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The time evolution of an isolated, spatially homogeneous system, with an isotropic distri-
bution of velocities and with particles interacting via a Lennard-Jones potential, has been
analyzed by means of molecular dynamics. The initial velocity distribution is assumed to
be zero except for two given speeds U and Up. %e have found an overpopulation
phenomenon for high speeds, analogous to the one observed in the theoretical studies of
model Boltzmann equations. The influence of U and up on this effect has been analyzed.
A qualitative comparison with theoretical results is presented. Furthermore, we have ob-
served a similar, less intense, overpopulation effect for low speeds.

I. INTRODUCTION

A few years ago, Bobylev' and, independently,
Krook and Wu found a particular exact solution of
the nonlinear Boltzmann equation for a homogene-
ous gas with an isotropic velocity distribution,
whose molecules interact via a repulsive Maxwell
potential, i.e., a potential depending upon the fourth
power of the intermolecular distance. The original
Bobylev-Krook-Wu solution (the so-called BKW
mode) corresponds to some special initial condi-
tions, while the general solution can be expressed in
terms of a Laguerre series. These results have
motivated a great interest for the nonlinear
Boltzmann equation and its exact solutions.

By solving numerically the Boltzmann equation
for a two-dimensional model with Maxwellian in-
teraction, Tjon has found that, for some initial
states, the relaxation towards equilibrium of the dis-
tribution function is not monotonic. The corre-
sponding high-energies part of the distribution
function, that was initially zero, builds up quickly
over the equilibrium values and then decays to it
from above. This overpopulation phenomenon, ab-
sent in the BKW mode, seems to be important when
one tries to evaluate rate constants for chemical or
thermonuclear reactions. Alexanian and Hauge'
have suggested a criterion to discern which initial
distributions lead to a relaxation towards equilibri-
um from above for the high-energy tail. Evidently,
it is interesting to check whether real systems show
this overpopulation phenomenon or, by contrast, it
only shows up in highly simplified models far away
from real situations.

In this paper, we present the results of a
molecular-dynamical simulation of the 'relaxation
towards equilibrium of an isolated, homogeneous
system with an isotropic velocity distribution. The
particles interact via a Lennard-Jones potential.
The initial velocity distribution function consists of
two delta peaks, as considered by Tjon and oth-
ers.

This paper is organized as follows. In Sec. II we
describe the initial conditions and introduce the no-
tation. The method used to generate the initial dis-
tribution is discussed in Sec. III. We also check
that the simulated system is really isolated, in the
sense that its energy remains constant in time, and
is homogeneous. In Sec. IV, the results obtained are
presented and analyzed. The conclusions arising
from them are rather qualitative, due to the reduced
number of particles that can be handled in a
molecular-dynamical simulation. Nevertheless,
those results show that, for a given temperature,
and for sufficiently distant delta peaks, the overpo-
pulation phenomenon observed by Tjon for high
speeds does really appear. At the same time a simi-
lar phenomenon, not mentioned in the literature to
the best of our knowledge, is observed for low
speeds.

II. INITIAL CONDITIONS

As we said in the Introduction, the overpopula-
tion effect was first found by Tjon when extending
previous calculations of Tjon and Wu. These au-
thors consider a system of Maxwell molecules ini-
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These constants have been determined through the
conditions

tially described by a distribution function homo-
geneous in space and isotropic in the velocities.
Furthermore, it vanishes except for the two speeds
U and Up given. The overpopulation effect appears
then for certain values of U~ and Up. Mathematical-

ly, such an initial distribution can be written as

f(u;0)=N[c 5(u —u )+cp5(u —up)], (2.1)

where N is the number of particles in the system
and c~, cp are given by

Z 2

Up
—3

(2.2)
Up

—U~

I dv f(u;0) =N, (2 4)

U~ &~3&Up . (2.6)

Let us introduce the function tp(u i, uz, t)
representing the number of particles whose speeds
are between U

&
and U2 at time t. From the

Maxwell-Boltzmann distribution, the equilibrium
expression for qr is given by

I duu f(v;0)=3N. (2.5)

We have taken as the velocity unit (ks To/m)'~~, ks
being the Boltzmann constant, m the mass of each
particle, and —,k&TO the initial kinetic energy per
particle. In this paper, velocities will always be ex-
pressed in terms of this unit.

By convention, we take U &Up. Then the posi-
tivity of the distribution function implies that

qP"(v„u2) =NI V'2Tp/~T [viexp( —uiTo/2T) —u2exp( v2To/2T—)]

+erf(v2+Tp/2T ) erf(vi+—Tp/2T )], (2.7)

where erf(x) is the error function defined by

erf(x)= f dye (2.8)

In Eq (2.7),.T represents the equilibrium tempera-
ture of the system which does not coincide with To,
as we will discuss later on.

To characterize the system relaxation towards
equilibrium, we introduce the function

y(ui, u2, t)8 (ui, u2,'t) =
p' (Vi, U2)

(2.9)

This function must, of course, tend to unity for
t~ ao, for any pair of values of u, and uq.

A system of X =864 particles with periodic
boundary conditions and with a jLennard-Jones

t

0 0
u (r) =4e (3.1)

T r

interaction potential has been simulated through the
use of molecular dynamics. ' The particles are ini-
tially distributed with a fcc structure. The length of
the unit cell side is (4/p)'~, where p is the number
density of particles. The equations of motion are
numerically integrated through the use of a time
step

v;„=u;sin(nri;)cos(2ng;),

u;~ =v;sin(my; )sin(2m. g; ),
Utg =U(COS(7TY/t) .

(3.2)

By this procedure we ensure that no privileged
direction exists and therefore the initial distribution
can be considered isotropic. The other random
number g; is used to determine the speed of particle
i To simu. late the distribution (2.1), u; is taken to
be v if g;(c and vp if g;&cp. Noticethat weas-
sign either value for the speed of particle i, indepen-
dent of its spatial location.

Given a set of 3X independent random numbers

I g„,i);,g; ], the vector velocity of each of the N par-
ticles is determined by this algorithm. In other
words, in this way we define a particular microstate
of the rnacrostate defined by the distribution (2.1).
Nevertheless, we expect that the time evolution of
each microstate can be used to characterize the evo-

h =0.032(mo /48e)'i

equivalent to 10 ' s for Ar. The lattice structure
ensures the initial spatial homogeneity for volume
elements containing several unit cells.

The initial velocity distribution function is ob-
tained in the following way. We generate three ran-
dom numbers g;, il;, and g; in the interval [0,1] for
each particle i. The components of the velocity of
particle i are
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lution of the macrostate when dealing with a
coarse-grained description, which is the type of
description considered here.

To clarify this point, we have generated two mi-
crostates corresponding to two different sets of ran-
dom numbers by applying the algorithm described
above. We have then followed the time evolution of
each microstate. In Fig. 1 we represent
R(0.0,0.9;t) and R(3.1, oo, t) for u =1 and u&

——3
starting from two different microstates. It can be
observed in this figure that the essential features of
the evolution show up simultaneously in both mi-
crostates. More concretely we refer to the initial
build up until the equilibrium value is crossed, the
maximum overpopulation and the further relaxa-
tion towards equilibrium. We notice a better agree-
ment for speeds in the interval 0&v &0.9 than for
U &3.1. This is due, basically, to the greater abso-
lute population in the first interval; actually,

q&'q(0. 0,0.9)=164

and

p'q(3. 1, oo )=g .

This justifies that fluctuations of R(3.1, oo, t) are
much bigger than those of R(0.0,0.9;t). For this
reason, we do not represent the final relaxation
stage to equilibrium for R(3.1, oo', t) in Fig. 1.
These difficulties, arising from the reduced number
of particles of our model, will appear in all our re-

sults. So our conclusions will have a mainly quali-

tative character. In fact, we have carried out a
study of the statistical error on the functions R
shown in Fig. 1 by considering several initial micro-
states. In this way, we have estimated a typical er-
ror of 5% for R (0.0,0.9;t), but for R (3.1, oo,'t) we
have found values of the order of 15%. Of course,
the statistical error depends on the region of speeds
under consideration.

In order to analyze the influence of the values of
u and U~ on the relaxation to equilibrium, we have
studied the cases corresponding to the following
values of (vo, utt): (1,2), (1,3), (1,4), and (1,5), all of
them with the conditions po. =0.60 and

ks To /e =3.00.
The simulated system is isolated and then the to-

tal energy must remain constant in time. As a
check of this, we show in Fig. 2 the time evolution
of the total energy per particle E and the kinetic en-

ergy per particle E for the pair (1,4). We can ob-

serve that E remains, indeed, constant. Neverthe-

less, the kinetic contribution to the total energy de-

creases until a stationary value E„ is reached. This
value allows us to define an equilibrium tempera-
ture T from the relation Est= —,k&T. This is the

temperature used to define the function tp'q(v~, u2)

given by Eq. (2.7). This equilibrium temperature is
not exactly the same for all pairs studied by us. It
varies between 2 46'/k. s and 2.61 '/ks. This varia-

tion does not affect our analysis at all.
In the models studied with the Boltzmann equa-

tion the kinetic energy remains constant because
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FIG. 1. Relative population vs time for the pair (u, up) =(1,3) starting from two different initial microstates. Circles
correspond to speeds lower than u and the squares to speeds higher than u~.
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FIG. 2. Time evolution of the total energy per particle (E) and the kinetic energy per particle (E) for the pair (v,
Up) =(&,4).

each layer (n =72). A small variation of the num-

ber of particles with speed up in a layer gives rise to
an appreciable deviation of KJ from K. Therefore,
the kinetic energy fluctuations in each layer will be
bigger the greater the difference between u~ and up

is. Notice that the case represented in Fig. 3 corre-
sponds to the biggest value of up considered by us.

It is also observed in Fig. 3 that there is a certain
corre)ation between the fluctuations of nj and K&.
This is so because the kinetic energy in each layer is
related to the number of particles in the same layer.

IV. RESULTS

After discussing the reliability of our simulation
method, we proceed to present the results obtained.
In Fig. 4 we represent

R(u —b,u, u;t)

versus u at different t. The graph corresponds to
the pair (1,3) and b,u =0.1. We do not consider
speeds greater than 3.6 because, due to the small-
ness of Au, the populations in the intervals corre-
sponding to high speeds are so small that fluctua-
tions of R become very big. Zero population points
cannot be represented in our logarithmic scale of R.

For t =15 h the influence of the initial conditions
is still clearly observed. The time sequence shows
that the peak corresponding to up decays faster than
the one corresponding to u during the initial stage.
We will come back to this point later. The last time
represented corresponds practically to an equilibrioo

there is no potential energy contribution. On the
other hand, we study a moderately dense gas and,
therefore, the potential energy is not only non-

negligible but, as shown in Fig. 2, it is of the same
order (in absolute value) as the kinetic energy.

In agreement with distribution (2.1), the initial K
3 9

should be —,k~Tp= 2
E'. But our results show that,

for t~0+,K=4.8. This is due to the fact that the
fraction of particles with speed u does not exactly
coincide with the theoretical value c as a conse-
quence of the finite number of particles in our sys-
tem. Of course, the number of particles with speed

up is affected in the same manner.
It is also interesting to determine on what degree

the system is really homogeneous. We then split the
system in I layers of thickness half the side of the
unit cell. For our values of N and p, I = 12. In each
layer j, we measure the number of particles nj and
the kinetic energy KJ. The values of njln and

KJ /K for the pair (1.5) are represented in Fig. 3 for
different times. Here, n =X/l and K=Kn, Be-.
cause of our initial spatial configuration (fcc struc-
ture) and the thickness of our layers, n/ n for allj-—
at the initial time. As time evolves, nj oscillates
around its average value with an average fluctuation
of 4%. As for the kinetic energy KJ, we observe
that fluctuations are more important. In particular,
for t =0 the fluctuations are of 29%, and later, they
stabilize at 11% for t) 50 h. The reason for the
rather large value of the initial flucuations of Ez is
again related with the limited number of particles in



.26 TJON EFFECT FOR DENSE SYSTEMS. A MOLECULAR. . . 2821

15
'='

0
1.0 — ~

0,5 :
0~ ~ ~ 0 0~ ~ ~ ~ 0

0
0 00

0

20 —I I I I I I I 1 I I I I I I I I I I I I I I I I II I I I I I I I I

5.0 =

1.0—
0.5 =

0.1—

0.0—

15
t=20h

0

10 ~
~

4
0

0.5 :
0

0
~ 0 ~

0

0.0—
t=50h

1.0—

0.5 :
0 0 0

~ ~ ~
0

0.0—
200h

0
1.0—

0.5 :
0

PP I I I I I I I I I I I I

0 2 4 6 B 10 12

Layers
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for each layer j for the pair {v,vp) =(1,5) at different
times; nj is the number of particles of layer j, iC; is the ki-

netic energy of layer j, and n and X' are their average
values.

um situation. Because the populations are much
smaller at the tails than at the central region, there
the fluctuations of R about unity are important.

Neglecting the fluctuations, it follows from Fig. 4
that the relaxation towards equilibrium is not
monotonic, but first the particle population crosses
its equilibrium value, decaying to it afterwards.
This overpopulation effect appears basically for
speeds slightly smaller than u~ or utI, the effect be-

ing more pronounced the closer the speed to v or
vp is. Consequently, an asymmetry in the evolution
of R (t) for speeds very close to those peaks exists.
This is because, initially, particles with speeds v~ or
vtI tend to decelerate in such a way that most of the
particles having speeds between v and vp at a later
time initially had the speed utI. This effect is not to
be understood as the Tjon overpopulation
phenomenon for high speeds. For the remaining
pairs (v~, utt) studied, an analogous behavior has
been observed with a greater overpopulation the
greater vp is.

To carry out a more detailed analysis of the over-
population effect, we have studied the behavior of
R(v~, v2,'t) for speeds close to u and utt. Figure 5
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FIG. 4. Relative population vs speed at different times
for (v, vp) ={1,3).
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shows R versus I; for speeds close to u for the pair
(1,5). The comments referred to Fig. 4 are more
clearly seen in this Fig. 5. In particular, the asym-
metry between R(0 7,0. 9;t.) and R(1.1,1.3;t) for
speeds slightly smaller and bigger than u, respec-
tive/y, is confirmed. The population for speeds
gI'cRtcI than u~ 1nclcRscs monotonously unt11 Icach-
ing its equilibrium value, without any significant
overpopulation effect. On the other hand, the pop-
ulation for speeds smaller than u, after an initial
stage when it practically vanishes, increases rapidly,
crossing over the equilibrium value, and then decay-

ing to it at a later time. Furthermore, the overpo-
pulation shows up sooner and with greater strength
the closer the speed is to u .

A similar analysis shows the same features for
the remaining pairs considered by us. But we have
observed that the overpopulation for speeds lower
than u appears sooner and more intense when the
VRluc of up 1ncrcRscs. Fof 1nstRncc, foI thc pair
(1,2), a relevant overpopulation appears only for
0.7&u&0.9. To the best of our knowledge, this
overpopulation for speeds lower than u has not
been previously observed by the authors dealing
with model nonlinear Boltzmann equations. In
this sense, we think that this point deserves a fur-
ther theoretical elaboration.

Next, we study the behavior for speeds close to
Up. The curves obtained for the pair (1,3) are shown
in Fig. 6. As it happened near u, a clear asym-
metry between R (2.7,2.9;t) and R (3.1,3.3;t) exists.
For speeds slightly greater than up, the overpopula-
tion is almost undetectable. Nevertheless, for
speeds slightly smaller than up, the effect is clearly
observed. This overpopulation appears later, being
less intense the smaller the speed is. In fact, for
speeds in the interval 2.3 & u &2.5 the relaxation to

. equilibrium is monotonic. The same conclusions
are reached for the pair (1,2). However, the overpo-
pulation effect shows up at a later time and with
less strength. For instance, the maximum value of
R (1.7, 1.9;r) is roughly 1.6 and the overpopulation
starts at t 12 h, while there is no significant over-

population for the interval 1.5 & u & 1.7. The pairs
(1,4) and (1.5) are much less clear, due to the fact
that the number of particles with speeds close to up

is so small that fluctuations disguise the mean
bchavlo1. Fof 1nstancc,

y'q(3. 9,4. 1)=0.28
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FIG. 6. Time evolution of the relative population for
speeds close to vp in the case (1,3).

our system an analogous phenomenon to the one
observed by Tjon exists. Owing to the very low
populations in this range of speeds, a detailed study
will not be possible. We will then consider globally
all speeds greater than up.

Figures 7 and 8 represent the time evolution of R
for speeds greater than u& and for the pairs (1,2)
and (1,4), respectively. For comparison purposes,
we also show in theses graphs the evolution of
R (0.0,0.9;t) corresponding to speeds lower than v .
An analogous representation was presented in Fig.
1. Observe that, while the overpopulation is present
for the pairs (1,3) and (1,4) in the considered ranges,
it does not appear for (1,2). This seems to indicate
that, for a given value of U~, there exists a value of
up such that, for up greater than this one, overpopu-
lation shows up. This agrees with the theoretical
model's results as far as high speeds are concerned.
In particular, for the Maxwellian model Boltzmann
equation, the criterion of Alexanian and of
Hauge ' indicates that overpopulation exists if

for T=2.61'/k~.
Let us now present the analysis of the evolution

of populations for high speeds, to check whether in

(Up —3)(3—v )&6.

This criterion agrees with our conclusion that, for
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the pair (1,2), overpopulation is not present, while it
exists for the pair (1,3). This is so even when the in-

teraction potential in our system is very different
from the Maxwellian one.

From Figs. 1 and 8, we see that the overpopula-
tion is greater and shows up sooner for speeds
u & Up than for speeds u & u . Also, the effect is

more appreciable the greater U& is and it appears
more clearly for u & UIt. The maximum values of
8 (0.0,0.9;t) and of 8 (5.1, OD ';r) are 1.87 and
5.4)&10, respectively, for the pair (1,5). For the
pair (1,4) the maximum of R(0 0,0 9;t) is.1.79. . The
broken lines in Fig. 8 denote that there are points
corresponding to a vanishing population which can-
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not be represented. Actually, the lowest represented
values correspond to an absolute population of one
particle, while

y'q(4. 1, oo )=0.20 .

So, in our simulation method, this is the best pre-
cision for the fluctuations about equilibrium.

Hauge and Praestgaard have solved the
Boltzmann equation for a Maxwell model with the
initial distribution (2.1). It is observed in Fig. 1 of
Ref. 8 that the maximum overpopulation for the
speed u =6.3 for the pair (1,3) is R =2, appearing at
a time which is about one third of the equilibrium
relaxation time. In Fig. 1 of the present paper, the
maximum of R(3.l, oo, t) also appears at a time
about one third of the equilibrium relaxation time
and its value is roughly 2. We should remark that
we have described the speeds higher than up global-
ly because the fluctuations do not allow us to study
the population for v =6.

Finally, we have studied the equilibrium relaxa-
tion of the population corresponding to speed inter-
vals centered at u~ and vp. Figures 9 and 10
represent such relaxations for the pairs (1,2) and
(1,3), respectively. For the pair (1,2), a clear differ-
ence between the relaxation times of both popula-
tions is not observed. This may be due to the prox-
imity of u and vtt. However, for the case (1,3) it is
observed that the population corresponding to Up re-
laxes more quickly than that of v . Although the
same behavior seems to be present in the case (1,4),
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FIG. 9. Time evolution of the relative population for
two speed intervals around v (dots) and vg {circles) in the
case (1,2).

fluctuations forbid us to reach a definitive con-
clusion and, thus, we do not reproduce this case.

By numerically solving a two-dimensional
Boltzmann equation with Maxwellian interaction,
Tjon observed a slower time relaxation for high-
energy particles. In particular, for the pair

(u~, utI ) =(0.90,2.70),

the u population relaxes sooner than that of vtI.
The apparent contradiction between this behavior
and the one observed in Fig. 10, might be due to the
use of different interaction potentials. Let us recall
that in the Maxwell model the collision frequency is

3Q (X + I I I 1 I I I I I I I I I I I

0

R (0.9,1.1,t )

R (2.9,3.1;t )
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FIG. 10. Time evolution of the relative population for two speed intervals around v (dots) and vp (circles) in the case
(1,3).
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velocity independent.
Of course, much work remains to be done in this

field. In particular, it should be interesting to estab-
lish the relevance of the observed effects in the case

of a less singular distribution function of speeds.
Also, a more explicit relation of this effect with

macroscopic phenomena, such as chemical and
thermonuclear reactions, would be welcomed.
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