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Heat and momentum transport far from equilibrium
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Explicit expressions for the heat and momentum transport are given for a gas in a stationary state
with temperature and velocity gradients. The results are abtained from a formally exact analysis of
the normal solution to the Bhatnagar-Gross-Krook model for the nonlinear Boltzmann equation, and
are not restricted to small gradients. The irreversible momentum and heat fluxes are found to be
nonanalytic functions of the velocity gradients, indicating that the Chapman-Enskog expansion does
not converge for this state. However, these cruxes are analytic in the temperature gradients; in partic-
ular, the heat fIux is simply proportional to the temperature gradient so that Fourier's law applies
even for large gradients. The space dependence of the thermodynamic and velocity fields is deter-
mined as a function of the interaction potential, and the results for Maxwell molecules and hard
spheres are compared.

I. INTRODUCTION

The transport properties of a simple Auid near equilibri-
um are well understood in the following sense: The con-
stitutive equations for the heat and momentum Auxes are
known (Newton's viscosity law and Fourier's heat law)
and the resulting linear hydrodynamic equations can be
solved for a wide class of boundary conditions. For states
far from equilibrium the constitutive relations must be
generalized to nonlinear functions of the hydrodynamic
variables and their gradients. Although the Chapman-
Enskog' method provides a systematic expansion to com-
pute these functions as a power series in the gradients,
calculations beyond Navier-Stokes order (Burnett equa-
tions) are prohibitively difficult and not applicable for
large gradients. Furthermore, even when the Auxes are
known as functions of the gradients, there still remains
the difficult problem of solving the resulting nonlinear hy-
drodynamic equations to determine the explicit space
dependence of the hydrodynamic variables. Consequent-
ly, very little is known about the mechanism of heat and
momentum transport far from the Navier™Stokes domain
even for the simplest boundary conditions.

The prototype Auid for the study of transport proper-
ties is a monatomic low-density gas with short-range in-
teractions. The state of the system is specified by a solu-
tion to the nonlinear Boltzmann equation with appropri-
ate initial and boundary conditions. Very few solutions
to this equation are known for spatially inhomogeneous
states. The first was due to Ikenberry and Truesdell for
Maxwell molecules. They showed that the hierarchy of
equations for velocity moments of the Boltzmann equa-
tion could be solved self-consistently under the assump-
tion of a linear velocity field, and spatially constant tem-
perature and pressure (momentum transport). A second

solution for Maxwell molecules has been obtained recent-
ly for a suitably chosen temperature field with constant
pressure and zero-fiow velocity (heat transport). More
detailed information has been obtained for these two
cases using the Bhatnagar-Gross-Krook (BGK) model
for the nonlinear Boltzmann equation. ' This model
preserves the important qualitative features of the trans-
port properties, while allowing for more complete calcu-
lations. The objective here is to extend this analysis of
the BGK equation to describe transport in a steady state
with combined heat and momentum transport.

The physical situation considered is the stationary
state of a gas between two parallel plates maintained at
different temperatures and in relative motion. Let y
denote the coordinate normal to the plates. Then the
stationary BGK equation determines the velocity distri-
bution function at the position y between the plates,
f (y, v). A unique solution is obtained by specification of
boundary conditions on f at the upper and lower plates.
In general, it is possible to separate the solution into two
parts, f =flt+f~. The function ftt accounts for the
prescribed boundary conditions and decays rapidly to
zero at distances greater than a mean free path from ei-
ther plate. The other solution ftt is a particular solution
to the BGK equation that depends on y only through the
hydrodynamic variables. The latter property character-
izes the "normal" solutions (e.g., that constructed by the
Chapman-Enskog method). This qualitative discussion
indicates that a normal solution is expected to apply if
attention is limited to the "bulk" domain of the gas, out-
side the boundary layer. The boundary conditions ap-
pear only indirectly in the normal solution through the
explicit space dependence of the hydrodynamic vari-
ables, which must be determined from the complete solu-
tion including fz or from an appropriate solution to the
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II. STEADY-STATE HYDRODYNAMIC EQUATIONS

The BGK kinetic equation implies the steady-state
conservation laws in their usual form

V (pU)=0,
, BU,

U Vu +hV U+V q*+t~ =0,V
(2.1)

U VU+p ' +
BJ"I Bl'j

=0,

where p is the density, u is the internal energy density, p
is the pressure, h =u +p, and U is the Bow velocity. The
irreversible parts of the heat and momentum cruxes are
denoted by q* and t;~, respectively. We choose as in-
dependent variables the temperature, pressure, and Aow

velocity, where the temperature T is given by u =—', nkvd T.
For the physical conditions considered it is appropriate to
look for solutions of the form

U=xU (y), T =T(y), p =const,

q* =q*(y), tip ——tlj (y)
(2.2)

where x is a unit vector in the x direction. The hydro-
dynamic equations then take the simpler form

BU„,
By'ifc

By
Py

By By By

(2.3}

For positions suKciently far from the boundaries, the
cruxes are determined entirely by the normal solution and
therefore depend on y only through T (y ) and U (y).
Consider first the Navier-Stokes form for small gradients,

BT
Py = —AP

By
(2.4)

xy = 'QO
By

hydrodynamic equations. Here we suppress the detailed
kinetic theory boundary-value problem by restricting at-
tention to transport properties associated with the nor-
mal solution, and by looking for self-consistent solutions
to the corresponding hydrodynamic equations.

In Sec. II a solution to the usual Navier-Stokes hydro-
dynamic equations for the assumed geometry and bound-
ary conditions is reviewed. It is then shown that this is
also a solution to the general macroscopic conservation
laws beyond the navier-Stokes domain, if the heat and
momentum cruxes have a suitable form. The consistency
of these results with a formal expression for the normal
solution to the BGK equation is verified and the relevant
transport coefficients are calculated. The primary results
are (1) the momentum flux is a nonanalytic function of
the shear rate, (2) the heat flux is given by Fourier's law,
even for large temperature gradients, with an efFective
thermal conductivity that depends on the shear rate, and
(3) the temperature and velocity profiles depend on the
interparticle-force law. Further comment on these results
is given in Sec. VI.

For the BGK model the thermal conductivity A,p(T(y))
and shear viscosity go(T(y)) are given by'6

= 5
Ao =— kapv '(T(y)), iso —=pv '(T(y)),

2m
(2.5)

where v(T) is an average collision frequency. The depen-
dence of these transport coefficients on T(y) occurs entire-
ly through this collision frequency, and the hydrodynamic
equations are simplified by the change of variables,

dl =v( T (y) )dy . (2.6)

Substitution of (2.4) and (2.6) into (2.3) leads to the
steady-state Navier-Stokes equations

B'T =
BI

= —(go/Ap)

B'U.
Bl

=0.

BU.
'

BI
(2.7}

Now, since the combination qp/Ap is a constant, these
equations are easily solved to give

U„=U„(0)+al,
T = T (0)+el —(go/2Ap)a l

(2.8)

where a and e are constants fixed by the boundary condi-
tions. The relationship of I to the space variable y is ob-
tained from the integration of (2.6). Since the dependence
of v on T depends on the interatomic-force law, the veloc-
ity and temperature profiles will also have this depen-
dence.

Returning to the exact hydrodynamic equations, the
heat and momentum Auxes are written in a form sugges-
tive of the Navier-Stokes expressions,

qy" ———A[T, U]
BT
By

BU.
t y

= —'i)[ T Ul
By

(2.9)

where A, and g are a generalized thermal conductivity and
shear viscosity, defined by Eq. (2.9). (The square brackets
indicate that A, and g are functionals of T and U, or,
equivalently, functions of these variables and their gra-
dients. ) It is now easily verified that the Eqs. (2.8) are
also solutions to the exact hydrodynamic equations (with
A,p and gp replaced by A, and g ) if A, and g have the forms

A[T, U]=Ao(T)Fi (a),
71[T,U] =go(T)F„(a),

(2.10)

where F~(a) and F~(a) are arbitrary functions of the di-
mensionless shear rate a, with the limits
Fi(0)=F„(0)=l. In Sec. III it is verified that (2.9) and
(2.10) are formally consistent with a normal solution to
the BGK equation, and explicit expressions for Fi(a) and
F~(a) are obtained. With these results, the fluxes and the
hydrodynamic variables are completely determined.
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III. CONSISTENCY WITH THE BGK EQUATION

The exact solution to the hydrodynamic equations ob-
tained in Sec. II applies only if the heat and momentum
fluxes have the forms given by (2.9) and (2.10). These
Auxes can be expressed as averages over 'the velocity dis-
tribution function f,

p =const,

U=[U (0)+al]x,
T = T(0)+el —(mylks)l

where the dimensionless constant y(a) is given by

(3.7)

qy*= f dvuy —,'m (v —U) f,
t„~= f dv u~m (u„—U, )f .

(3.1)

y(a)=a F„(a)ISFi(a) . (3.8)

It is then straightforward to evaluate the integrals in (3.6)
with the result (see Appendix A)

As discussed in the introduction, we consider the case
where f is the normal solution to the BGK equation. The
steady-state BGK equation for the conditions described in
Sec. II takes the form

(3.2)

where l is defined as in (2.6) and fL, is the local equilibri-
um distribution function

BU„
t ~ = —i)0(T(y))F„(a)

cd

where

F„(a)= lim f"dti f"dt's tit2e
n~oo 0 0

n ( yt2t2)jxg
j=0 J.2

(3.9)

(3.10)

2p (y)fL= exp
mu,'(y)ir'"

uo(y)—=2k&T(y)lm .

2
v —u(y)

uo(y)
(3 3)

The pressure p(y), temperature T(y), and flow velocity
U(y) are now defined in terms of the first five moments
of the distribution function,

dv v —I ——0, + 1,v U (3 4)
Fz(a)= f dti f dt2 tit2e ' ' e

0 0
(3.1 1)

This verifies the form assumed in Eqs. (2.9) and (2.10).
However, the limit required in Eq. (3.10) does not exist,
indicating that the formal solution (3.5) is not uniformly
convergent with respect to v. To obtain a meaningful
form for Fz, it is observed that (3.10) is an asymptotic ex-
pansion of the well-defined function

This definition of the parameters in the local equilibrium
distribution is required for the BGK equation to imply
the general macroscopic conservation laws. More
specifically, if (3.4) is satisfied for some given p, T, and U,
then these variables are also exact solutions to the associ-
ated hydrodynamic equations. Conversely, given an exact
solution to the hydrodynamic equations, the condition
(3.4) is satisfied. Consequently, results in Sec. II are con-
sistent with the BGK equation if and only if the assumed
form of the hydrodynamic equations is correct. This re-
quires that Eqs. (2.9) and (2.10) agree with (3.1).

To evaluate (3.1) the normal solution must be specified.
In spite of its apparent simplicity, the BGK equation is a
highly nonlinear equation [due to (3.4)] and we have not
been able to construct an explicit solution for the condi-
tions considered. However, a formal solution is sufficient
for calculation of the fIuxes,

We identity (3.11) as the proper definition of F„.
The integral for the heat flux in Eq. (3.1) can be evalu-

ated in an analogous way, leading to

q~' = —A,,(T(y))F&(a)
BT
By

with

a Fz2

Fi(a)= +G(a, y) .
5r

(3.12)

(3.13)

The function G(a, y) has a representation similar to that
of F„,
—10y G(a, y)

=a —3y ,f"d—t\ of dt, (a' 3y+y'tit2)—
—(tl +t2) —yt 1 t2/2Xe e

n

f = lim fI"', f'"'—= g —uy
—fr. .

n~oo j=0
(3.5)

Consider first'the momentum flux. Substitution of (3.5)
into (3.1) gives

(3.14)

The function Fz has been given only implicitly as a func-
tion of r. The dependence of r on the shear rate a can be
obtained by substitution of (3.8) into (3.13),

G(a, y)=0 . (3.15)
n

t,~
= lim g —— f dvmu, u~~+'fL .

n~ oo

(3.6)

To evaluate the space derivatives, the expressions 'of Sec.
II are assumed,

In summary, the BGK equation with solutions to the
hydrodynamic equations of Sec. II leads to fluxes of the
assumed form, (2.9) and (2.10). This verifies the internal
consistency of the hydrodynamic and kinetic theory
descriptions.
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IV. CALCULATION OF THE FLUXES

The heat and momentum cruxes are given by Fourier's
law and Newton's viscosity law with the generalized
thermal conductivity and shear viscosity of Eq. (2.10).
These differ from the Navier-Stokes order results only by
the shear-rate-dependent factors Fz and F~. Their rela-
tionship can be characterized through a shear-rate-
dependent Prandtl number defined by

l.24—

1.22

1.20

1. 18

I. I 6

I. I 4
C3

1.12

I . IO

1.08
P(a) =pep/A. =5y(a)/a (4.1)

1.06

where cp is the specific heat. The integral in Eq. (3.11)
for F„exists only if y 0, indicating that it is not analytic
at the origin. For similar reasons (3.15) implies that y is
not analytic in a. Consequently, the generalized shear
viscosity, Prandtl number, and thermal conductivity are
nonanalytic functions of the shear rate. A power-series
expansion, such as that given by the Chapman-Enskog
method, can only be asymptotic at best in this case.

The equation that determines y(a) can be written in
terms of F„according to

2y~ 2y (yF„) +(3y —a )2y (yF„)=0,
dp

(4.2)

as follows directly from Eq. (3.15) using the defining
equations (3.11) and (3.14). To calculate Fz the integral
representation can be evaluated directly, but we have
found it more convenient to use an expansion about the
point at infinity. In Appendix B it is shown that

F„=y '
—,'(lny) g cjy ~~ + g djy J~2, (4.3)

j=0 j=o

where the numerical coefficients cj and dj are given by
Eqs. (B9) and (B10). Then using (4.2), y is calculated as
a function of a. The result differs from the leading (a )

term in the divergent expansion around the origin by
about 20% for 0. 1 &a. The function F„(a) for the shear
viscosity is shown in Fig. 1, where the monotonic de-
crease represents shear thinning. The expansion around
the origin (Chapman-Enskog result to Burnett order) is

1.04

1.02

1.000 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q2

FIG. 2. Prandtl number, P(a), as a function of a (

and its asymptotic form, 1+72a /25 ( ———).

I.IO

useful only for very small shear rates. The Prandtl num-
ber is shown in Fig. 2, monotonically increasing from 1 to
a limiting value of 3.

V. HYDRODYNAMIC VARIABLES

U, = U (a)+al,
T = T (a ) (m y /kii )l— (5.1)

The shape of the velocity and temperature profiles are
given by Eqs. (3.7) and the transformation from l to y,
Eq. (2.6). The latter is determined by the collision fre-
quency v[T(y)], whose temperature dependence is deter-
mined by the interatomic potential. Also, the profiles
depend parametrically on the shear rate a and the con-
stant e. For a =0 (boundaries at rest), the temperature
is linear in l and e is a measure of the imposed tempera-
ture gradient. The results here agree with those of Ref.
5 in this case. For a&0, there is a temperature profile
even in the absence of a temperature difference at the
boundaries, due to viscous heating. The additional effect
of an imposed temperature difference is simply to shift
this profile by a constant, a =kz e/(2m y ),

1.0"

with l —= l —a. This result shows a general relationship of
the temperature and velocity profiles,

T —T(a) =— (5.2)

0.8

g 0.7

0.6

0.5

0.4 I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 I.O

Q2

FIG. 1. Reduced shear viscosity, F„(a)=g(a)/qo, as a func-
tion of a ( ), and its asymptotic form, 1 —18a /5
( ———)

This means that a plot of T versus U gives a parabola no
matter what interaction potential is considered. It would
be interesting to see if this prediction of the model is
verified in actual experiments. It is also interesting to
note that the coefficient y(a)/a is quite insensitive to the
value of a.

According to the above discussion we can now restrict
our attention to a system with no imposed thermal gra-
dient (@=0),without loss of generality. Let the lower and
upper boundaries be located at y =0 and y =I., respec-
tively, with U (y =0)=0 and U (y =L)=U. Also, from
Eq. (2.6),
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y= dl'v ' T l'
0

(5.3)

so that y =0 at l =0. Then Eq. (5.2) gives a relationship
among the boundary parameters,

TO TL

TI
my(a)U
Ega TL

(5.4)

where T0 and TL are the temperatures at the lower and
upper boundaries. To proceed further, the temperature
dependence of the collision frequency must be specified.
As an example, consider Maxwell molecules, for which
v ~pT ', and consequently

TLv= VL T
(5.5)

U =al*

T*=1+g ga l*

y*= (1+5—
—,'ha l* )l* .

U
vLL

At37 =1, U =1, so

(5.7)

Here vL is the collision frequency at y =L. It is now con-
venient to introduce dimensionless variables defined by

y"=y/L, U'=U /U, T*=T/TL, , l*=l/U . (5.6)

Equations (5.1)—(5.3) then become

U 1+5 . i 1=2a 1+ sin
vLL g1/2

( 1+g —1)1/2 (5.1 1)

1 Ua= ——
v L (5.12)

In Fig. 3 the velocity and temperature profiles are shown
for Maxwell molecules and for hard spheres, correspond-
ing to the values 6= 1 and 5. The coincidence of the ve-
locity profiles for hard spheres with 6=5 coincide ac-
cidentally with those for Maxwell molecules with 6=1,
and has not been shown. The profiles for the velocity
(temperature) are antisymmetric (symmetric) with respect
to the vertical axis. The curvature always increases with
6, and, at a given value of 6, it is greater for Maxwell
molecules than for hard spheres. In general, the harder
the interaction is, the closer the velocity (temperature)
profile is to a straight line (parabola). The parameter b,
can be understood as a measure of the square of the rela-
tive velocity of the two planes enclosing the region under
consideration, or as the relative difference in temperature
of the planes induced by their motion.

It is possible to establish a simple relationship between
the parameter a and the mean shear rate U/L. From Eq.
(5.7) one gets

=a (1+—', b, )
vLL

Elimination of l* in Eqs. (5.7) then yields

(5.8) I .0

0.8

1+6+—'T*
2
3 1+2+

1/2
(5.9)

0.4

0.2
These equations provide the velocity and temperature
profiles for the case of Maxwell molecules.

A similar calculation can be carried out for hard
spheres with v ~pT ' . The result is

0
6

U U*(l+b, b, U*')''—
2avLL

2a vLL

U*
+ singl/2 (1+g—1)1/2

1 /2
, 1+6—T*

1/2

(5.10) 2-

I

0 0.2 0.4 0.6 O. 8 I.O

1+6+, sin
1+5—T*

1+5
The boundary conditions now give

FIG. 3. Velocity (upper) and temperature {lower) pro61es for
Maxwell molecules ( ) and for hard spheres (X) at 6=1
and 5 (for U* the hard-sphere results at 6=5 agree closely with
the Maxwell case of 5= 1, by accident, and are not shown).
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with v being the mean collision frequency,

1 LV= —I dy v(y) .
L o

(5.13)

VI. SUMMARY AND CONCLUDING REMARKS

The results of Sec. V completely describe a macroscopic
stationary state for heat and momentum transport far
from equilibrium. As noted in the Introduction, such
descriptions are rare, and progress was possible here due
to simplifications of the BGK model. However, a similar
analysis of the limit a ~0 (pure heat fiow) using the BGK
model has now been extended to a corresponding solu-
tion of the Boltzmann equation for Maxwell molecules.
We expect that the macroscopic state described here is
also an exact result for the Maxwell-molecules Boltzmann
equation, although we have not yet proved this. Also, it
is interesting to speculate on the relevance of these low-
density gas results for comparison with dense-Auid com-
puter simulations of stationary states. A comparison by
Zwanzig of BGK results with computer simulations for
uniform shear Aow indicates both qualitative and quanti-
tative agreement, with a suitable scaling of the collision
frequency v.

It is interesting to contrast the shear Aow described
here with uniform shear Aow. The latter has a spatially
constant temperature field that increases with time, while
here the temperature field is constant in time, but spatially
varying. The velocity profiles are both linear in l, but the
transformation from l to y is different because uniform
shear Aow occurs at constant density instead of constant
pressure. One consequence of this is that the shear viscos-
ity of uniform shear Aow is analytic in the shear rate for
the special case of Maxwell molecules, although nonana-
lytic otherwise. In contrast, the reduced shear viscosity
obtained here, Fz ——g(T, a)/g (To), is a universal nonana-
lytic function of the shear rate, independent of the poten-
tial model. Finally, we note that although both types of
shear Aow describe exact macroscopic properties of a nor-
mal solution to the Boltzmann equation, there are no
physically realistic boundary conditions associated with
uniform shear Aow. However, the normal solution for the
Aow considered here is expected to result from the usual
local boundary conditions (e.g. , diffuse, Maxwell, etc.).

A weak point of the analysis in Sec. III is the use of a
formal solution to the BGK equation, Eq. (3.5). This
leads to a divergent asymptotic series for the heat and
momentum Auxes. In effect, we have identified the Auxes
with well-defined functions having the same asymptotic
series. However, such identification is not unique. For
this reason we have used the terminology "consistent
with" rather than "derived from" the BGK equation.
Further study of this point is required.

The additional main results are summarized as follows.
(1) The stationary profiles with and without an imposed

temperature gradient are closely related. This is a conse-
quence of their additive character in the auxiliary variable
l.

(2) The shear viscosity is uniform in space and does not
depend on the imposed temperature gradient. Considera-
tions of symmetry alone would allow, for example, contri-
butions of second order in the temperature gradient and
third order in the shear rate. Such terms do not occur.

(3) The heat fiux obeys a generalized Fourier's law, i.e.,
it is proportional at each point to the local temperature
gradient. The transport coeKcient is a function of the
shear rate. The ratio between the shear viscosity and the
thermal conductivity defines a shear-rate-dependent
Prandtl number that turns out to be bounded between 1

(for a~0) and —,
' (for a~ao).

(4) The natural parameter to carry out a Chapman-
Enskog expansion is the reduced shear rate a, but such an
expansion is only asymptotic and diverges very rapidly.
A similar result has been found for the uniform-shear-
flow problem.

(5) Although the velocity and temperature profiles are
not simple, an "equation of state" relating the velocity
and the temperature at each point applies. Namely, the
temperature is a quadratic function of the velocity with
shear-rate-dependent coefficients.

APPENDIX A: HEAT AND MOMENTUM FLUXES

The integrals in Eq. (3.6) can be performed to give

jib
~ 2(j + &)/2

t ~
= lim 2p

7l ~ oo
(A 1)

where vo =2k~ T(l)/m. Let j—&2j + 1, and n ~2n + 1,
so

n (2
~ + 1)t~ g2j+1

2J Bl'J+'J=0

a'J
+(2j+1)a . voj . (A2)Bl'

The first term in the large parentheses vanishes since Uo is
a polynomial in l of degree 2j. The second term is easily
evaluated with the result

t*~= lim —ap g (2j+1)!(2j+1)!!(—y)~
n~oo J='=0

[(2J +1)!]'(—) )'

J= 2Jj t
(A3)

where y is defined by Eq. (3.8). The factorials (2j+1)!
can be represented in integral form using

j!= I"
dt e 't~ .

0
(A4)

The function Fz in (3.11) can then be identified easily and
is given by Eq. (3.10).

Next consider the heat fiux, defined by (3.1),
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q*=f dvuy im [(v —U ) +vy+u ]f
= lim

m

j=0~ = 2

J J

J dvu'+'u f 2—U, ——U, f dvuj+'f

= lim —p
n~oo J='=1

(j odd)

(j +2)I'I+2(j If) c) .
i jII

2(j +3)/2 Bl 2(j + i)/2u + —2U —ut) 'U„+ —v$ 'U

Again changing j~2j+1, n~2n +1 gives
2j+1

q~*= lim —p g .
" (2j+5)(2j + 1)!! . c)

3'

J=0 al

2j —1

voj+ +2a (2j+1)2j
BE

UO
2

= lim- pka aT', a'
g (2j+1)!!(2j+1)!(—y)'

n 2m Bl J=0

a+(j+1) 2j+5—
'V

p a dT ~ [(2j+1)!]( —V) a +( +1) 2( +1)+3-n-~ 2m Bl 2

The function F), can now be identified in the form (3.13)
with G( &) 1 y [ 2J' ]

n~oo J= j I2J

a2j+3—

G(a, y)—= lim —,
' g .

' (j+1)(2j+1)! '( —y)'
n —+ oo J= 2Jj t

a
X 2(j+1)+3—

Changing j~j—1 and n ~n —1 in (A5) leads to

(A5)

(A6)
The integral representation for G(a, y) in Eq. (3.4) is ob-
tained from (A6) using the identity (A4).

APPENDIX B: REPRESENTATION OF I:„
In this appendix we are going to derive a representation

of the function I'„ that is useful for computational pur-
poses. The function Fz is given by Eq. (3.11). By intro-
ducing the variable co=—y ', we get

2 2
00 oo —(tl +tp) 1F„(y)—:g(co)= dti f dtz e ' ' tit2 exp

0 0 2 M2

=co f du ue " f dt —exp —co t+—
0 0 t

(B1)

g(t)= —e " ' k =4uco'1 2
(B2)

The last integration in Eq. (Bl) can be understood as the
Laplace transform G (s) of the function

X( —,') = —2 ln2 —yE,

X(q +1)=X(q)+q

(B6)

(B7)

evaluated at s =co' . The result is 2Kp(23/uco), where
AO is the zeroth-order modified Bessel function. There-
fore,

i)/(co) =2co f du ue " Ko(2&uco) .
0

The series expansion of KO is

Kp(x)= —(ln —,'x) g + g X(q+1)(x /4)~ (x /4)~

q =o (q')'
q =o (q!)'

with

g(~) co m= —lnco g cqcoq+ g deco~,
CO

q =0 q=0
(B8)

I (q/2+ 1) q/2
Cq =

(q!)'

dz ——cz [2+(q + 1)——,
( [ln2+g(q /2+ 1)]]

(B9)

(B10)

Here, yE ——0.57721. . . is the Euler constant. Substitu-
tion of Eq. (B4) into Eq. (B3) yields

where

(B4)
These coefficients satisfy the following recurrence rela-
tions:

X(1)= yE, — (B5) co= 1, ci =(~/2)' (B1 1)
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Cq

(q +2)(q +1)' (812) q 3q+5
Cq +.2(q+2)(q+1)' (q+2)(q+1) '+ (814)

dp= ——,'(1n2+3y~), d] =(~/2)' (1+—,
' ln2 ——,'yg),

(813)

The expansion (88) is convergent for all values co~0,
and it has been used to evaluate the function F„ in the re-
sults reported in the main text.
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