PHYSICAL REVIEW A

VOLUME 26, NUMBER §

NOVEMBER 1982

Critical behavior in the Percus-Yevick equation for a Lennard-Jones potential
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The behavior of the critical isotherm near the critical point has been studied starting from a
numerical solution of the Percus-Yevick equation for the Lennard-Jones potential. The results
show the usual asymptotic gas-liquid symmetry, i.e., a purely classical behavior. This result
solves a problem brought up recently by Fishman and Fisher.

Recently, the detailed study of the behavior of a
fluid near its critical point by means of the several in-
tegral equations has received great attention. This
behavior is described by the critical exponents and
also by the critical amplitudes.!= In particular, from
the behavior of the critical isotherm 7, near the criti-
cal point (p.,p.), the critical exponent 8 and the criti-
cal amplitudes W + are defined by

lp/pe—1l = W4lp/p.—11° , 6))

where W, and W_ refer to the limits p > p. and
p < p., respectively.

Classical theories, such as the van der Waals equa-
tion and the Landau phenomenological theory,
predict the value 8 =23 for a three-dimensional fluid.
They also predict the symmetry of the critical iso-
therm about the critical point, which implies W_
= W, = W. Concretely, for a van der Waals fluid W
takes the value %

Baxter! has solved analytically the Percus-Yevick
(PY) equation for ‘‘sticky hard spheres,”” showing
the existence of a critical point and obtaining the
classical values for the critical exponents. Neverthe-
less, the critical isotherm shows a strong asymmetry
around the critical point ( W_/W,=34) disagreeing
with the classical theories. Fishman and Fisher? have
shown that this asymmetry is related to the fact that
the scaling functions for the equation of state are
nonclassical.

The PY equation has been solved numerically near
the critical point by Henderson and Murphy* for a
truncated Lennard-Jones (LJ) potential. The critical
exponents obtained by these authors coincide with
those predicted by the classical theories. Although
they do not explicitly consider the behavior of the
critical amplitudes, Fishman and Fisher? have es-
timated an amplitude ratio for the critical isotherm of
W_/W,.=1.6 using a graph reported in Ref. 4.
Nonetheless, Fishman and Fisher remark that the
data of Henderson and Murphy do not approach the
critical point very closely and that the iterative
method of solution used may not be adequate in the
vicinity of the critical point. For these reasons, they
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do not definitively conclude whether the PY equation
predicts nonuniversal critical behavior for general po-
tentials or that only special limit models lead to a
nonclassical behavior in the PY equation. So they re-
mark that it would be interesting to carry out more
extensive and accurate numerical calculations.

We have solved the PY equation for a LJ potential
without truncation,

u(r) =4el(a/r)?=(a/N°1 , @)

assuming that the direct correlation function ¢ (r)
behaves like —u(r)/kgT for r > So and using an
iterative method with convergence conditions espe-
cially useful in the vicinity of the critical point.
Namely, we use the compressibility factor and the
isothermal bulk modulus to define additional conver-
gence criteria.’

From the compressibility equation of state we have
obtained

kyT./e=1.319678 +0.000002 ,
peo’ =0.2880 +0.0001 , 3)
el ek T, =0.3352 £0.0004

and the classical values for the critical exponents. In
particular, the value 8=3 is confirmed by Fig. 1,
where X712 vs (p—p.) is represented; X, is defined
by
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The nonlinear behavior near the origin is a conse-
quence of the error in the determination of the criti-
cal temperature.

Figure 2 shows (p/p.—1)?X. vs (p/p.—1). The
lowering of the values on both sides of the critical
density is due again to the indetermination of the
critical point. Actually, X;! does not vanish at the
calculated critical point but its value is ~10~%, The
extrapolation of the linear regions of the curve on
both sides of p, coincides within the error range,
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FIG. 1. Reciprocal square root of the critical susceptibility X, vs the density (p—p.) o for a LJ interaction according to the
PY equation. The points correspond to the obtained results and the straight line to a linear fit.

showing that W_= W,.= W (=1.02), in agreement the symmetry of the critical isotherm.
with classical theories. Let us notice that the sym- We notice that from Fig. 1 one sees linear behavior
metry of the isotherm that we consider as critical is for |p/p.—1] =0.0035. Thus in Fig. 2 a constant
maintained even in the region affected by the uncer- behavior for |p/p. — 1| outside 0.0035 could be ex-
tainty of the critical point. This shows that more pre- pected. However, there is a strong variation up to
cision would not change our above conclusion about [p/p.—1] =0.02, which differs by a factor of 10.
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FIG. 2. (p/p.—1)?x, vs (p/p.—1) for a L] interaction according to the PY equation. The points correspond to the results obtained.
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The reason for this apparent discrepancy is the fol-
lowing. As said above, the nonlinear behavior in Fig.
1 is associated with the error in the determination of
the critical temperature, whereas in Fig. 2 the strong
variation is due to the uncertainty of both the critical
temperature and the critical density. In other words,
even if we had two straight lines joining themselves
for X;/2=0, but p—p. =0, we would have almost
the same variation in Fig. 2. To be more explicit, let
us consider

A(p)=(p/p.—1)*x.(p), T=T, , (%)

and assume that if 7, and p, are the exact critical
temperature and density, 4 (p) becomes p indepen-
dent. We are going to study the quantity

A*(p) =(p/pi—1X(p), T=T. , (6)

where pf=p.+Ap, is the approximate value used
for the critical density. From (3) we have that
Apc/p.=3.47 X107, A simple calculation shows

that
AA(p)/A(p) =21 +1/x)Ap./p. ., @)

with A4 (p) =A4*(p) —A(p) and x=p/p.—1. Con-
sidering Eq. (7) for small values of x it is seen that
the behavior shown in Fig. 2 can be explained by the
uncertainty in the value of the critical density.

We conclude that the deviation of the PY equation
from the classical behavior is reduced to a class of
special models of potentials (even though the classi-
cal values of the critical exponents can be obtained
with these model potentials). Of course, it would be
interesting to determine the interaction potentials be-
longing to this class.
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