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Computer simulation results for the velocity autocorrelation function in a two-dimensional bond percolation model are pre-
sented, both below and above threshold. Comparison with the effective medium approximation shows an excellent agreement for
short and intermediate times, whereas significant discrepancies appear in the long-time region.

The theoretical calculation of the velocity auto-
correlation function (VACF) for all times is a quite
difficult problem in statistical mechanics. Recently,
a great deal of work has been devoted to the study
of this quantity in disordered lattices. For low con-
centrations of defects, methods of kinetic theory have
been applied and exact results have been obtained
[1]. Exact results for higher concentrations are only
available in the short-time limit [1]. Beyond the
above limits, approximate methods have been intro-
duced (see e.g. ref. [2]).

Here, we will deal with one of the most extensively
studied models, namely the so-called bond percola-
tion model. This is a kind of Lorentz system where
independent random walkers move in a lattice hav-
ing a concentration ¢ of missing bonds. The system
exhibits a percolation threshold at a given concen-
tration ¢,. In the following, we will restrict ourselves
to a two-dimensional lattice, for which ¢;=0.5. The
(exact) short-time behavior of the VACF @(¢) in
this model is [3]

B(1)=4(1-c)d. (1) —fe(1-c)
+3c(1-c)(3=c)t+0(2?) (1)

where the edge of the unit cell and the inverse of the
jump frequency have been taken as units of length
and time, respectively.

Ernst and co-workers [4] have calculated the
VACEF for all times in the effective medium approx-

imation [5], @ema(?). Their results agree with the
exact asymptotic behavior given by eq. (1). Also,
DPema(t) 1s exact up to first order in the concentra-
tion and gives a good approximation for the second
order. In addition, the exact value ¢;=0.5 is ob-
tained. Another prediction of the EMA is that the
asymptotic long-time behavior of the VACF above
threshold (c<c¢) is given by

1—e¢
dnet*[1+ (4/met)In(t/1) ]’

Pepalt) = — (2)

where e=1—c¢/c, and
t=(1/8¢) exp[—je(n+2)+2—pe], (3)

ye being Euler’s constant. Eq. (2) shows a ¢ —>-long
tail, that is characteristic of two-dimensional Lo-
rentz models [6].

The above facts lead Ernst et al. to expect the EMA
to be a reasonable approximation over the whole pa-
rameter space. The aim of this Letter is to present
some computer simulation results for the VACF and
compare them with the EMA. To the best of our
knowledge, previous comparisons have been re-
stricted to the diffusion coefficients [2,5]. We have
considered concentrations beyond the low density
region, namely ¢=0.2 and 0.3 (above threshold) and
¢=0.7 (below threshold). In our study we have not
explored the neighborhood of the threshold point,
where some interesting features have been analyzed
within the EMA [4].

26 0375-9601/89/% 03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



Volume 136, number 1,2

Although in the theoretical calculations the time is
considered as a continuous variable, it is advanta-
geous to use in the simulations a discrete time step
[7,8]. In this case, the velocity components can take
just the values 0 or X 1. Also, in order to reduce the
statistical errors, the discrete VACF is computed as
(7]
¢n=%<v0'8vn> ’ (4)

where v, is the velocity of the particle at t=0, and
dv, is the difference between the actual velocity at
t=n and the velocity the particle would have at that
time if it moved in an ideal lattice without defects.
The angular brackets denote average over both the
trajectories and the lattice realizations. Once the @,
are known, it is straightforward to obtain the con-
tinuous VACF &(¢).

For each concentration, we have generated 1320
square lattices of size 700X 700 with randomly dis-
tributed missing bonds. In each lattice realization the
motion of 500 independent walkers has been fol-
lowed during 1200 time steps. By using the invari-
ance under time translation, each value of @, up to
n=200 has been obtained by averaging over
N=660X% 10° single values. The statistical errors have
been estimated by first evaluating the standard de-
viation 4,, @(t) of the averages corresponding to 22
samples of N,=30x10% values each. Then, by as-
suming that the error decreases as N ~!/2, we get
Av®(1)=Ay, D(t)/,/22. The exact values of the
first few discrete @, can be obtained from eq. (1)
and the relation between @, and &(¢). We have
compared the simulation values with the exact ones
and found that in all cases the deviation is less than
0.01% for @,, and less than 0.1% for @; and P,. Be-
sides, these deviations are within the estimated error
bars.

The resuits obtained in the simulation and the
EMA predictions for ¢c=0.2 and ¢=0.3 are shown in
figs. 1 and 2, respectively. Also, the exact short-time
behavior given by eq. (1) and the EMA long-time
behavior, eq. (2), are plotted. The comparison shows
that the EMA is quite a good approximation in both
cases up to times of the order of 10. Notice that this
range extends far beyond the region correctly de-
scribed by the exact short-time behavior. For times
larger than i~ 10, the discrepancies grow rather fast.
More precisely, the relative difference between the
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Fig. 1. Log-log plot of the VACF versus time for a concentration
¢=0.2. The dots with error bars are the simulation data and the
circles represent the EMA results. The solid line is the exact short-
time behavior, given by eq. (1). The broken line is the EMA long-
time behavior, given by eq. (2).

t
Fig. 2. Same as fig. 1, but for ¢=0.3.

simulation data and the EMA predictions becomes
about 20% at t=20 for c=0.2, and at =30 for c=0.3.
This result deserves some comments. In principle,
since the EMA is exact in the low density limit, one
could expect the agreement for ¢=0.2 to extend to
larger times than for c=0.3. On the other hand, figs.
1 and 2 show that the time region where the differ-
ences between the simulation data and the EMA re-
sults become relevant coincides approximately with
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the region where the latter are accurately described
by the long-time behavior given by eq. (2). In other
words, the EMA seems to be correct up to the onset
of its long time tail, but not beyond. This is consis-
tent with the fact that the agreement region of the
EMA with the simulation is larger for c=0.3 than for
¢=0.2, since the EMA predicts [4] that the long-time
region appears later as the concentration increases
towards ¢;=0.5.

Although the simulation data do not reach times
long enough to clearly identify the asymptotic be-
havior of @(t¢), it seems evident that this is not cor-
rectly described by the EMA, at least at a quantita-
tive level. If one assumes a ¢ ~>-tail, this one seems
to appear later than predicted by the EMA. In ad-
dition, the trend of the simulation points indicates
that the amplitude of the tail is rather larger than the
one given by eq. (2). If the simulation points in figs.
1 and 2 are fitted to a law of the form &(¢) ~¢t~ <, an
exponent close to the EMA value a=2 is obtained
for ¢=0.2, while a smaller exponent is measured for
¢=0.3. This apparently non-universal behavior of the
exponent o was first observed in a Lorentz gas by
Alder and Alley [9].

A similar comparison for ¢=0.7, that corresponds
to a situation below threshold, is presented in fig. 3.
Again, there is quite a good agreement for short and
intermediate times, whereas significant discrepan-
cies appear for long times. A relative deviation of
about 20% is observed at ¢=35, and it grows very

-1
10

0.07 o 1 TO T00
t

Fig. 3. Same as fig. 1, but for c=0.7.
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fast as time increases. The EMA predicts a long-time
decay that is essentially exponential [4], but its ex-
plicit expression is not known. Therefore, we cannot
check whether in this case the asymptotic region co-
incides again with the region of discrepancy. The
most intriguing feature of fig. 3 is the apparent.al-
gebraic tail, which is characteristic of concentrations
¢<0.5, exhibited by the simulation data. This seems
to indicate that the system has not yet reached the
asymptotic long time behavior. This is consistent with
the following physical argument. Consider the pic-
ture of the lattice below threshold as composed of
finite “islands” with a size distribution that is ex-
ponentially cut off. From fig. 2 of ref. [10] we have
estimated an average size of islands (N_.> ~10 for
¢=0.7, while in our simulation the mean square dis-
placement is ¢(#*(¢) ) ~0.7 for t=150. It follows that
the times reached in the simulation are not long
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Fig. 4. Simulation values of the diffusion coefficient D(¢) for the
three concentrations considered. The arrows indicate the loca-
tions of the EMA static diffusion coefficient Dgpya (o0 ), for ¢=0.2
and 0.3.
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enough for the random walker to fully realize of the
finite size of a typical island.

Finally, the time-dependent diffusion coefficient
defined as

D(t)=J.ds<D(s) (5)
0

is plotted in fig. 4 for the three values of the con-
centration. Also, the EMA values for the static dif-
fusion coefficient Dgya(00)=4(1-2c¢) are shown
for the cases above threshold. Extrapolation of the
simulation data to ¢t —! -0 leads to estimated values
of D(oo) that are slightly below the EMA ones. The
difference is about 1.5% for ¢=0.2 and about 5% for
¢=0.3. The ¢t~ !-behavior of D(¢) for ¢=0.7 shown
in fig. 4 is again indicative that regular diffusion takes
place for the considered range of time. However, an
effective static diffusion coefficient for those inter-
mediate times is not reached because the motion of
the random walker is strongly inhibited by the high
concentration of missing bonds. In fact, an extrap-
olation of the data for c=0.7 to t~! -0 yields an un-
physical negative value. Since D(¢) must tend to zero
as time goes to infinity, a crossover in the behavior
of D(t) is expected for times much longer than the
ones reached in the simulation.

In conclusion, the EMA is an excellent approxi-
mation for the VACF in the short and intermediate
time regions both below and above threshold, but not
when the long-time behavior is considered. It must
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be noticed that the agreement of the VACF is a much
stronger test than that of the diffusion coefficient or
the mean square displacement.
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