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Abstract

We consider a fluid of-dimensional spherical particles interacting via a pair potetia) which takes a finite valueif the

two spheres are overlapped< o) and 0 otherwise. This penetrable-sphere model has been proposed to describe the effective
interaction of micelles in a solvent. We derive the structural and thermodynamic functions in the limit where the reduced
temperaturekz T /e and densitypo? tend to infinity, their ratio being kept finite. The fluid exhibits a spinodal instability at

a certain maximum scaled density where the correlation length diverges and a crystalline phase appears, even in the one-
dimensional model. By using a simple free-volume theory for the solid phase of the model, the fluid—solid phase transition is

located.
0 2004 Elsevier B.V. All rights reserved.

PACS: 61.20.-p; 64.70.Dv; 64.60.-i; 61.25.Hq

Keywords: Penetrable-sphere model; Soft interactions; Spinodal instability; Fluid—solid phase transition

Most of the theoretical studies and numerical ap-
plications of the theory of liquids in equilibrium is
devoted to particles which interact according to un-
bounded spherically symmetric pair potentials [1,2].
Atomic and molecular fluids have been usually mod-
eled in this way and a vast effort was done during

Percus—Yevick (PY) approximation being among the
most widely used in this context, and their solution for
some simple models [1-3] were landmarks in the his-
tory of the theory of liquids.

In the last decade, the properties of fluids of parti-
cles interacting vidounded pair potentials have been

the second half of the past century in order to under- the subject of an increasing interest, the Gaussian core
stand systems such as hard spheres, the square-welinodel [4—6] and the penetrable-sphere model [5-13]
model, or the Lennard—Jones liquid. The development being among the most popular ones. The motivation

of the integral equations of the theory of liquids, the
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for the study of fluids based upon this new class of in-
teractions is two-fold. First, from a fundamental point
of view, they are useful to unveil the weaknesses of
standard integral equation theories and other approxi-
mations whose validity has only been assessed from
applications to unbounded potentials. More consis-
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tent closure approximations arise from these studies non-interacting polymer coils has been studied [12],
[10,11]. From a more practical point of view, these where the colloid—colloid interaction is assumed to be
models have also been proposed in order to under-that of hard spheres and the colloid—polymer interac-
stand the peculiar behavior of some colloidal systems, tion is described by the PS model. The inhomogeneous
such as micelles in a solvent or star copolymer suspen-structure of penetrable spheres in a spherical pore has
sions. The particles in these colloids are constituted by also been investigated [13].

a small core surrounded by several attached polymeric  In order to shed further light on the properties
arms. As a consequence of their structure, two or more of the PS system, in this Letter we focus on the
of these particles allow a considerable degree of over- high-temperature, high-density region of the phase
lapping with a small energy cost [6]. An ultrasoft log- diagram. As we will see later, this asymptotic region
arithmically divergent potential for short distances has is mathematically equivalent to taking — 0 and
also been proposed to describe the effective interactiono — oo in a scaled way, so that we recover rigorous
between star polymers in good solvents [14]. These areresults first derived by Gates [16] and by Grewe and
a few particular cases of systems defining what is com- Klein [17] in the more general framework of a class
monly known as “soft matter”, which has become an of Kac potentials. At the level of the thermodynamic
active field of research with many potential physical, properties, only zeroth-order results were given in

chemical and engineering applications. Ref. [17], but here we provide the explicit first-order
The penetrable-sphere (PS) interaction potential is corrections. Moreover, we combine the exact free
defined as energy of the PS fluid with a free-volume estimate for

the free energy of the PS crystal to obtain the freezing

(D) and melting points.
We start by observing that the Mayer function of
This model was suggested by Marquest and Wit- the PS interaction is simply
ten [15] in the late eighties as a simple theoreti-
cal approach to the explanation of the experimentally /PS") = exp{—¢(1)/kpT] = 1=xfus(r). )
observed crystallization of copolymer mesophases, where x = 1 — e </*87 s a parameter measuring
where a simple cubic solid phase coexists with the the temperature of the systerfiys(r) = —©@(c —r)
disordered suspension. By arguments based on the in-is the Mayer function of a hard-sphere (HS) system
ternal energy alone, these authors claimed that, under(® being the Heaviside step functionjg is the
the assumption of single-site occupancy, the stability Boltzmann constant arilis the absolute temperature.
of the simple cubic crystal was assured in a given do- Obviously, the PS model includes the HS fluid-& 0
main of the phase diagram. On the other hand, density-or x — 1) and the point-particle fluid7{ — oo or
functional theory [8,9] predicts a freezing transitionto x — 0) as special limits. The latter limit is assumed
fce solid phases with multiply occupied lattice sites. at finite number density. However, a non-trivial
The existence of clusters of overlapped particles (or limit is obtained ifx — 0 andp — oo keeping the
“clumps”) in the PS crystal and glass was already product écaled density) o = px finite. Although for
pointed out by Klein et al. [7], who also performed high temperatures one has~ ¢/kgT, it is more
Monte Carlo simulations on the system. In the fluid convenient to work withe rather than withkg T /¢ as
phase, the standard integral equation theories (e.g.,the control parameter.
PY and HNC) are not very reliable in describing the Let us consider now the exact virial expansion
structure of the PS fluid, especially inside the core of the cavity functiony(r) = g(r) expl¢(r)/kpT],
[8]. Other more sophisticated closures [10], as well whereg(r) is the radial distribution function [1]. In the
as Rosenfeld’s fundamental-measure theory [11], are diagrammatic representation of the virial expansion of
able to predict the correlations functions with high y(r), each bond in a given diagram represents a Mayer
precision but, on the other hand, the signature for a function fps(r) = x fus(r). Therefore,
spatially ordered phase [a divergent structure factor ~ n(n41)/2—1
S(k) for a finite wavenumbek] is not found with y(r) = 1+anxn+l Z xmylgm)(r), ©)
n=1

o =|g oo

r>o.

these methods. Recently, a mixture of colloids and o
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where the HS functiony,(l’")(r) is represented by

the sum of diagrams having 2 root points (white
circles),n field points (black circles) and + 1+ m
bonds. Setting = 1 (zero-temperature limit), Eq. (3)
becomes the virial series for hard spheres. On the
other hand, in the high-temperature limit> 0 with

p — oo andp = px finite, we get

yr)=1+x Zﬁ”y,go)(r) + O(xz)

n=1
:1+xw(r)+(9(x2), (4)

where the second equality defines the functia).
The functionSy,ﬁo)(r) are represented bghain dia-
grams,i.e.,

_0 2

1 n n+l

YO (Iro = rp41l) (%)

By application of the convolution theorem, the Fourier
transform of the functiom (r) is given by

B (k) = [ fus®)°[1 — 4 fusk)] ™. (6)

where fus(k) = —(270)?/%k=/2J/5(ka) is the
Fourier transform of the HS Mayer functioi,(z) be-
ing the Bessel function. Similarly, the structure factor
S(k) and the direct correlation functiarir) are

Sty =[1— pfus®)] ™+ Ox), @)
c(r) =xfus(r) + O(xz). (8)

From Egs. (4) and (8) it follows that the PY and HNC
closures become exact to first orderinThe same
happens with any sensible approximation which re-
tains the chain diagrams of the virial expansion. It is
worth noting that the non-linear Debye—Hiickel ap-
proximation for the radial distribution function of a

system of charged particles can be derived by neglect-

ing all but the chain diagrams, which are the most
weakly connected (and hence the most strongly diver-
gent) ones [1]. More in general, the chain diagrams de-
termine the asymptotic long-distance behavior of the
correlation functions [2].

Besides the standard structure functions of the the-
ory of liquids listed above we have found it use-
ful in this case to introduce an auxiliary function
y (r) as the density integral ab(r), namelyw () =
dy(r)/d7n, whereh = pvgo? is the scaled packing
fraction,vg = (r/4)?/2/ ' (14 d/2) being the volume
of ad-dimensional sphere of unit diameter. In Fourier
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Table 1
Contributions of zeroth- and first-order into the main thermody-
namic quantities

Quantity 0% O(x)
aex/kpT 2415 271y (0)
p/pkpT 142471 21w (0)
sex/kp 0 2d71'7[w(0) - %]
tex/kpT 244 2471 — 274w(0)]
uex/kgT 2d-15 2472 — 2174y (0)]
cex/kp 0 Lhow(0)/97
(0p/dp)r/kpT 1+ 244 247 13[72w(0)]1/97
space,

7 (k) = = frs(®) — vao ! IN[1 = p fus(®)]. ©

We have verified that the values pfr) atr = 0 and
r = o satisfy the linear relation

—d ﬁ
Ui 2’
which is crucial to prove the thermodynamic consis-
tency between the virial and energy routes to the equa
tion of state. By standard application of statistical-
mechanical formulas relating the correlation functions
to the thermodynamic quantities [1], we have derived
expressions for the latter to first order inin terms

of the values ofw(r) andy(r) atr =0 andr =o.
The (excess) free energy per partielg, the com-
pressibility factorp/pkpT, the (excess) entropy per
particle sex, the (excess) chemical potentialy, the
(excess) internal energy per partielg,, the (excess)
specific heatex and the inverse isothermal compress-
ibility (dp/dp)r/kpT are listed in Table 1. The sec-
ond and third columns give the zeroth- and first-order
contributions, respectively, in the exact expansions of
those quantities in powers af at constanto = px.
The zeroth-orderterms are linear functiongdbr 7),

i.e., the virial expansion truncated after the second vir-
ial coefficient becomes exact in the limit— 0. How-
ever, the first-order terms are highly nonlinear func-
tions of the scaled density and so all the virial coeffi-
cients contribute.

Gates [16] and Grewe and Klein [17] considered a
class of Kac potentials of the forg(r) = e¢p*(r/0),
where ¢*(r*) is a non-negative bounded and inte-
grable function and « o ~¢. They proved rigorously
that in the van der Waals limit — oo, the direct

y(@)+—vy(O0) = (10)
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Fig. 2. Plot ofw(r) andS(k) (see inset) af/ng = 0.1 (dotted lines),
Fig. 1. Plot of sex/(e/T) (lower curves) andcex/(e/T) (upper 0.5 (dashed lines) and @ (solid lines) ford = 1.
curves) versugj/fg for d =1 (dotted lines)d = 2 (dashed lines)
andd = 3 (solid lines).

As analyzed by Grewe and Klein [17,18], the PS
fluid presents a spinodal point (Kirkwood instability)
at a certain scaled density. A simple examination of
Egs. (6), (7) and (9) shows that these quantities are
well defined for every real wavenumbér if and
only if the maximum value ofst(k) is smgller
fixed. It is then obvious that the van der Waals limit g:‘a]r;Hiélf). (I)rlc?ﬁg e;;l(,)’t\r,\v?] e?giggjtz mzx;:?;gf?g?o

(€ o™, o — oo at fixed T andp) is equivalent ¢ Therefore, there exists an upper bound
to the high-temperature, high-density limit (at fixed _d/zl“SZ)' 0 the scaled donci sucrr:pthat the
¢ and o) considered in this Letter. In fact, Egs. (7) 0~ / fmax Y,

structure factor becomes divergent at the wavenumber
and (8) are recovered from the more general results of

. k = ko when o0 — pg. The values ofkg and 79 =
Refs. [16,17], although the route followed here differs . . ; . .
from tf[1eirs. I]Eqs. 7) gnd (8) were also found by Likos povgo for d = 1-5 are displayed in the third and fifth
et al. [5] as a mean-field approximation in the limit columns of Table 2, respectively. As an illustration, in

. o Fig. 2 we have plotted the functions(r) and S(k)
p — oo. However, as is apparent from our derivation . : . .
) . . . corresponding to the one-dimensional PS fluidifes
of Egs. (7) and (8), the key ingredient is the high- R R N
. o . ... 0.1, 0.570 and Q970.
temperature assumption. The additional high-density .
o o How do the structural and thermodynamic func-
assumption is only needed to depart from the trivial . . N
: i . . tions behave as the scaled packing fractiprap-
results corresponding to a gas of non-interacting parti- roaches its upper bourid from below? Let us de
cles. Comparison with Monte Carlo simulations shows b bp i

that the mean-field structural functions behave very 8;) tti(t-:‘)}:‘]; u:rszgr(gc)esilo({‘ (57__) (with tkhec(iggc\a/:tn:flfﬁ eq r>ea|
well even forx < 0.2 [5]. p frs(k)

: axis in the complex-plane. These values are respon-
The results for the pressure, the internal energy . : X
. - sible for the asymptotic behavior af(r) [and hence
and the isothermal compressibility to zeroth-order of g(r] for long distancesk is the wavenumber of
in x were already given by Grewe and Klein [17]. g 9

. the oscillations, whileg is the damping coefficient,

However, Eq. (10) and the third column of Table 1 ie.& = g is thecorrdlation length. A straightfor-
are, to the best of our knowledge, new results. The . S

I . . ward asymptotic analysis yieldso ~ koo — [(d +
contributions of O(x) are especially relevant in the 1)/3koo (1 — 7/710) and
case of the excess entropy and specific heat, since the 07 /no
corresponding?(x%)-terms vanish. Fig. 1 shows the _ L 21201 _ 575012 11
high-temperature limit ofiex/(e/T) and cex/(e/T) §/0=(qo) (2=0/10) ’ (11)
versusi/no (wWhereno will be defined below). The  which implies that the correlation length diverges with
non-linear density-dependence of both quantities is a critical exponent = 1/2 as the density approaches
clearly observed. the maximum density [19]. Moreover, the correlation

correlation function adopts the mean-field expression
c(r) = —¢(r)/kpT and hence the structure factor is
Sk) =[1+ (p/kpT)p(k)]~1. The PS potential be-
longs to the Kac class with*(r*) = ®(1 — r*) and

so in the van der Waals limit one has— 0 with 7
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Table 2

Values of the HS close-packing fractiogp, the wavenumbekg, the nearest-neighbor distangg the (scaled) spinodal instability packing
fraction 7, the (scaled) freezing packing fractigp, the (scaled) packing fractiofins at the condition of marginal stability and the (scaled)
melting packing fractiorijm

d Nep koo ro/o Mo s fims im

1 1 4.49 1.40 2.30 1.00 1.00 1.00

2 V37/6~091 5.14 1.37 1.89 —0-89 0.95 —1,03

3 V2m/6~0.74 5.76 1.34 1.45 —0:62 0.69 —0,80

4 72/16~0.62 6.38 1.32 1.07 —6-36 0.41 —0,50

5 V272/30~0.47 6.99 1.30 0.76 0.22 0.26 —0,33
functionw(r) behaves as () ~ (1 —/Hi0) 2w (r), the large energy cost associated with overlappings
where the scaling functiom(r) is given by with particles in the neighbor clusters. In the high-

temperature limit these clusters are expected to contain
typically a large number of particles. We will suppose
that, on average, this number scalesx@s (wherea

(12) is a density-dependent parameter to be determined),
so n/(a/x) = n/a is the packing fraction of the
clusters. Consequently, the excess internal energy per
particle of the PS solid i8%"Y/ kg T = «/2. Under the
assumption that every cluster behaves as a hard-core
particle with a free volumesee(r7/a), Where

(Zn)—d/Z—l

W(kOU)d_l(kor)_d/2+1Jd/2—1(kor)~
00

w(r) =

So, the first-order contributiow(r) to the cavity and
radial distribution functionsliverges as7 tends to the
maximum valueng. On the other hand, the auxiliary
function y (r) remains finite in that limit. According
to Table 1, the first-order coefficients in of the

pressure, the entropy, the chemical potential and the od n 1/dqd

internal energy diverge ad — #/40) "%/ when# — vfree(1) = — [1 - <—) ] (13)

no, While the coefficients of the specific heat and the p ep

isothermal compressibility diverge &s— /7o) ~%/2. is an estimate of the free volume of a hard sphere in a
Eq. (12) implies thaty (r) ~ (kor)~“~V/2cogkor — crystal with packing fraction [8,20] andrcp is the HS

(d — 1) /4] for largekor, so the correlations at = close-packing fraction, we have estimated the excess

flo oscillate with a wavenumbetko, the amplitude  entropy per particle of the PS solid as
decaying algebraically. The first maximum of(r) .

solid A 1/d
(apart from the one at = 0) occurs at a value = Sex  _ —dln[l— ( n ) ] —din2. (14)
ro such thatkorg is the second zero af;/2(z). The kT UMep
quantity ro represents the distance between nearest
neighbors afj = 7. It is given in Table 2 for/ = 1-5.

On physical grounds, it is expected that the freezing
transition from the stable fluid to the stable solid
occurs at a scaled densify smaller than the value
no at the spinodal instability. We have estimated the
values of the scaled packing fraction at freezifg,( T~ 2 > + 2
at melting §m) and at the point of marginal stability B
(nms), by using for the PS solid phase a simple free- The pressure and the excess chemical potential of the
volume theory based on the one for the HS solid high-temperature PS solid are thg¥d/pkpT = 1+
[8,20]. In the basic picture of the PS solid [6-8], «()/2, uSQ"4#H)/kpT = a(®) +dIn[1/2 + a(7)/4].
the lattice sites are occupied by “clusters” of spheres In Fig. 3 we have plotted the excess free energy
that overlap each other. A particle inside one of these per particle of the solid and the fluid phases for
clusters performs random motions but excursions d = 3. The excess internal energy and the excess en-
beyond the lattice distance are forbidden because oftropy of the solid are also plotted. For the fluid we

Given a value ofj, the parametear is determined by
minimizing the free energySoid = ;50ld 4 7430lid,
In this way we find thai () is the solution of the
algebraic equatiof/ncp = a?*1/(2+ )4, so that

a2 @) n[l a(m] (15)
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crystalline solid takes place. We must emphasize that
ﬁf the fluid—solid phase transition in the 1D PS model is
@’ not forbidden by van Hove’s theorem [21] because one
:m of the hypothesis of the theorem, requiring the interac-
“;5 tion potential to include an infinite repulsive core that
= O T does not allow full overlaps between patrticles, is not
s': AT 77 ] fulfilled [22]. Thus, the PS model provides one of the
S 0 06 038 _IO rare examples of one-dimensional models exhibiting
A phase transitions [22]. Whether the fluid—solid transi-

tion occurs neafi = 1 or whether it does not present
Fig. 3. Excess free energy per particle in the three-dimensional a density jump, as indicated in Table 2, are questions
PS solid, ag?"%/kpT (solid line), and PS fluid,afy/kpT that need further theoretical and simulational work be-
(dashed line), in the high-temperature limit. The excess internal en- fore being satisfactorily elucidated

ray, S99/ kg T line), and the ex ntropgglid . .
?dg?hue?déégd Ii(r?;t,t?)? thee)F”Sa s%l?deafe o Slcfuizg.gnff shaded N this Letter we have focused on the high-tempera-
area represents the fluid-solid coexistence region. ture domain £ — 0) of thed-dimensional PS model.

When the exact diagrammatic expansion of the cav-

ity function is considered, it turns out thatacts as an
have used the zeroth-order approximation given in Ta- ordering parameter, so that the first-order term con-
ble 1, soafd(A)/kpT ~ uldd(d)/kpT ~ 2¢~1} and tains only chain diagrams, which can be easily re-
sfuid(7)/kp ~ 0. While the solid has a smaller en- summed, yielding mean-field expressions. If the un-
tropy than the fluid, it requires less internal energy. scaled packing fractiom is kept finite, one arrives
As the density increases, the latter effect dominates at the trivial case of non-interacting patrticles. If, on
over the former and the solid becomes more stable the other hand, one explores the high-density regime
than the fluid. The (scaled) density mérginal stabil- n = 7/x, much more interesting results appear. To
ity 7ims is determined by the conditiarg2d = gfluid, zeroth-order inx [17] the thermodynamic quantities
The (scaled) freezing and melting densities are ob- are described by the second virial coefficient alone,
tained from the equality of the pressure and the chem- but the first-order corrections exhibit a rich non-linear
ical potential in both—fasgspiUid (7)) = pslid(s.), dependence or. The fluid presents a spinodal in-
pluid 56y = 1S9, The values ofjm, fims and s stability at the upper bound densifyy(x) = fjo/x,
are given in Table 2 fo#t = 1-5. We observe that our  but this is preempted by a first-order phase transition
heuristic estimates for the characteristic densities of to the solid at the freezing density(x) = 7s/x. It
the fluid—solid transition are typically less than halfthe seems natural to expect that a similar situation ap-
upper bound densitgo. plies for finite and low temperatures, except that the

The one-dimensional (1D) case deserves some spe-x-dependence ofp(x) andns(x) is more complicated

cial comments. Fo# = 1, the curves representing the than in the high-temperature limit. From that point of
free energies of the solid and the fluid do not cross, view, it can be conjectured that the zero-temperature
but “kiss” each other aj =1 (i.e., they have the same limit (where the PS model reduces to the HS model) of
value and slope a} = 1). In fact,a$2"(7) < alVid(H) the upper bound density is lim, 1 7o(x) = nep. Anal-
not only for# > 1 but also fori < 1. This “exagger-  ogously, lim._,1n:(x) = n}'S, wheren}'S is the freez-
ated” stability of the 1D PS solid for small densities is ing packing fraction of the HS fluid. Sinogp < 7o
obviously an artifact of the heuristic free-volume the- (cf. Table 2) andy}*s < 7, it seems plausible that the
ory we have employed. Nevertheless, our free-volume productsxno(x) andxns(x) are smoothly decreasing
theory contains the basic ingredients explaining that functions ofx bounded between the valugs and7,
the high-temperature 1D PS solid becomes more sta-respectively, ait = 0 and the valuegcp and n]t*s, re-
ble than the fluid at sufficiently large densitigsThis spectively, atx = 1. This suggests the possibility of
is further confirmed by the rigorous existence of the constructing a simple approximate theory for the PS
spinodal instability afjp ~ 2.30, where the metastable model spanning the whole temperature spectrum, by
fluid ceases to exist and a continuous transition to a interpolating between the successful PY theory for
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hard spheres (zero temperature) and the mean-field-

theory results (high temperatures). We are currently
working along these lines and further results will be
published elsewhere.
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