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Abstract 

The Boltzmann equation with Lees-Edwards boundary conditions is solved from a Monte Carlo simulation for Maxwell 
molecules. The solution relaxes to the exact one for uniform shear flow. Thus, the latter is stable even for shear rates at 
which the fourth degree moments diverge. 

The uniform shear flow (USF) is one of the simplest 

states to study nonequilibrium phenomena. It consists 
of a flow in the x direction with a constant velocity 
field gradient in the y direction (i.e., hi/&j = aij = 
a8ix8jy) and a uniformdensity and temperature. In this 

state, rheological properties have been analyzed from 
computer simulations [ 1 ] and from a theoretical point 
of view [2]. In addition, computer simulations for 
dense fluids indicate that the USF is unstable beyond 
a certain critical value of the shear rate a [ 31. These 

simulations show that, at sufficiently large shear rates, 

the particles are ordered into strings directed along the 

flow. 
For a dilute gas of Maxwell molecules (re4 po- 

tential) under USF, Ikenberry and Truesdell derived 

exact explicit expressions for the shear viscosity and 
the viscometric functions from the Boltzmann equa- 

tion [ 41. Recently, this solution has been extended to 
the analysis of the time evolution of the fourth degree 
velocity moments [ $61. It was proved that these mo- 
ments diverge in time for shear rates larger than a, = 
6.8457-l, where r is an effective mean free time. In 
Ref. [5] the possibility was suggested that this sin- 

gular behavior might be connected with a transition 
from USF to a state with a more complex space depen- 

dence. The elucidation of this point requires solving 
the inhomogeneous Boltzmann equation [ 81, 

( ~+(~+nijrj)~-~(a~+aij~) f 

I I > 

= J[.ffl, (1) 

with boundary conditions compatible with the USF, 

namely the Lees-Edwards periodic boundary condi- 

tions [7], 

f(r* VT t) I+/2 = _f(r, v> t> ly=+L/2. (2) 

In these equations, E G Ui - aijrj, a is a constant 
thermostat parameter, f is the one-particle velocity 

distribution function, J denotes the nonlinear collision 
operator, and L is the size of the system. Notice that 

the variable V represents the velocity referred to a La- 
grangian frame moving with the linear velocity field 
characteristic of the USE As a consequence, a nec- 
essary condition for USF is that V(r, t) E (V) van- 
ishes and n(r, t) and T( r, t) s (m/3kn) ((V - U)2) 
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are uniform. More general, the distribution function 

f(r, V; t) becomes homogeneous in the USF state. 
The solution of the problem defined by Eqs. ( 1) and 

(2) is a very hard task, even for Maxwell molecules. 

Nevertheless, this problem can be “solved” by using 

the direct simulation Monte Carlo (DSMC) method 
developed by Bird [ 91. The reliability of the DSMC 

method to reproduce the exact time evolution of 

the second and fourth degree moments for Maxwell 
molecules has been recently assessed [ lo]. 

The aim of this Letter is to perform Monte Carlo 

simulations for the inhomogeneous problem described 
by Eqs. ( 1) and (2) for Maxwell molecules. The ques- 

tion we want to address is whether, by starting from 

inhomogeneous (in the Lagrangian frame) initial con- 
ditions, the distribution function evolves towards a ho- 

mogeneous state or not. The first possibility would im- 

ply that the USF is stable, so that the singular behav- 
ior found in Refs. [ 5,6] would not be associated with 
any transition to a more ordered state. On the other 

hand, if the USF were unstable, the stable state would 

be inhomogeneous with respect to the y axis. In fact, 
beyond the transition observed in dense fluids, the par- 
ticles are arranged in layers normal to the y direction 

[ 3,111. For this reason, we will restrict ourselves to 
solutions to Eqs. ( 1) and (2) of the form f( y, V, t) . 

The thermostat parameter cr is chosen as the one 

that keeps the temperature constant in the long-time 
limit of the USE Its shear-rate dependence is given 
by cy = $r-‘sinh[icoshh’(l +9a2r2)] [6]. In the 

fol,lo_wing, we use units such that r = 1, 70 = 1, 
2keTo/m = 1, and Z = 1, where the bar denotes aver- 

age over space and the subscript 0 refers to the initial 

condition. In the DSMC method [ 91, one has to spec- 
ify the width AL of each layer, the time-step At, the 
number of molecules N and the number of realizations 

N. Here we have taken AL = IO-‘, At = 3 x 10-3, 
N = 5 x 104, and JV = 5. Furthermore, an angular cut- 

off x = 0.8” is introduced in the collisions. Finally, 
the size of the system has been taken as L = 10. 

For the sake of illustration, we consider here initial 
conditions of the local equilibrium form, i.e., 

f(Y? V,O) = flO(Y) ( 2Tk;o(y))3’2 
[V- Uo(Y)12 

2keTo( y) 
(3) 

/“/ i I 

Fig. I. Time evolution of the average temperature T(r) for cz = S 

and a = 10, starting from the initial conditions (I) and (II). The 

dashed line refers to the exact solution for the USE 

with: (I) no(y) = I +O.O6y, To(y) = g( 1 - O.O4y), 

Uc(y) =O,and (II) no(y) =0.8+0.024y2, To(y) = 

1 - O.O4y, VO( y) = 0. The average temperature T(t) 
is plotted in Fig. 1 for the shear rates a = 5 and a = 10, 
by starting from the initial conditions (I) and (II). 

We also show the evolution of T( t) obtained from the 
Ikenberry-Truesdell solution [ 41 corresponding to the 

initial condition (3) with no(y) = 1, To(y) = 1, and 
UO (y) = 0. We observe that the behavior of F(t) is 
hardly sensitive to the choice of the initial condition. 
In fact, T(t) tends towards a stationary value with 

a relaxation time that practically coincides with the 
one predicted in the USF case, namely ( 1 + 3a) -I 

[ 61, This relaxation time decreases as the shear rate 
increases, so that it is 0.256 for a = 5 and 0.163 for 
a = 10. A similar behavior has also been found for the 
element pX, ( t) of the pressure tensor. 

The fact that the average temperature ?;(r> behaves 
in a similar way as the exact temperature of the USF is 
not sufficient to imply that the system evolves towards 
a homogeneous state. In order to investigate this point, 
one needs to analyze the hydrodynamic profiles n( y ) , 
T(y), and U(y). Figs. 2 and 3 show the profiles of 
UX(y) and T(y), respectively for a = 5 and the ini- 
tial condition (I) at t = 0, 11 and 110. For the sake of 
clarity, we have removed the fluctuations by fitting the 
simulation points to cubic polynomials. It is apparent 
that by the time t = 1 1, at which the average tem- 
perature ?;(t) has already reached its stationary value, 
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Fig. 2. Smoothed profile of Ux( y) at t = 0. I I, and 110 for (1 = 5, 

starting from initial condition (I). 

Fig. 3. The same as in Fig. 2, but for T( y )/T. 

the profiles are still evolving towards a homogeneous 

state. The latter has practically been reached by the 
time t = 110. Figs. 2 and 3, along with similar figures 
for n(y) and the momentum flux (pressure tensor), 
clearly show that the USF is a stable state for a = 5 
(at least at a hydrodynamic level). In fact, the shear 
viscosity measured from FXV at t = 110 agrees well 

with its known exact value, which is about 8.6 times 
smaller than the Navier-Stokes value (shear thinning 
effect). It must be noticed that the shear rate a = 5 is 
smaller than the critical value a, = 6.845, so that the 
fourth degree moments converge to stationary values 
in the USF state [ 5,6]. From that point of view, the 

I r 

Fig. 4. Smoothed profile of n(y) at t = 0, 73, and 220 for a = 10, 
starting from initial condition (II). 

stability at a = 5 does not rule out a possible con- 
nection between the divergence of the fourth degree 

moments and an instability of the USF for a > a,. 
To analyze the above possibility, we have consid- 

ered the hydrodynamic and momentum flux profiles 
for a = 10. For instance, Fig. 4 shows the (smoothed) 

profile n(y) starting from the initial condition (II) for 

t = 0, 73, and 220. The results indicate that the pro- 

files tend again towards a homogeneous state, although 
with a characteristic time larger than in the case a = 
5. The fluctuating hydrodynamic profiles at t = 220 

are presented in Fig. 5. They are fully consistent with 

homogeneous quantities. The large fluctuations in the 

temperature are due to the fact that, for long times, the 

high-velocity population is quite important (so that 
( V4) diverges in time for a = 10). The size of the ther- 
mal fluctuations explains why 7 at t = 220 does not 

coincide with the value expected from Fig. 1. How- 

ever, the reduced shear viscosity measured at t = 220 
again agrees well with its exact value, which is about 
20 times smaller than the Navier-Stokes viscosity. 

In summary, our simulation results show that the 
USF state is stable for a dilute gas of Maxwell 
molecules described by the inhomogeneous nonlinear 
Boltzmann equation. This conclusion is supported by 
the evidence that, starting from inhomogeneous (in 
the Lagrangian frame) initial conditions, the hydro- 
dynamic fields relax towards uniform values, even for 
large shear rates (such as u = 10). In this uniform 
regime, the transport coefficients (e.g., the shear vis- 
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Fig. 5. Fluctuating profiles of T(v), n(u), (I=(v), uy(y) (dashed 

line) at t = 220 for d = 10, starting from initial condition (II). 

cosity) measured in the simulation agree well with 
the ones predicted theoretically in the USE These re- 
sults indicate that the singular behavior of the fourth 

degree moments for a > 6.845 [ 5,6] is not associated 
to an instability of the USE In fact, recent analyti- 

cal results [ 121 show that, for any shear rate, there 
exist diverging moments of sufficiently high degree. 
For instance, all the moments of degree larger than 4 

diverge if a > 2.346. 
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