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Kinetic model for steady heat flow
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We construct a consistent solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation
describing a system in a steady state with constant pressure and nonuniform temperature. The
thermal profile is not linear and depends on the interaction potential. All the moments of the distri-
bution function are given as polynomials in the local thermal gradient. In particular, the heat flux

always obeys the (linear) Fourier law.

I. INTRODUCTION

One of the main problems in statistical mechanics is in
solving the kinetic equations in order to get information
about the transport properties of a system. The most ex-
tensively studied case corresponds to a dilute gas
described by the Boltzmann equation' (BE). The standard
method of solving it is the Chapman-Enskog series expan-
sion in the gradients of the thermodynamic fields. How-
ever, this approach is not very useful when dealing with
highly nonlinear situations. It is then very important to
know exact solutions of the BE for particular physical sit-
uations. The simplest cases correspond to steady flows.
Even then, the structure of the BE is so complex that
solving it is a difficult task. The only solution we are
aware of corresponds to a system of Maxwell molecules
under uniform shear flow, for which the generalized shear
viscosity has been obtained.? Thus, one has to resort to
simplified model kinetic equations.

A few years ago, Zwanzig® considered the uniform
shear problem by using the Bhatnagar-Gross-Krook
(BGK) model equation. He was able to get a closed equa-
tion for the pressure tensor, valid for » ~# potentials. This
equation has been used to analyze the convergence of the
Chapman-Enskog expansion.*

In this paper we use the BGK model to study a system
with a steady nonuniform distribution of temperature.
One could think that the simplest possibility should corre-
spond to a linear profile, but it seems that there is no con-
sistent solution of the BGK equation describing such
state. Our results show that a stationary solution with a
constant pressure and a nonuniform temperature exists,
but the temperature profile strongly depends on the in-
teraction law. Once the distribution function is known,
we are able to evaluate all its moments, and, in particular,
the heat flux. Quite surprisingly, it always obeys the
(linear) Fourier law, i.e., at each point of the system the
heat flux is proportional to the local temperature gradient.
The transport coefficient is given by the Navier-Stokes ex-
pression.
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II. MODEL AND ITS SOLUTION

We consider the BGK model kinetic equation for the
one-particle distribution function f(r,v,?),
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where £(r,?) is the collision frequency and f(r,v,?) is the
local equilibrium distribution function defined as
3/2

m exp[ —m (v—u)?/2ksT] . (2)
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Here, kg is the Boltzmann constant, m is the mass of a
particle, and n (r,t), u(r,?), and T (r,t) are the local densi-
ty, velocity, and temperature, respectively. In terms of
the distribution function, they are given by

n(r,n=[dvfirv, 3)
n(r,t)u(r,t)=fdvvf(r,v,t), 4)
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All the details of the interaction potential are modeled
through the dependence of the collision frequency upon
the temperature, since for a dilute gas ¢ is always propor-
tional to the density. For instance, for a repulsive poten-
tial of the form r 74, it is

£ xnT® ()

with a=+—2/u.

Equation (1) is a model for the BE in which collisions
are treated in a statistical way. Along with the BE, it has
five collision invariants (mass, momentum, and energy)
and verifies an H theorem. One expects the most relevant
features of the BE to be reasonably well mimicked by the
BGK equation.’

We want to study a system in a steady state with a tem-
perature gradient along the x direction. In principle, this
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requires the introduction of appropriate boundary condi-
tions.> Nevertheless, we are interested here in transport
properties in the bulk of the system far away from the
boundaries. In this case, one can expect to obtain the
correct answer by looking for a consistent solution to Eq.
(1), regardless of the details of the boundary conditions.
For a steady state with gradients along the x direction
only, Eq. (1) becomes

9
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that can be rewritten as

f(x,v)==&(x)[f(x,v)—folx,v)], 7
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Of course, this expression is in general only formal, as
both the collision frequency and the local distribution are
highly nonlinear functionals of the actual distribution
f(x,v). Moreover, the functional form of § depends on
the interaction model under consideration. Nevertheless,
this influence of the interaction can be scaled out by intro-
ducing a new variable s through the relation

ds =§(x)dx . 9)

The idea is to use s rather than x as a space variable. In
terms of this variable, Eq. (8) becomes

flv)=

-1
0
1+ng } folv), (10)

where the spatial argument has been omitted. Therefore,
the distribution f(v), as a function of the variable s, is
universal, i.e., does not depend on the interaction law. It
is important to stress that this universality is possible be-
cause we are dealing with a steady state. Otherwise, the
collision frequency depends both on space and time, and a
relation such as (9) is senseless.

As said before, we are interested in studying a gas with
a steady temperature gradient. Since boundary conditions
will not be imposed explicitly, we will proceed in an
heuristic way. A particular solution of Eq. (10) results
when one proposes self-consistent expressions for the local
hydrodynamic quantities. Here, we assume (to be con-
firmed in Sec. III) that a fully consistent solution of the
BGK equation exists with a vanishing local velocity, a
uniform pressure, and a temperature linear in s, i.e.,

u=0, (11)
p=n(x)kgT(x)=const , (12)
%{-:é%:e:const . (13)

Equation (13) deserves some comments. It reads that re-
gardless of the interaction considered, the temperature
profile is linear when using s instead of x as space vari-
able, no matter how large € is. As s is a nonlinear,
nonuniversal function of x, Eq. (13) implies that the tem-
perature gradient with respect to x is not constant, but it
depends on space in a way given by the interaction law.
In order to get the x-dependent temperature, Eq. (13) has

to be supplemented with the relationship, such as Eq. (6),
between the collision frequency and the temperature for a
given interaction potential.

By taking into account Eq. (12), we see that all the spa-
tial dependence of f occurs through the temperature, and
then Eq. (10) takes the form

-1
3
fv)= |1+4ev, AT folw)
— % canr |2 | o) (14)
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This expression provides an expansion of the distribution
function in terms of well-known quantities. Notice that
this is an expansion in powers of the gradients in the auxi-
liary variable s. Of course, one can use Eq. (13) and go
back to the actual position variable x. An important
feature of the resulting expansion is that only the first-
order derivative of the temperature appears.

III. HEAT FLUX AND FOURIER LAW

It still remains to be seen that Eq. (14) is self-consistent,
i.e., Egs. (3)—(5) are identically satisfied when Eq. (14) is
inserted on the right-hand sides. We define the moments
M, kI as

My= [ dvo*ulf(v), k1>0. (15)
Because of the symmetry of the problem, these are the

moments containing all the relevant information. From
Eq. (14) one easily obtains

k++r)/2
Mkl=_kL 2 (-€)r "‘g‘
B r=0
(I+r) even
o ke+lerevnfa |
I+r+1 oT
XTk—1+(l+r)/2 . (16)

Although this expression looks like an infinite series, it
actually has a finite number of terms, since the order of
the derivative increases faster than the power of T. In
particular, we have

=L - 1
MOO kBT n, (17)
My, =0, (18)
M|0= 3 =ink3T , (19)

m m

that proves the consistency of our solution. For
1 +2(k —1) >0, Eq. (16) can be rewritten as
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We now proceed to calculate the transport of heat T(x)=~To+€lopx . (29)

across the system. From the BGK equation, one easily
derives the balance equation

—nkg—=-V-J, (21)
where the heat flux J is given by
_m 2
J== [ avoivs. (22)
Upon writing these equations, we have used the fact that

in our case u=0. Due to the symmetry of the distribu-
tion function, the only nonvanishing component is

L:%M“. (23)
Equation (20) yields
5 nk3T
S 24
Jx 2 m €, (24)
ie.,
oT
Jx=—7»(x)a—x (25)
with
k2
M= 3 LT ) 26)
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Equation (25) is the Fourier law for the heat conduction,
while Eq. (26) provides a microscopic expression for the
thermal conductivity. Of course, as we are dealing with a
nonuniform system, both expressions are local, i.e., they
refer to a given point of the system. We see that the heat
flux always obeys a linear law, in spite of the fact that the
temperature profile, defined by Eq. (13), is in general
highly nonlinear. Moreover, the transport coefficient A is
given by the Navier-Stokes expression.

The x dependence of T varies with the interaction law
through the collision frequency. As an illustration, let us
consider repulsive potentials for which Eq. (6) applies.
Thus, Egs. (12) and (13) yield

T?-e=Ti"“ 1+(2——a)i6x , 27
T,

T, and §, being constants representing the temperature
and the collision frequency at an arbitrary origin. Equa-
tion (27) can also be written in the form

To o o—a)
- —Q)EX
o

where the influence of the local collision frequency is evi-
dent. In the vicinity of the point chosen as the origin, Eq.
(27) can be approximated by the linear relation

T(x)=E§(x) ) (28)

Of course, this is not the temperature distribution in the
whole bulk of the system. It only holds, in general, over a
short-distance scale. Nevertheless, there is a case for
which the temperature profile is exactly linear for all
values of x. It corresponds to a=1, i.e., a collision fre-
quency proportional just to the (constant) pressure. Al-
though the value a=1 is not associated to any physical
interaction potential, it can be viewed as representing the
so-called very-hard-particle interaction.®

IV. CONCLUDING REMARKS

We have solved the BGK model equation for a system
in a steady state with a uniform pressure and a nonuni-
form temperature distribution along the x direction. The
main result is that the temperature profile is in general
nonlinear, but the system always obeys the linear Fourier
law. To put these results in proper context, the following
comments seem appropriate.

(1) The fact that in the steady state the temperature gra-
dient at each point is proportional to the local collision
frequency is easy to understand physically. The molecu-
lar collisions are the mechanisms responsible for the ener-
gy transfer and it is sensible to think that the local varia-
tion of temperature depends on the rate at which col-
lisions take place. As the functional form of the effective
collision frequency depends on the interaction law, so does
the shape of the temperature profile.

(2) The question arises of whether the macroscopic state
we have assumed really corresponds to the bulk limit of a
solution of Eq. (7) with some physical boundary condi-
tions. The stationary BGK equation has been numerically
solved for a system enclosed between two parallel plates at
different temperatures. The plates are represented by dif-
fuse boundary conditions of complete accommodation.’>
The results’ are consistent with the profile defined by Eq.
(13) in the bulk of the system. Obviously, the size of the
effective bulk region increases as the Knudsen number de-
creases.

(3) For a system under uniform shear flow a nonequi-
librium molecular dynamics method has been developed
that allows to reproduce the bulk state having the desired
velocity field.® There is no boundary layer in this com-
puter simulation. One may wonder whether it is possible
to introduce, in a similar way, virtual boundary conditions
to simulate a bulk state for the heat conduction problem.
Shear flow has a rather mechanical character and, then, a
linear velocity profile is consistent with statistical
mechanics.” On the other hand, heat flow is a pure
thermal phenomenon and, in general, the resulting profile
depends on the details of the interaction.!®
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(4) Although the results presented in this paper have
been derived from the BGK model, it seems plausible to
expect most of the qualitative features to be quite general.
This conjecture is supported by some results. The prob-
lem of a dense Lennard-Jones fluid with a thermal gra-
dient has been studied by means of molecular dynamics
using diffuse boundary conditions.!! The main conclusion
is that the Fourier law applies over wide ranges of density
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and thermal gradient.
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