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Abstract

We consider a fluid ofd-dimensional spherical particles interacting via a pair potentialφ(r) which takes a finite valueε if the
two spheres are overlapped (r < σ ) and 0 otherwise. This penetrable-sphere model has been proposed to describe the
interaction of micelles in a solvent. We derive the structural and thermodynamic functions in the limit where the r
temperaturekBT/ε and densityρσd tend to infinity, their ratio being kept finite. The fluid exhibits a spinodal instabilit
a certain maximum scaled density where the correlation length diverges and a crystalline phase appears, even in
dimensional model. By using a simple free-volume theory for the solid phase of the model, the fluid–solid phase tran
located.
 2004 Elsevier B.V. All rights reserved.
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Most of the theoretical studies and numerical
plications of the theory of liquids in equilibrium i
devoted to particles which interact according to u
bounded spherically symmetric pair potentials [1,
Atomic and molecular fluids have been usually mo
eled in this way and a vast effort was done dur
the second half of the past century in order to und
stand systems such as hard spheres, the square
model, or the Lennard–Jones liquid. The developm
of the integral equations of the theory of liquids, t
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Percus–Yevick (PY) approximation being among
most widely used in this context, and their solution
some simple models [1–3] were landmarks in the h
tory of the theory of liquids.

In the last decade, the properties of fluids of pa
cles interacting viabounded pair potentials have bee
the subject of an increasing interest, the Gaussian
model [4–6] and the penetrable-sphere model [5–
being among the most popular ones. The motiva
for the study of fluids based upon this new class of
teractions is two-fold. First, from a fundamental po
of view, they are useful to unveil the weaknesses
standard integral equation theories and other appr
mations whose validity has only been assessed f
applications to unbounded potentials. More con
.
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tent closure approximations arise from these stu
[10,11]. From a more practical point of view, the
models have also been proposed in order to un
stand the peculiar behavior of some colloidal syste
such as micelles in a solvent or star copolymer susp
sions. The particles in these colloids are constituted
a small core surrounded by several attached polym
arms. As a consequence of their structure, two or m
of these particles allow a considerable degree of o
lapping with a small energy cost [6]. An ultrasoft lo
arithmically divergent potential for short distances h
also been proposed to describe the effective interac
between star polymers in good solvents [14]. These
a few particular cases of systems defining what is c
monly known as “soft matter”, which has become
active field of research with many potential physic
chemical and engineering applications.

The penetrable-sphere (PS) interaction potentia
defined as

(1)φ(r) =
{ ε, r < σ,

0, r > σ.

This model was suggested by Marquest and W
ten [15] in the late eighties as a simple theore
cal approach to the explanation of the experiment
observed crystallization of copolymer mesophas
where a simple cubic solid phase coexists with
disordered suspension. By arguments based on th
ternal energy alone, these authors claimed that, u
the assumption of single-site occupancy, the stab
of the simple cubic crystal was assured in a given
main of the phase diagram. On the other hand, den
functional theory [8,9] predicts a freezing transition
fcc solid phases with multiply occupied lattice site
The existence of clusters of overlapped particles
“clumps”) in the PS crystal and glass was alrea
pointed out by Klein et al. [7], who also performe
Monte Carlo simulations on the system. In the flu
phase, the standard integral equation theories (
PY and HNC) are not very reliable in describing t
structure of the PS fluid, especially inside the c
[8]. Other more sophisticated closures [10], as w
as Rosenfeld’s fundamental-measure theory [11],
able to predict the correlations functions with hi
precision but, on the other hand, the signature fo
spatially ordered phase [a divergent structure fa
S(k) for a finite wavenumberk] is not found with
these methods. Recently, a mixture of colloids a
-

,

non-interacting polymer coils has been studied [1
where the colloid–colloid interaction is assumed to
that of hard spheres and the colloid–polymer inter
tion is described by the PS model. The inhomogene
structure of penetrable spheres in a spherical pore
also been investigated [13].

In order to shed further light on the properti
of the PS system, in this Letter we focus on t
high-temperature, high-density region of the ph
diagram. As we will see later, this asymptotic regi
is mathematically equivalent to takingε → 0 and
σ → ∞ in a scaled way, so that we recover rigoro
results first derived by Gates [16] and by Grewe a
Klein [17] in the more general framework of a cla
of Kac potentials. At the level of the thermodynam
properties, only zeroth-order results were given
Ref. [17], but here we provide the explicit first-ord
corrections. Moreover, we combine the exact f
energy of the PS fluid with a free-volume estimate
the free energy of the PS crystal to obtain the freez
and melting points.

We start by observing that the Mayer function
the PS interaction is simply

(2)fPS(r) = exp
[−φ(r)/kBT

] − 1 = xfHS(r),

where x ≡ 1 − e−ε/kBT is a parameter measurin
the temperature of the system,fHS(r) = −Θ(σ − r)

is the Mayer function of a hard-sphere (HS) syst
(Θ being the Heaviside step function),kB is the
Boltzmann constant andT is the absolute temperatur
Obviously, the PS model includes the HS fluid (T → 0
or x → 1) and the point-particle fluid (T → ∞ or
x → 0) as special limits. The latter limit is assum
at finite number densityρ. However, a non-trivia
limit is obtained if x → 0 andρ → ∞ keeping the
product (scaled density)ρ̂ = ρx finite. Although for
high temperatures one hasx ≈ ε/kBT , it is more
convenient to work withx rather than withkBT/ε as
the control parameter.

Let us consider now the exact virial expansi
of the cavity functiony(r) ≡ g(r)exp[φ(r)/kBT ],
whereg(r) is the radial distribution function [1]. In th
diagrammatic representation of the virial expansion
y(r), each bond in a given diagram represents a Ma
functionfPS(r) = xfHS(r). Therefore,

(3)y(r) = 1+
∞∑

ρnxn+1
n(n+1)/2−1∑

xmy(m)
n (r),
n=1 m=0
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where the HS functiony(m)
n (r) is represented b

the sum of diagrams having 2 root points (wh
circles),n field points (black circles) andn + 1 + m

bonds. Settingx = 1 (zero-temperature limit), Eq. (3
becomes the virial series for hard spheres. On
other hand, in the high-temperature limitx → 0 with
ρ → ∞ andρ̂ = ρx finite, we get

y(r) = 1+ x

∞∑
n=1

ρ̂ny(0)
n (r)+O

(
x2)

(4)= 1+ xw(r)+O
(
x2),

where the second equality defines the functionw(r).
The functionsy(0)

n (r) are represented bychain dia-
grams, i.e.,

(5)y(0)
n

(|r0 − rn+1|
) = .

By application of the convolution theorem, the Four
transform of the functionw(r) is given by

(6)w̃(k) = ρ̂
[
f̃HS(k)

]2[1− ρ̂f̃HS(k)
]−1

,

where f̃HS(k) = −(2πσ)d/2k−d/2Jd/2(kσ ) is the
Fourier transform of the HS Mayer function,Jν(z) be-
ing the Bessel function. Similarly, the structure fac
S(k) and the direct correlation functionc(r) are

(7)S(k) = [
1− ρ̂f̃HS(k)

]−1 +O(x),

(8)c(r) = xfHS(r)+O
(
x2).

From Eqs. (4) and (8) it follows that the PY and HN
closures become exact to first order inx. The same
happens with any sensible approximation which
tains the chain diagrams of the virial expansion. I
worth noting that the non-linear Debye–Hückel a
proximation for the radial distribution function of
system of charged particles can be derived by neg
ing all but the chain diagrams, which are the m
weakly connected (and hence the most strongly di
gent) ones [1]. More in general, the chain diagrams
termine the asymptotic long-distance behavior of
correlation functions [2].

Besides the standard structure functions of the
ory of liquids listed above we have found it us
ful in this case to introduce an auxiliary functio
γ (r) as the density integral ofw(r), namelyw(r) =
∂γ (r)/∂η̂, where η̂ = ρ̂vdσ

d is the scaled packing
fraction,vd = (π/4)d/2/#(1+d/2) being the volume
of a d-dimensional sphere of unit diameter. In Four
Table 1
Contributions of zeroth- and first-order inx to the main thermody-
namic quantities

Quantity O(x0) O(x)

aex/kBT 2d−1η̂ 2d−1γ (σ)

p/ρkBT 1+ 2d−1η̂ 2d−1η̂w(σ)

sex/kB 0 2d−1η̂
[
w(σ) − 1

2

]
µex/kBT 2d η̂ 2d−1[

η̂ − 2−dw(0)
]

uex/kBT 2d−1η̂ 2d−2[
η̂ − 21−dw(0)

]
cex/kB 0 1

2 η̂∂w(0)/∂η̂

(∂p/∂ρ)T /kBT 1+ 2d η̂ 2d−1∂[η̂2w(σ)]/∂η̂

space,

(9)γ̃ (k) = −η̂f̃HS(k)− vdσ
d ln

[
1− ρ̂f̃HS(k)

]
.

We have verified that the values ofγ (r) at r = 0 and
r = σ satisfy the linear relation

(10)γ (σ)+ 2−d

η̂
γ (0) = η̂

2
,

which is crucial to prove the thermodynamic cons
tency between the virial and energy routes to the eq
tion of state. By standard application of statistic
mechanical formulas relating the correlation functio
to the thermodynamic quantities [1], we have deriv
expressions for the latter to first order inx in terms
of the values ofw(r) andγ (r) at r = 0 andr = σ .
The (excess) free energy per particleaex, the com-
pressibility factorp/ρkBT , the (excess) entropy pe
particle sex, the (excess) chemical potentialµex, the
(excess) internal energy per particleuex, the (excess
specific heatcex and the inverse isothermal compre
ibility (∂p/∂ρ)T /kBT are listed in Table 1. The se
ond and third columns give the zeroth- and first-or
contributions, respectively, in the exact expansion
those quantities in powers ofx at constantρ̂ = ρx.
The zeroth-order terms are linear functions ofρ̂ (or η̂),
i.e., the virial expansion truncated after the second
ial coefficient becomes exact in the limitx → 0. How-
ever, the first-order terms are highly nonlinear fu
tions of the scaled density and so all the virial coe
cients contribute.

Gates [16] and Grewe and Klein [17] considere
class of Kac potentials of the formφ(r) = εφ∗(r/σ ),
where φ∗(r∗) is a non-negative bounded and in
grable function andε ∝ σ−d . They proved rigorously
that in the van der Waals limitσ → ∞, the direct
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Fig. 1. Plot of sex/(ε/T ) (lower curves) andcex/(ε/T ) (upper
curves) versuŝη/η̂0 for d = 1 (dotted lines),d = 2 (dashed lines)
andd = 3 (solid lines).

correlation function adopts the mean-field express
c(r) = −φ(r)/kBT and hence the structure factor
S(k) = [1 + (ρ/kBT )φ̃(k)]−1. The PS potential be
longs to the Kac class withφ∗(r∗) = Θ(1 − r∗) and
so in the van der Waals limit one hasx → 0 with η̂

fixed. It is then obvious that the van der Waals lim
(ε ∝ σ−d , σ → ∞ at fixed T and ρ) is equivalent
to the high-temperature, high-density limit (at fix
ε and σ ) considered in this Letter. In fact, Eqs. (
and (8) are recovered from the more general resul
Refs. [16,17], although the route followed here diffe
from theirs. Eqs. (7) and (8) were also found by Lik
et al. [5] as a mean-field approximation in the lim
ρ → ∞. However, as is apparent from our derivati
of Eqs. (7) and (8), the key ingredient is the hig
temperature assumption. The additional high-den
assumption is only needed to depart from the triv
results corresponding to a gas of non-interacting pa
cles. Comparison with Monte Carlo simulations sho
that the mean-field structural functions behave v
well even forx � 0.2 [5].

The results for the pressure, the internal ene
and the isothermal compressibility to zeroth-ord
in x were already given by Grewe and Klein [17
However, Eq. (10) and the third column of Table
are, to the best of our knowledge, new results. T
contributions ofO(x) are especially relevant in th
case of the excess entropy and specific heat, sinc
correspondingO(x0)-terms vanish. Fig. 1 shows th
high-temperature limit ofsex/(ε/T ) and cex/(ε/T )

versusη̂/η̂0 (where η̂0 will be defined below). The
non-linear density-dependence of both quantitie
clearly observed.
Fig. 2. Plot ofw(r) andS(k) (see inset) at̂η/η̂0 = 0.1 (dotted lines),
0.5 (dashed lines) and 0.9 (solid lines) ford = 1.

As analyzed by Grewe and Klein [17,18], the P
fluid presents a spinodal point (Kirkwood instabilit
at a certain scaled density. A simple examination
Eqs. (6), (7) and (9) shows that these quantities
well defined for every real wavenumberk if and
only if the maximum value off̃HS(k) is smaller
than 1/ρ̂. In general, the absolute maximum̃fmax
of f̃HS(k) occurs atk0, wherek0σ is the first zero
of Jd/2+1(z). Therefore, there exists an upper bou
ρ̂0 = 1/f̃max to the scaled density, such that t
structure factor becomes divergent at the wavenum
k = k0 when ρ̂ → ρ̂0. The values ofk0 and η̂0 =
ρ̂0vdσ

d for d = 1–5 are displayed in the third and fif
columns of Table 2, respectively. As an illustration,
Fig. 2 we have plotted the functionsw(r) and S(k)

corresponding to the one-dimensional PS fluid forη̂ =
0.1η̂0, 0.5η̂0 and 0.9η̂0.

How do the structural and thermodynamic fun
tions behave as the scaled packing fractionη̂ ap-
proaches its upper bound̂η0 from below? Let us de
note byk = ±κ(η̂)± iq(η̂) (with the conventionκ, q >

0) the four zeroes of 1− ρ̂f̃HS(k) closest to the rea
axis in the complexk-plane. These values are respo
sible for the asymptotic behavior ofw(r) [and hence
of g(r)] for long distances:κ is the wavenumber o
the oscillations, whileq is the damping coefficien
i.e., ξ = q−1 is thecorrelation length. A straightfor-
ward asymptotic analysis yieldsκσ ≈ k0σ − [(d +
1)/3k0σ ](1− η̂/η̂0) and

(11)ξ/σ = (qσ)−1 ≈ 2−1/2(1− η̂/η̂0)
−1/2,

which implies that the correlation length diverges w
a critical exponentν = 1/2 as the density approach
the maximum density [19]. Moreover, the correlati
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g
d)
Table 2
Values of the HS close-packing fractionηcp, the wavenumberk0, the nearest-neighbor distancer0, the (scaled) spinodal instability packin
fraction η̂0, the (scaled) freezing packing fractionη̂f , the (scaled) packing fraction̂ηms at the condition of marginal stability and the (scale
melting packing fraction̂ηm

d ηcp k0σ r0/σ η̂0 η̂f η̂ms η̂m

1 1 4.49 1.40 2.30 1.00 1.00 1.00
2

√
3π/6� 0.91 5.14 1.37 1.89 0.89 0.95 1.03

3
√

2π/6� 0.74 5.76 1.34 1.45 0.62 0.69 0.80

4 π2/16� 0.62 6.38 1.32 1.07 0.36 0.41 0.50

5
√

2π2/30� 0.47 6.99 1.30 0.76 0.22 0.26 0.33
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functionw(r) behaves asw(r) ≈ (1− η̂/η̂0)
−1/2ω(r),

where the scaling functionω(r) is given by

(12)

ω(r) = (2π)−d/2−1
√

2 ρ̂0σd
(k0σ)

d−1(k0r)
−d/2+1Jd/2−1(k0r).

So, the first-order contributionw(r) to the cavity and
radial distribution functionsdiverges asη̂ tends to the
maximum valueη̂0. On the other hand, the auxiliar
function γ (r) remains finite in that limit. According
to Table 1, the first-order coefficients inx of the
pressure, the entropy, the chemical potential and
internal energy diverge as(1 − η̂/η̂0)

−1/2 when η̂ →
η̂0, while the coefficients of the specific heat and
isothermal compressibility diverge as(1− η̂/η̂0)

−3/2.
Eq. (12) implies thatω(r) ∼ (k0r)

−(d−1)/2cos[k0r −
(d − 1)π/4] for largek0r, so the correlations at̂η =
η̂0 oscillate with a wavenumberk0, the amplitude
decaying algebraically. The first maximum ofω(r)

(apart from the one atr = 0) occurs at a valuer =
r0 such thatk0r0 is the second zero ofJd/2(z). The
quantity r0 represents the distance between nea
neighbors at̂η = η̂0. It is given in Table 2 ford = 1–5.

On physical grounds, it is expected that the freez
transition from the stable fluid to the stable so
occurs at a scaled densitŷηf smaller than the valu
η̂0 at the spinodal instability. We have estimated
values of the scaled packing fraction at freezing (η̂f ),
at melting (̂ηm) and at the point of marginal stabilit
(η̂ms), by using for the PS solid phase a simple fre
volume theory based on the one for the HS so
[8,20]. In the basic picture of the PS solid [6–8
the lattice sites are occupied by “clusters” of sphe
that overlap each other. A particle inside one of th
clusters performs random motions but excursi
beyond the lattice distance are forbidden becaus
the large energy cost associated with overlapp
with particles in the neighbor clusters. In the hig
temperature limit these clusters are expected to con
typically a large number of particles. We will suppo
that, on average, this number scales asα/x (whereα
is a density-dependent parameter to be determin
so η/(α/x) = η̂/α is the packing fraction of the
clusters. Consequently, the excess internal energy
particle of the PS solid isusolid

ex /kBT = α/2. Under the
assumption that every cluster behaves as a hard-
particle with a free volumevfree(η̂/α), where

(13)vfree(η) = 2d

ρ

[
1−

(
η

ηcp

)1/d]d

is an estimate of the free volume of a hard sphere
crystal with packing fractionη [8,20] andηcp is the HS
close-packing fraction, we have estimated the exc
entropy per particle of the PS solid as

(14)
ssolid
ex

kBT
= −d ln

[
1−

(
η̂

αηcp

)1/d]
− d ln2.

Given a value of̂η, the parameterα is determined by
minimizing the free energyasolid

ex = usolid
ex + T ssolid

ex .
In this way we find thatα(η̂) is the solution of the
algebraic equation̂η/ηcp = αd+1/(2+ α)d , so that

(15)
asolid

ex (η̂)

kBT
= α(η̂)

2
+ d ln

[
1

2
+ α(η̂)

4

]
.

The pressure and the excess chemical potential o
high-temperature PS solid are thenpsolid/ρkBT = 1+
α(η̂)/2, µsolid

ex (η̂)/kBT = α(η̂) + d ln[1/2 + α(η̂)/4].
In Fig. 3 we have plotted the excess free ene
per particle of the solid and the fluid phases
d = 3. The excess internal energy and the excess
tropy of the solid are also plotted. For the fluid w
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Fig. 3. Excess free energy per particle in the three-dimensi
PS solid, asolid

ex /kBT (solid line), and PS fluid,afluid
ex /kBT

(dashed line), in the high-temperature limit. The excess interna
ergy, usolid

ex /kBT (dotted line), and the excess entropy,ssolid
ex /kB

(dashed-dotted line), of the PS solid are also plotted. The sh
area represents the fluid-solid coexistence region.

have used the zeroth-order approximation given in
ble 1, soafluid

ex (η̂)/kBT ≈ ufluid
ex (η̂)/kBT ≈ 2d−1η̂ and

sfluid
ex (η̂)/kB ≈ 0. While the solid has a smaller e

tropy than the fluid, it requires less internal ener
As the density increases, the latter effect domina
over the former and the solid becomes more sta
than the fluid. The (scaled) density ofmarginal stabil-
ity η̂ms is determined by the conditionasolid

ex = afluid
ex .

The (scaled) freezing and melting densities are
tained from the equality of the pressure and the ch
ical potential in both fases:pfluid(η̂f) = psolid(η̂m),
µfluid

ex (η̂f) = µsolid
ex (η̂m). The values of̂ηm, η̂ms and η̂f

are given in Table 2 ford = 1–5. We observe that ou
heuristic estimates for the characteristic densities
the fluid–solid transition are typically less than half t
upper bound densitŷη0.

The one-dimensional (1D) case deserves some
cial comments. Ford = 1, the curves representing th
free energies of the solid and the fluid do not cro
but “kiss” each other at̂η = 1 (i.e., they have the sam
value and slope at̂η = 1). In fact,asolid

ex (η̂) < afluid
ex (η̂)

not only for η̂ > 1 but also forη̂ < 1. This “exagger-
ated” stability of the 1D PS solid for small densities
obviously an artifact of the heuristic free-volume th
ory we have employed. Nevertheless, our free-volu
theory contains the basic ingredients explaining t
the high-temperature 1D PS solid becomes more
ble than the fluid at sufficiently large densitiesη̂. This
is further confirmed by the rigorous existence of
spinodal instability at̂η0 � 2.30, where the metastab
fluid ceases to exist and a continuous transition t
-

crystalline solid takes place. We must emphasize
the fluid–solid phase transition in the 1D PS mode
not forbidden by van Hove’s theorem [21] because
of the hypothesis of the theorem, requiring the inter
tion potential to include an infinite repulsive core th
does not allow full overlaps between particles, is
fulfilled [22]. Thus, the PS model provides one of t
rare examples of one-dimensional models exhibit
phase transitions [22]. Whether the fluid–solid tran
tion occurs near̂η = 1 or whether it does not prese
a density jump, as indicated in Table 2, are questi
that need further theoretical and simulational work
fore being satisfactorily elucidated.

In this Letter we have focused on the high-tempe
ture domain (x → 0) of thed-dimensional PS mode
When the exact diagrammatic expansion of the c
ity function is considered, it turns out thatx acts as an
ordering parameter, so that the first-order term c
tains only chain diagrams, which can be easily
summed, yielding mean-field expressions. If the
scaled packing fractionη is kept finite, one arrive
at the trivial case of non-interacting particles. If,
the other hand, one explores the high-density reg
η = η̂/x, much more interesting results appear.
zeroth-order inx [17] the thermodynamic quantitie
are described by the second virial coefficient alo
but the first-order corrections exhibit a rich non-line
dependence on̂η. The fluid presents a spinodal in
stability at the upper bound densityη0(x) = η̂0/x,
but this is preempted by a first-order phase transi
to the solid at the freezing densityηf(x) = η̂f/x. It
seems natural to expect that a similar situation
plies for finite and low temperatures, except that
x-dependence ofη0(x) andηf(x) is more complicated
than in the high-temperature limit. From that point
view, it can be conjectured that the zero-tempera
limit (where the PS model reduces to the HS model
the upper bound density is limx→1η0(x) = ηcp. Anal-
ogously, limx→1ηf(x) = ηHS

f , whereηHS
f is the freez-

ing packing fraction of the HS fluid. Sinceηcp < η̂0
(cf. Table 2) andηHS

f < η̂f , it seems plausible that th
productsxη0(x) andxηf(x) are smoothly decreasin
functions ofx bounded between the valuesη̂0 andη̂f ,
respectively, atx = 0 and the valuesηcp andηHS

f , re-
spectively, atx = 1. This suggests the possibility o
constructing a simple approximate theory for the
model spanning the whole temperature spectrum
interpolating between the successful PY theory
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published elsewhere.
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