deal of  attention has 
been devoted to the study of the spatially homoge- 
neous Boltzmann equation (BE) incorporating 
removal events, interactions with an unbounded 
background host medium, and the presence of an 
external source [ 1,2]. Most of  the studies deal with 
the Maxwell interaction law, for which the collision 
frequency is constant and the total particle density 
obeys an autonomous evolution equation [1]. (As 
a matter of  fact, only the removal collision frequency 
needs to be constant [ 2 ].) In that context, particular 
exact solutions have been found [ 3,4], and the BE 
with removal when the host medium is a pure 
absorber can be easily transformed into the usual BE 
without removal [5,6]. For more general interaction 
models, the velocity dependence of the collision fre- 
quency complicates very much the problem and lit- 
tle is known about the influence of removal events 
on the corresponding BE [ 2 ]. 

The aim of this note is to explore removal effects 
on particles different from Maxwell molecules by 
using a simple model defined as follows. First, the 
interaction with the host medium is ignored [4,6]. 
Second, the two-dimensional very-hard-particle 
(VHP)  model [7] is used to describe the collisions 
among the particles. The BE (without removal) for 
this interaction model is exactly solvable [ 8 ]. The 
problem is mathematically much harder when 
removal events are introduced, but it is shown here 
that there exists a particular value of  the removal 
collision frequency affording for an exact solution 

for arbitrary initial conditions. This solution allows 
one to discuss quite generally the evolution of the 
distribution function when removal events are 
present. 

Let us consider an isotropic scattering model. Then, 
the BE for a homogeneous and isotropic velocity dis- 
tribution function becomes a closed kinetic equation 
for the energy distribution function [7 ]. The VHP 
interaction model is defined by assuming that the 
collision rate is proportional to the energy [ 7,8 ], giv- 
ing rise to a collision frequency linear in the energy. 
Although the VHP model does not correspond to any 
physical interaction potential (it would represent an 
interaction "harder" than that of  hard spheres), it 
has the mathematical advantage that its general solu- 
tion can be obtained in closed form for two dimen- 
sions [ 8 ]. Here, we take the BE for this interaction 
model and introduce removal events in it. A fraction 
/~ of  the binary encounters between particles is 
assumed to give rise to removal, the remainder cor- 
responding to elastic collisions. Therefore, the non- 
negative constant # represents the (relative) removal 
collision frequency. The BE for the above model 
reads, in dimensionless variables, 
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0 fi ~F(x ,  t)= du dy IF(y, t)F(u-y,  t) 
x 0 

- (1 +l~)F(x, t )F(u-x,  t)] 

.v 0 

- (1 +/t)[M, (t) +xMo(t)]F(x, t),  (1) 

where F(x, t) is the energy distribution function, and 

oo 

M,(t) = J  dxx"F(x, t) 
0 

are the moments. In absence of removal (g = 0), Mo, 
M, =const, and eq. (1) becomes the BE already 
studied by Ernst [7,8]. From eq. (1) one gets the 
evolution equation for Mo: 

dMo/dt+2pMoM~ = 0 .  (2) 

In order to study eq. (1) it is advantageous to intro- 
duce the variables [ 5,6 ] 

t 

P(x,r)=F(x,t)/Mo(t), r=~dt 'Mo(t ' ) .  (3) 
o 

Therefore, P is a probability density function. While 
Mo is proportional to the total number of particles 
present in the System, ~V measures how the energy is 
distributed on those particles. In terms of the new 
variables, eq. (1) yields 

--i ? 
x 0 

- [(l -u)£r l  (x) + (1 +u)xlP(x, ~), (4) 

where 

~,(  ~) = f ax xi:(x, T )  

o 

is the mean energy. Once this quantity is known, 
application ofeqs. (2) and (3) gives Mo(t) and the 
relationship between t and r: 

7; 

0 

i d'c' t=  N(r ' )  " 
0 

(5) 

(6) 

The structure of eq. (4) suggests the introduction 
of the Laplace transform (or generating function of 
moments) 

~(z, ~ ) -  d x e x p ( - z x ) P ( x ,  z) . 
0 

Then, eq. (4) yields 

. q  . , q  

G(z, T) q- (1 -u)M~ (~) - (1 +U) ~- G(z, ~) 
0r O Z  

= z - ' [ 1 - ~ 2 ( z ,  r ) l .  (7) 

Eq. (7) is still very involved due to the presence of 
~t~=-OG/Ozlz=o. However, in the particular case 
/~= 1 (i.e., 50% of the collisions giving rise to particle 
removal), eq. (7) becomes a conventional partial 
differential equation whose general solution is 

q~(z+2r)-z  (#=1) (8) 
G(z, T) - q~(z+2r) +z  

where the function q~(z) can be expressed in terms 
of the initial distribution just by making r = 0 in eq. 
(8). This function also gives the evolution of the 
mean energy as ~ (T) = 2/~(2~). Since 5(z, 0) must 
vanish when z~oo % one has q~(z) ~ z  in that limit. 
Consequently, ~1~1 (oo)=0 and G(z, oo)= 1, which 
implies P(x, oo)=J(x) .  Although this asymptotic 
form has been obtained from the exact solution in 
the case # =  1, it is also true for any positive value of 
g, as can be easily checked by substitution into eq. 
(7). 

Thus, we can generally distinguish two removal 
effects on the distribution function. First, the total 
number of particles decreases in time. Second, due 
to the velocity dependence of the collision frequency 
for interactions repulsive enough, the most energetic 

~' Since P(x, 0) must have a finite norm, P(x, 0) ~ x-', with ~ < 1, 
for small x. Then ~(z, 0)~z - ° - °  for large z. 
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par t ic les  are r emoved  more  frequently.  Then,  only 
par t ic les  wi th  vanishing energy remain  in the long 
t ime  l imit .  On the other  hand,  the second effect is 
not  present  in the special  case o f  Maxwell  molecules,  
so that  ff satisfies the usual  BE and asymptot ica l ly  
evolves towards  a maxwell ian dis t r ibut ion [5,6]. The 
advantage of  our  VHP model  for /z=  1 is that  it  allows 

one to work  out  in deta i l  some o f  the general  features 
o f  removal  phenomena  in the BE. 

As an example  o f  appl ica t ion  o f  the solut ion (8 ) ,  
let us consider  a maxwel l ian  ini t ial  d is t r ibut ion ,  i.e. 
F(x, 0) = e - " .  Then,  G(z,  0) = ( z +  1 ) - l  and  @(z)  = 
z + 2. F r o m  eqs. (8) ,  (5 ) ,  and  (6 ) ,  one easily gets 

P (x ,  z) = ( z +  1)e -~+~)~ , 

~r, (z)  = 1/(T + 1 ) ,  (9)  

z + l = ( 3 t + l )  I/3 , (10) 

Mo( t )  = ( 3 t +  1) -2/3 . (ii) 

In this par t icular  example,  the total  popula t ion  
decreases as t-2/3, while the mean  energy behaves  as 
l-i/3. 
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