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A Monte Carlo computer simulation of a simple stochastic hopping model is presented. The velocity autocorrelation function
and the diffusion coefficient are analyzed and compared with the results obtained by using kinetic theory. The theory and the

simulation agree within the statistical error.

1. Intreduction

The long time behavior of equilibrium correlation
functions has been one of the most exciting and stud-
ied problems in statistical mechanics for the last years
[1]. From a theoretical point of view, it has been
analyzed using different approaches, such as mode-
coupling theories and kinetic theory. Perhaps, the
most interesting result is the understanding of a
strong long time tail observed by Alder and
Wainwright [2] in molecular dynamics simulations.
Nevertheless, a definitive check of the agreement be-
tween the theoretical predictions and the computer
simulation results is still lacking [3].

In the last few years, Ernst has carried out an ex-
tensive study of several simple stochastic hopping
models [4], using methods of kinetic theory. In the
present paper we report some computer simulation
results for one of those models, namely the so-called
two-dimension bond percolation model. In short, it
can be described as independent random walkers
moving in a random square lattice with a concen-
tration ¢ of missing bonds. The quantity we will fo-
cus on is the velocity autocorrelation function
(VACF), defined as

D(t)= jdscp(s), (2)
4]

while the static diffusion coefficient is D(oo).
The main theoretical results are the following ones.
The short time behavior of the VACF reads [5]

D(1)=4(1-c)0 4 (1) —§e(1-c)
+45e(1—c)(3—c)t+0(s?) , (3)

where J,(¢) is a Dirac delta-function on positive
time. Here and in the following, we take the edge of
the unit cell as the length unit, and the inverse of the
jump frequency as the time unit. On the other hand,
for finite and long times the behavior is given as a
series expansion

D(1) =D (1)c+ DV (1) 2 +0(c?) . (4)

Van Velzen and Ernst [6] have obtained the Laplace
transforms of @(®(¢) and ®’(¢) and have evalu-
ated them by numerical inversion for a wide range
of times. In addition, the long time behavior is given
by [7]

DO(H)=—(12r12) {1+ (4/r)In(t/1,)/t

D)=V (0)V (), (1) +0((In1)*/1%)}, (5)
where the average is taken over both trajectories and and ‘

lattice realizations. The time dependent diffusion Ao — 2

coefficient is given by PP () =~ (B 2n)[1+O((In /D] . (6)
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In these expressions, 7,=0.1434, and f,=3.7713.
The static diffusion coefficient has been found to be

[7]
D(o0)=4[1=2c+0a,c?+0(ch)], (7)

with a,=—0.21075.

Egs. (5) and (6) show a long tail of the VACF de-
caying as ¢ ~2, that is characteristic of (2D) Lorentz
models.

2. Computer simulation

We have carried out Monte Carlo (MC) simula-
tions of the above model. A similar study for a site
model has been performed by Frenkel [8]. A bond
model has already been simulated by Haus et al. [10].
Nevertheless, as they themselves claim, their results
forthe VACF had a preliminary character due to the
low statistics. In our simulations the random walkers
make a step each unit of time, while in the theoret-
ical considerations the time is taken as a continuous
variable. Nevertheless, one can establish an exact re-
lationship between continuous and discrete quan-
tities {9]. Namely, one has

D(1) =30 (1) +e~ §%¢ : (8)

n

=t
D(t)=e~' Z'OWD"H/Z > (9)

where @, and D, ,» are the discrete VACF and dif-
fusion coefficient, respectively, at the nth timestop.
They can be expressed in terms of the discrete square
mean displacement through the relations

¢n =Dn+l/2 —Dn— 1/2

=My =2m,+m,_,, nzl, (10)
®Dy=2D,,=2m,, (1)
m, =4{(x,—X0)*) . (12)

We notice that comparison of eq. (3) with eq. (8)
gives the following exact expressions for the first few
discrete VACFs: ®y=1(1-¢), @,=—}c(1-0),
®,=—55¢(1—c?).

In our simulations we have considered a concen-
tration ¢=0.05. To compute the averages, the in-
variance under time translation of the VACF has been
exploited. We have generated about 500 square lat-
tices of size 500X 500 with randomly distributed
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missing bonds. In each realization the path of a test
particle has been followed during a number of 2 x 10°
timesteps typically. More precisely, each value of the
discrete VACF up to n=100 has been averaged over
9.91x 10® single values. The side of the lattice is
about one half the (theoretical) mean square dis-
placement of the particle after 2 X 10° timesteps. We
have checked that in this case there are no relevant
effects due to the finite size of the system.

Once the ¢, n< 100, are known, we make use of
eq. (8) to evaluate @(¢). Of course, this implies a
truncation error, so that reliable values of @ (¢) can
be expected only up to a certain finite value of time.

3. Results

As a test of our MC data, we have compared in
table 1 the exact and the observed values of the first
few @,,. It is seen that the computer results are in good
agreement with the theory, within the statistical er-
ror. Here and in the following the statistical error is
estimated by taking 10 independent samples of a
typical size N= 108 trajectories, and computing from
them the mean square error corresponding to this
sample size. By assuming that the error is propor-
tional to N~'2 we have estimated the error associ-
ated to N=9.91 X 108, From a practical point of view,
we have found this source of error to be more im-
portant than the one associated to the truncation in
eq. (8).

The time behavior of the VACF for 0<r<1 is
shown in fig. 1. Also, we have plotted @(°(¢) and
DD (t)+cPV (1) as obtained from kinetic theory.
It is seen that @‘*) is not quantitatively sufficient for
a concentration ¢=0.05. On the other hand, the MC
results are indistinguishable from the theoretical

Table |
First few values of the discrete VACF obtained in the MC simu-
lation. The available values from kinetic theory are also included.

n Exact MC

0 0.475000 0.47500+ 0.00002
1 —5.9375%x 1073 —(5.92%£0.02) x 1073
2 —1.5586x 1077 —(1.5610.02) x10*
3 - (1.50£0.01)x 10"
4 —(5.8%£0.1)x10~*
5 —(6.8+0.1)x10*
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Fig. 1. Time dependence of the VACF for ¢=0.05, divided by the Fin (/1)
soncentration of missing bonds, for times 0<¢< 1. The solid / [

(broken) curve represents the kinetic theory result up to the first
(second) order in ¢. The Monte Carlo data are represented by
sircles (which are larger than the error bars).

curve including quadratic terms.

To analyze the long time behavior of the VACF,
we plot @ (¢) versus ¢ ~2in fig. 2, as suggested by egs.
(5) and (6). As before, the linear and quadratic ki-
netic theory predictions are also shown. Again, the
MC data clearly deviate from the first order ap-
proximation to @ (¢). The difference with respect to
the second order approximation is comparable to or
smaller than the error bars, so that one cannot con-
clude whether it is due to higher order effects. It is
worth to notice that, although fig. 2 apparently shows
an almost linear behavior, the pure ¢ ~2 decay (rep-
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Fig. 2. Plot of the VACF versus ¢ ~2. The curves and the circles
have the same meaning as in fig. 1. The straight line represents
the leading term of the asymptetic long time behavior up to sec-
ond order in c. The error bars are also indicated.

Fig. 3. VACF times ¢ as a function of t~'In(#/1,). The curves
and the circles have the same meaning as in the preceding figures.

resented up to the second order by the straight line)
is reached on the scale of the figure only for ¢>70.
Consequently, it'would not be legitimate to use the
MC data shown in fig. 2 to get the coefficient of ¢ —2
[8]. In order to see whether a logarithmic term cor-
rection similar to that of eq. (5) can be identified
from the MC data, we have plotted 2n2®(¢) versus
t~'In(#/1,) in fig. 3. It is observed that the curves
exhibit a maximum at ¢~ 10. This time can be cho-
sen as a natural criterion to define short and long time
behavior at a qualitative level. The location of the
maximum shifts to longer times as the concentration
increases. Fig. 3 also shows that although the MC data
are compatible with a logarithmic contribution to the
long-time tail of the VACF, they are not accurate
enough to allow its identification.

Finally, the time-dependent diffusion coefficient
D(t) has been computed using eq. (9) and the result
is shown in fig. 4. The theoretical values are also
plotted. As happens with the VACF, the MC data
agree with the second order approximation within
the statistical error. Notice that, even without know-
ing any theoretical prediction, an extrapolation to
t~'-0 of our MC data would provide a value for the
static diffusion coefficient with an accuracy better
than 0.05%.

In conclusion, there is a quite good agreement be-
tween kinetic theory and the MC simulation that we
present in this note. The results show that, at least
for short and moderate times, the concentration ex-
pansion up to the second order is sufficient for
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Fig. 4. Time dependent diffusion coefficient as a function of ¢ —".
The meaning of the circles and the curves is the same as in the
preceding figures.

¢=0.05. This indicates that the convergence of such
an expansion is not very slow. Nevertheless, the ver-
ification of the long time tail of the VACF is only
indirect, since if one tries to clearly identify its am-
plitude, the required computer time seems to be be-
yond the present computer availabilities, even in
these very simple models.
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