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The concept of a Hilbert-class or “normal” solution in kinetic theory refers to one whose space
and time dependence is determined entirely through the hydrodynamic variables. Such solutions
are expected to apply sufficiently far from the boundaries. We investigate this concept quantitative-
ly for the nonlinear Bhatnagar-Gross-Krook equation to describe a gas between two infinite parallel
planes at different uniform temperatures. For sufficiently small average Knudsen numbers, spatial
domains are identified for which a normal solution applies. It is shown that these conditions include
states far from equilibrium, in the sense that deviations of the normal solution from the first
Chapman-Enskog approximation can be large. The special exact solution of the preceding paper is
found to be the normal solution in the limit of constant temperature gradient.

I. INTRODUCTION

The equilibrium state of a physical system is specified
by the appropriate conserved quantities or their conju-
gate variables. In contrast, a general characterization of
the nonequilibrium states is quite difficult because the ap-
propriate properties to be specified can differ from state
to state and may depend on the space and time scales of
the nonequilibrium process considered. For spatially in-
homogeneous states a minimal description should include
the space and time dependence of the local conserved
densities (e.g., mass, energy, and momentum densities).
These variables obey local conservation laws relating
their time dependence to gradients of the associated mac-
roscopic fluxes. Under favorable conditions, it is often
possible to express the space and time dependence of the
fluxes entirely as a general function of the conserved vari-
ables. The conservation laws then become a closed set of
equations for the macroscopic state of the system. An
important example is the hydrodynamic description of a
simple fluid, which applies for a wide range of nonequili-
brium states and types of fluids. The conditions under
which the fluxes can be specified in terms of the hydro-
dynamic variables characterize what is known as a
Hilbert-class or “normal” state. Often a more detailed
description of a nonequilibrium state is desired. For nor-
mal states the additional properties of interest also should
have generic forms specified as functionals of the hydro-
dynamic variables. Normal states are therefore a class of
nonequilibrium states that share some of the generic
features of equilibrium states in the sense that they can be
specified in terms of a relatively few number of variables.

The objective here is to investigate quantitatively this
concept of a normal state for a specific class of nonequili-
brium states. The system considered is a simple dilute
gas between parallel walls held at different temperatures.
In this case all macroscopic variables can be determined
from the single-particle phase-space distribution func-
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tion. At low density the distribution function is deter-
mined from the Boltzmann equation, whose solutions
define the nonequilibrium states of the gas. We address
two coupled questions: what are the conditions required
for a normal state, and what is the form of the normal
distribution function?

Although the concept of normal states is not limited to
gases, the most complete discussion has been provided by
Grad! in the context of solutions to the Boltzmann equa-
tion. Grad identified three boundary layers outside of
which a normal solution might exist. The boundary lay-
ers are (1) short times after specified initial conditions, (2)
positions close to spatial boundaries on which conditions
have been imposed, and (3) regions separated by discon-
tinuities of the hydrodynamic variables (e.g., shock
fronts). Outside these boundary layers it is expected that
the gas has a sufficiently regular behavior for a normal
solution to exist. The justification for this expectation is
closely related to the success of the first Chapman-
Enskog approximation for the solution to the Boltzmann
equation.? The Chapman-Enskog method generates a
normal solution by expanding the distribution function in
powers of a uniformity parameter. Although the first ap-
proximation seems to be in excellent agreement with ex-
periment, through indirect prediction of transport
coefficients, there is significant evidence that the method
is not convergent.">~> This leaves open the question of
the existence of normal states that are not asymptotically
close to the equilibrium state. The results presented here
suggest that the failure of the Chapman-Enskog method
does not imply a breakdown of the normal state but only
a limitation of the method.

Attention is restricted to stationary states, so only the
spatial boundary layer is relevant. Two independent pa-
rameters are used to generate the class of nonequilibrium
stationary states studied. The first is the Knudsen num-
ber A, which is a measure of the average mean free path
relative to the system size. The second is the uniformity
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parameter €*, which is a measure of the relative tempera-
ture change over a mean free path. The size of the
boundary layer decreases with decreasing Knudsen num-
ber, so for small Knudsen numbers there is a domain
away from the walls in which a normal solution is expect-
ed to apply. At larger Knudsen numbers the boundary
layer encompasses the entire system, and a normal state
is not possible. To study normal states far from equilibri-
um (outside the domain of the first Chapman-Enskog ap-
proximation) it is necessary to have conditions of rela-
tively large uniformity parameter while maintaining
small Knudsen number. States far from equilibrium also
require consideration of the nonlinear Boltzmann equa-
tion, instead of its simpler linearization. To allow for de-
tailed quantitative analysis we consider instead the
Bhatnagar-Gross-Krook (BGK) model for the nonlinear
Boltzmann equation.® The model equation is actually
more highly nonlinear, but it can be solved as a function-
al of the hydrodynamic variables for a wide class of
boundary conditions. The hydrodynamic variables are
then determined from a closed set of nonlinear integral
equations that can be solved numerically. In this way
problems associated with the validity of the Chapman-
Enskog method or boundary conditions for the associated
differential equations are circumvented. Only diffuse
boundary conditions are considered, corresponding to
complete accommodation of the particle by the wall. The
conclusions drawn here concerning normal states should
be representative of other boundary conditions as well.

A normal solution is defined to be a local solution to
the kinetic equation whose space and time dependence
occurs entirely through the hydrodynamic variables. It
need not have a local differential dependence on these
variables, as in the Chapman-Enskog method, but more
generally it may be a functional of these variables. Its
form should be generic rather than specific to a given
problem, and the solution does not have to satisfy the
specified boundary conditions since it is applicable only
outside the boundary layers. Actually, this is a charac-
terization rather than a definition and it may not be
sufficient to uniquely determine the normal solution.
Nevertheless, on physical grounds it is expected that
there should be only one such solution. The success of
the first Chapman-Enskog solution suggests that it is an
asymptotic representation of the normal solution for
small uniformity parameters. For the special case of the
BGK equation, a general form for the normal solution
suggests itself. The solution to this equation can be writ-
ten as the sum of a particular solution to the BGK equa-
tion plus a second function describing all of the given
boundary conditions. The particular solution satisfies the
above criteria for a normal function, i.e., it depends on
space only through the hydrodynamic variables and is
generic. Furthermore, the boundary condition function
decays exponentially for points far from the boundary.
Consequently, for conditions such that the boundary
function is small, the particular solution behaves as a nor-
mal solution. (Actually, somewhat stronger conditions
are required as indicated in Sec. III.) In Sec. IV we ex-
plore in some detail these conditions. For favorable con-
ditions we determine the relative accuracy of a normal-

state description of the hydrodynamic variables, the heat
flux, and the distribution function.

The questions addressed are old and largely unsolved.
There are two main reasons for their reconsideration
now. First, there have been several attempts to study
nonequilibrium states directly by novel computer-
simulation methods. These methods typically have to
compromise between a faithful simulation of physical
boundary conditions and practical limitations of comput-
er time and system size. In many cases the simulation
artificially modifies the boundary layers so that “bulk”
properties (e.g., transport coefficients) can be studied
directly.” These methods presume the validity of a nor-
mal state even far from equilibrium. Other methods use
more realistic boundary conditions but for very small sys-
tems.® In these cases it is not clear how well boundary
effects can be separated from bulk properties.

A second motivation is to understand and interpret the
only two known exact solutions to the nonlinear
Boltzmann equation for inhomogeneous states: uniform
shear flow® and stationary heat flow.'® They are both ob-
tained as solutions to the infinite hierarchy of equations
for moments of the distribution function. However, the
boundary conditions are not explicitly stated or imposed.
The associated hydrodynamic variables have no bound-
ary layers, so the solutions apparently represent idealized
normal states. There is evidence that the boundary con-
ditions are actually nonlocal'! or unrealistic,’ so the rela-
tionship of these special solutions to those for more phys-
ical boundary conditions is not a priori clear.

The corresponding exact solutions also have been ob-
tained for the BGK equation.!>!> For the case of steady
heat flow, the distribution function is obtained in the
preceding paper’ as a function of the temperature gra-
dient. This solution is a special case of the boundary-
value problem posed here in the limit of an infinitely
large system with constant temperature gradient. In this
limit, it represents a normal solution that is exact in a
finite domain sufficiently far from the hot boundary. Al-
ternatively, it can be viewed as an approximate local solu-
tion for the finite boundary-value problem in a domain
where the temperature gradient is nearly constant. We
show that under such conditions this special solution is
indeed a good approximation. However, for the finite
boundary case the special solution is not a normal solu-
tion in the sense defined above since it is not generic. In-
stead it is a special solution that is applicable only when
the temperature gradient is sufficiently linear in some
domains.

The concept of a normal solution is complex and even
subjective in some respects. The objective here is to pro-
vide some insight for a specific example amenable to
quantitative study. Some preliminary conclusions and
generalizations are discussed in Sec. V.

II. SOLUTION TO THE BGK EQUATION

The numerical solution to the BGK equation for heat
transport between parallel plates has been discussed else-
where,'* primarily for calculation of the dependence of
the heat flux on Knudsen number. For completeness and



330 C. S.KIM, J. W. DUFTY, A. SANTOS, AND J. J. BREY 39

to define notation, a brief description of the equation and
its solution is repeated in this section. For stationary
states and the chosen geometry the BGK equation is

v if(x,v)=~—v(x)[f(x,v)—fL(x,v)] . (2.1

* ox
Here f(x,v) is the distribution of velocities at position
—L <x <L, and f;(x,v) is the local equilibrium distri-
bution function,

fr(x,v)=O(L*—x*)n(x)[2mkz T(x)/m] 32

Xexp{ —m[v—U(x)]*/2kpT(x)] . 2.2)

The Heaviside step function © restricts the domain to be
between the surfaces, and the temperature, T (x), density,
n(x), and flow velocity, U(x), are determined self-
consistently from f(x,v) by

n(x)=fdvf(x,V) ,

3n(x0)ksT(x)/2= [dvim(v=U)lf(x,v),  (2.3)

n(x)U(x)=fdvvf(x,v) .

Also, v(x) is the collision frequency whose dependence on
x occurs entirely through T(x) and n(x). The specific
functional form of v(x) is determined by the interatomic
potential. It is clear that Egs. (2.1)-(2.3) constitute a
highly nonlinear set of equations for f(x,v). A unique
solution is obtained once boundary conditions are
specified at x =—L and x=L. A wide class of local
boundary conditions is given by!?

O(Fuv,)f(x=%L,v)=0(Fv,) [ dvK(v,v,+L)
XO(tv,)
Xf(x==xL,v').
(2.4)

The kernels K (v,v’,+L) describe the distribution of ve-
locities coming off each surface in terms of the distribu-
tion of velocities incident on the surfaces. They are re-
stricted by requirements of normalization and the ex-
istence of an equilibrium solution, but are otherwise arbi-
trary. Here we limit attention to diffuse boundary condi-
tions, for which K (v,v’,£L) is given by

m

—m(v=U4)?/2kp T

K(v,v’,iL)=7}7; lvsle

(2.5)

The constants T, and U, are specified parameters
characterizing the temperature and velocity of the sur-
face at x ==+L. Diffuse boundary conditions correspond
to complete accommodation of the particle on interaction
with the surface. It is possible to consider more realistic
boundary conditions, but it is not expected to be impor-
tant for the qualitative questions of interest here. Equa-
tions (2.1)—(2.5) completely specify the problem to be
solved.

To simplify these expressions it is useful to introduce a

dimensionless velocity v* and position s by

v*=v/v,, s=(k/uo)ijdx’v(x’) , (2.6)

where vy =(2kp T,/m)'/? is the thermal velocity at some
reference temperature Ty, and A is the ratio of an average
mean free path to the distance between the surfaces,

A=, fdex vx) | 2.7)

Equivalently, A is an effective Knudsen number. Finally,
the dimensionless distribution functions are given by

f*(s, v )=vang ' f(x,v), (2.8)
FEs,v* )=0(s —sn*(s)[7T*(s)] 3"
Xexp{ —[v*—U*(5)]*/T*(s)} , 2.9

where n, is some reference density, n*=n/n,

*=T/T,, and U*=U/v,, and the step function en-
forces the domain 0 <s < 1. In the following it is under-
stood that only the dimensionless quantities occur, unless
otherwise specified, and the asterisks will be deleted. In
dimensionless form Eq. (2.1) becomes

(2.10)

l+kux% ]f(s,v)sz(s,v) .

A general, but implicit, solution to this equation is
easily obtained by direct integration,

S, v)=f,(5,v)+ f(s,v) . (2.11)
The first term on the right-hand side is a particular solu-
tion to Eq. (2.10),
fp(s,v)ZIOwdte“’fL(s—kvxt,v) , (2.12)

as may be verified by direct substitution. Since f; de-
pends on s only through the hydrodynamic variables,
S, (s,v) has the characteristics of a normal solution.

The second term on the right-hand side of (2.11) is
given by

—s/Av,

frls,v)=A(v)e (2.13)

It can be verified that f,(s,v) vanishes at s =0 for v, >0
and at s =1 for v, <0, so the boundary conditions are en-
tirely contained in f,(s,v). The function 4 (v) is deter-
mined by (2.4) and (2.5) to be

—(v— 2
AWV)=OW, In_(7T_)" 3% (v=U_)?/T_

2
1/Av, ~372, (VULYT,

+O(—v,)e n (7T, )

(2.14)

The constants n, and n_ are twice the density of parti-
cles coming off the surfaces at s =1 and O, respectively.
Their values must be determined self-consistently from
the distribution function. The parameters T, and U,
can be specified arbitrarily.
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Equations (2.11)—(2.14) provide only an implicit solu-
tion since there is still a dependence on the unknown
variables n(s), T(s), and the constants n, and n_.
These must be determined self-consistently from Egs.
|
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(2.3). We now specialize to the case of pure heat flow by
setting U, =U_=0. Then the velocity field inside the
system vanishes everywhere. Substituting (2.11)—(2.14)
into Eqgs. (2.3) gives

sp(s)=n, |Jo 1—;:‘“{ +J; l_z_s +T_ |Jo }»\/s?: ]+J2 ';\‘;%—j”
+%foldt‘f% o )\'f/ZT:_L) IIK]\“‘/—%_:—L—) 1 : 2.15)
n(s)U (s)=0=—n_J, ? +vT_J, A_\/S%_T +—)1Cf0‘dtsgn(s—t)n(t).lo }\‘%—_T_I—_'t) .

Here p(s)=n(s)T (s) and the normalization of tempera-
ture and density has been taken relative to 7, and n_,
respectively. The functions J,(t) are defined in Appendix
A. The above provide a closed set of equations for the
temperature, density, and n .. Once their solutions have
been given these parameters can be substituted into Eq.
(2.11) to obtain the distribution function as well. This is
one of the simplifying features of the BGK equation: for
a wide class of boundary conditions a closed set of equa-
tions for the hydrodynamic variables applies, indepen-
dent of the distribution function.

Equations (2.15) are a set of nonlinear, singular integral
equations. There are no general methods available to dis-
cuss the existence or qualitative features of the solutions,

I
and numerical methods fail at very small Knudsen num-
bers. Nevertheless, it is possible to obtain the solution
over an interesting domain 0.1 <A < o, for a wide range
of temperature ratios, 7_. The details of the calculation
are given in Appendix A.

In addition to the hydrodynamic variables, the fluxes
of energy and momentum can be calculated. For exam-
ple, the heat flux in the direction of the temperature gra-
dient is

g(s)= [dvuv,v2f(s,v). (2.16)
Using the general solution (2.12) and (2.13) this can be ex-
pressed in terms of the hydrodynamic variables,

1—s 1—s
(s)=T3?J —#—s_ +J ______s_ —n J +J
7 W T NWT TN A oA
1 p1 |s —1| ls —1
. 2.17
)Lfodtsgn(s tp(t) |J, T 2 VT ( )

Therefore, once the hydrodynamic variables have been
calculated, it is straightforward to obtain the heat flux.
In spite of the apparent dependence on s the heat flux is
actually constant, as follows from energy conservation.
This constancy is used as a check on the numerical accu-
racy of the solution to the nonlinear integral equations.

III. NORMAL SOLUTIONS

Both Eq. (2.11) for the distribution function and Egs.
(2.15) for the hydrodynamic variables have an explicit
dependence on the boundary contribution f,. This is re-
sponsible for a boundary layer near each wall in which
the form and parameters of the boundary conditions are
very important. However, far from the walls f, can be
small and the effects of the boundary conditions occur
only implicitly through the values of hydrodynamic vari-
ables. For example, the particular solution f, of Eq.

f

(2.12) becomes a normal solution in this case since its
space dependence appears entirely as a functional of the
hydrodynamic variables. Also, the special solution given
in Ref. 3 is normal for the case of a constant temperature
gradient. Three possible choices for a normal solution
are described in the following, for comparison with the
exact solution of Sec. II. It is convenient to describe the
various distribution functions relative to the local equilib-
rium distribution,

O(s,E)=f(s,v)/f(s5,V),

where now £=v/V T (s) is the velocity relative to the lo-
cal thermal velocity at the point s.

(3.1)

A. Chapman-Enskog solution

In the Chapman-Enskog method, a uniformity parame-
ter €* is introduced to measure the mean free path rela-
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tive to a characteristic distance over which the hydro-
dynamic variables vary. For the problem here this is the
mean free path times the relative temperature gradient,

6*(s)=1(x)ilnT(s)ZKVT(s)ilnT(s) . (3.2)
dx ds

Here, [ (x)=vy,V T (x)/v(x) is the local mean free path.
This uniformity parameter is the same as that of Ref. 3.
The Chapman-Enskog method leads to an expansion in
powers of €*(s). Therefore the result is assumed to be
valid near equilibrium in a spatial domain far from the
walls. To first order in €* the Chapman-Enskog solution
for steady heat flow is

bop(s,E)=1—€*E (E2—3) . (3.3)

It is easily verified that Eqgs. (2.3) are satisfied by Eq. (3.3).
The heat flux in the first Chapman-Enskog approxima-
tion can be calculated from (3.3) to get

qee(s)=—3€*(s)p(s)V'T(s) . (3.4)

Equation (3.4) is Fourier’s law, expressing the heat flux
proportional to the temperature gradient or, equivalently,
€*. Corrections to Fourier’s law involving a nonlinear
dependence on €* are expected from higher-order ap-
proximations in the Chapman-Enskog expansion. Since
this expansion is probably only asymptotic, it is not use-
ful to calculate these higher-order terms.

B. The particular solution

The function f, is an exact solution to the BGK equa-
tion (2.1) for given hydrodynamic fields. Thus, whenever
a normal solution exists, it must agree with f,. This par-
ticular solution is a good approximation in a region of the
system for which the boundary function f, in Eq. (2.11)
is negligible. An estimate of the conditions for this can
be obtained from the requirement ¢, <<1. Equation
(2.14) shows that ¢, decreases exponentially with the dis-
tance from the boundary for

s>>AS)E [1+E,.E2€Xs)T(s)/T_17", £,>0 as)

1—s >>As)|E [ 1— &, |E%* ()T ()]}, &, <0
where A(s)=AV'T (s) is a local Knudsen number. The re-
gion for which conditions (3.5) do not hold (near the
boundaries) will be referred to as the boundary layers.
These conditions simplify for velocities near the thermal
velocity (£, ~1) and for small €*(s) to approximately
AS)E, | <<s <<1—A(s)|€,]. Consequently, when both
Knudsen number and velocity are small there is a large
region away from the boundaries in which f, should be a
good normal solution. For large velocities with positive
&, and large €* this domain actually increases, as seen
from the first of conditions (3.5). However, under the
same conditions for negative £, the boundary layer is
large and substantial differences between f,, and f are ex-
pected. The exponential separation of the particular
solution from the boundary layer defines a more general

normal solution than that obtained from the Chapman-
Enskog expansion, which is limited to states near equilib-
rium. It can be verified that the Chapman-Enskog result
follows from the particular solution by a formal expan-
sion of f; (s —Av,,v) about f;(s,v) for small values of
the uniformity parameter.

The hydrodynamic variables depend on integration
over the velocity and their effective boundary_layers are
determined from the functions J,(s/AV/T_) and
Ji[(1=s5)/A] in Egs. (2.15). The functions are small for
AV T_ <<s <<1—A but they are not exponentially small
like f,. In this case it is only the average Knudsen num-
ber that determines the relative size of the boundary lay-
er. Consequently, for a given Knudsen number, the par-
ticular solution may be a good normal solution for a
range of small velocities but the hydrodynamic parame-
ters may still require including boundary effects in Egs.
(2.15). The two requirements that a solution must satisfy
away from the boundaries are the BGK equation (2.1)
and the consistency conditions (2.3). Therefore all prop-
erties derive from fp(x,v) will be normal (functionals of
the hydrodynamic variables only) whenever f, satisfies
both of these requirements.

C. A special solution

In Ref. 3, an exact solution to the BGK equation was
obtained for an infinite system with temperature equal to
zero at the cold wall and infinite at the remote hot wall.
The temperature for this case is exactly linear in s with
constant pressure. The space dependence of this solution
is characterized simply by the temperature gradient, and
therefore it is normal. This special solution is easily re-
gained from Egs. (2.11)-(2.14) in the limit of T_ —0 at
constant €* and s —0. (The limit on s corresponds to a
finite distance x from the cold wall.) It is therefore a spe-
cial case of the diffuse boundary-value problem con-
sidered here.

It is also possible to interpret this special solution with
constant temperature gradient as applying to a finite sys-
tem, but with contrived boundary conditions that elimi-

T(s)—=

FIG. 1. Illustration of the extended domain —a <s =< b, with
temperature profile for diffuse boundary conditions ( ) and
for conditions (B8) (— — —).
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nate the boundary layer. The constant temperature gra-
dient of this special solution can be adjusted to fit locally
the temperature field for the diffuse boundary conditions
used here. This is illustrated schematically in Fig. 1.
Since the solution is also local (i.e., a function rather than
a functional of the hydrodynamic variables) it must agree
with the diffuse boundary solution whenever the hydro-
dynamic fields are the same. It will appear in Sec. IV
that the temperature gradient for diffuse boundary condi-
tions is not strictly linear, even in the normal state. How-I

¢s<e*,g)=<1/e*|g1\)fo°°dt O((1—1)sgné, )t 3 exp{(t

The three normal solutions described above each have
different conditions under which they are expected to ap-
ply. Since the normal solution should be unique, they
should agree when their conditions for validity overlap.
It is worth commenting that the identification of a nor-
mal solution does not provide a recipe for calculating the
required hydrodynamic variables in the normal domain.
This is a separate problem that must be addressed for ap-
plication of the normal solution. For practical purposes
it is necessary to have a method to connect the specified
conditions at the boundaries to the hydrodynamic vari-
ables across the boundary layers. This problem lies out-
side the domain in the normal state and requires further
knowledge of the details in the boundary layer. We do
not address this connection problem here, but instead use
the numerical solutions to the full Egs. (2.15) for the hy-
drodynamic variables when required.

IV. RESULTS

To discuss the possible relevance of normal solutions it
is first necessary to determine the hydrodynamic vari-
ables. These are calculated numerically from Egs. (2.15).
The method and accuracy of the solution are discussed in
Appendix A. Two cases are considered, temperature ra-
tios T_=0.2 and 0.01, for Knudsen numbers
0.1=A=<1.0. The qualitative features of the density,
temperature, and pressure are the same at all Knudsen
numbers. The temperature gradient and the pressure are
always approximately constant with respect to s, while
the density is simply defined by n =p /T. Figure 2 shows
the variation of the temperature with Knudsen number at
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FIG. 2. Temperature profiles for A=0.1, 0.2, 0.3, 0.5, and 1.0

at T_=0.2.
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ever, there are intervals over which the temperature is
approximately linear and the special solution should pro-
vide a good description. It cannot be considered a nor-
mal solution for these boundary conditions in the strict
sense, because the gradient must be adjusted differently
for each such interval. Further comment on this point is
given in Sec. IV. In essence, the finite domain is simply
considered as part of the above infinite region. The de-
tails are given in Appendix B, and the distribution func-
tion 1s

—Dl(e*e) 7'+ . (3.6)

T_=0.2. The main feature is a temperature slip at each
boundary that increases with Knudsen number. In addi-
tion, there is a point in each case for which the tempera-
ture is approximately independent of Knudsen number,
although this invariance fails at larger Knudsen numbers.
We have not yet understood this property of the solu-
tions.

The heat flux was calculated from these hydrodynamic
variables using Eq. (2.17), and is shown in Fig. 3 as a
function of the Knudsen number. Also shown is the heat
flux from Fourier’s law, Eq. (3.4), calculated at s =0.4 for
T_=0.2. Similar results are found for 7 _=0.01.
There is agreement with Fourier’s law up to A=0.2 for
both temperature ratios, but significant deviations occur
at larger values. There are two possible sources for this
deviation, higher-order terms in the Chapman-Enskog
solution and boundary effects. To estimate the latter, the
contribution of f, in Eq. (2.11) to the density is shown in
Fig. 4. The boundary effects are seen to be significant at
about the same Knudsen numbers for which Fourier’s
law fails. We conclude that the heat flux is normal for
AS0.2.

The fact that Fourier’s law is applicable only at small
Knudsen numbers does not necessarily imply limitation
to states near equilibrium (i.e., first Chapman-Enskog ap-
proximation). The converse is of course true, but it is-
possible that Fourier’s law could hold under more general
conditions. In fact, it is a surprising property of the spe-
cial solution® that Fourier’s law is exact for arbitrary
magnitude of the temperature gradient. To explore this
possibility in the present case and investigate the possibil-

0.00 T T T T

~0.I5 s L L 1
0.00 020 040 0.60 080 1.00

FIG. 3. Heat flux as a function of Knudsen number at
T _ =0.2; numerical ( ), Fourier’s law (— — —).
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FIG. 4. Relative contributions to the density from the
boundary term f), for A=0.1,0.2,0.3, and 0.4 at T =0.2.

ity of more general normal solutions it is necessary to
study the distribution functions directly.

Consider the reduced distribution function ¢ obtained
by integrating out the velocities in the y and z directions,

$(s,§x):fdvydvzf(s,v)/fdvydvsz(s,v) .

Figure 5 illustrates the results for several combinations of
Knudsen number and temperature ratio. There is an ex-
cess of particles with large velocities directed opposite
the temperature gradient. The small peak at positive ve-
locities is required to compensate for this excess, so that
the total particle flux vanishes. As expected, the devia-
tion from local equilibrium increases for larger Knudsen
number or smaller temperature ratio.

For comparison with the various forms for a normal
solution given in Sec. III, it is necessary to identify the
range of s values for which the boundary terms are small.
In Fig. 4 for T _ =0.2 the relative boundary contribution
to the density is about 103 at s=0.4 and A=0.1. Simi-
larly, for T_=0.01 it is 2X 10" at s =0.2 and A=0.2.
These are clearly conditions for which both a normal
solution is expected to apply and Fourier’s law is well
verified. For 7 _=0.2 the uniformity parameter is
€*=0.1 at s =0.4, while for T_ =0.01 it is €*=0.39 at
s =0.2. In the following, we refer to the conditions for
€*=0.1and €*=0.39 as cases 1 and 2, respectively.

Three candidates for a normal solution were identified
in Sec. III: the Chapman-Enskog solution, the particular
solution of Eq. (2.12), and the special solution of Ref. 3.
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FIG. 5. Reduced distribution functions ¢ for A=0.1 and
T_=0.2 at s=0.4( ), for A=0.2 and T_ =0.01 at s=0.2
(+.--),andforA=0.5and T_=0.0l at s=0.3(— — —).
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FIG. 6. Comparison of the reduced distribution function
(——) with the first Chapman-Enskog approximation
(—— —),for A=0.1,and T_ =0.2 at s =0.4.

The Chapman-Enskog solution is obtained from a
power-series expansion in the uniformity parameter €*
and therefore applies only close to local equilibrium.
Other conditions also are required for its validity. Since
the series in €* involves polynomials in the velocity, the
latter must not be too large either. For case 1 these con-
ditions are well satisfied for —2 <&, <2, as shown in Fig.
6. Although significant errors occur outside the range
they are attenuated by the local equilibrium weight factor
so that the consistency conditions (2.3) hold as well. As
expected, Fig. 7 shows that the first Chapman-Enskog
solution fails for case 2 since the uniformity parameter is
no longer small. Nevertheless, Fourier’s law is still found
to be a good approximation so the differences indicated in
Fig. 7 evidently do not contribute to the heat flux.

Only the first Chapman-Enskog approximation has
been studied here since there is strong evidence that the
expansion is only asymptotic."*>” A natural question,
therefore, is whether the notion of a normal solution is
similarly limited to states asymptotically close to equilib-
rium. To test this, an alternative to the Chapman-
Enskog solution must be constructed that does not re-
quire small €*. The particular solution S, is a reasonable
choice since it is a normal solution whenever the bound-
ary contribution f, is negligibly small. This condition
places restrictions on the velocity and average Knudsen
number, but not necessarily on the uniformity parameter
€*. For case 1, Fig. 8 shows that the particular solution
is actually a better approximation than the first
Chapman-Enskog solution. At the larger uniformity pa-
rameter, case 2, the particular solution is still a very good
approximation as shown by Fig. 9. This is a primary re-
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FIG. 7. Same as Fig. 6, for A=0.2and T_ =0.01 at s =0.2.
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FIG. 8. Comparison of the reduced distribution function
) with the particular solution (— — —) and the special
. .),forA=0.1and T_=0.2 at s =0.4.
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solution (- -

sult of our analysis. It shows that the concept of a nor-
mal state extends beyond the Ilimitations of the
Chapman-Enskog method. Although we have not per-
formed the calculations at still larger values of the unifor-
mity parameter, we believe the present results suggests
that the particular solution would still apply as long as
A <0.2. Of course, there are discrepancies at large veloc-
ities, but for the reasons mentioned above conditions (2.3)
are satisfied for both cases 1 and 2.

It is interesting to note that the particular solution can
be a good approximation even for larger Knudsen num-
bers, for which a normal state is not expected to apply.
This is shown in Fig. 10. Although the differences are
now larger than in Fig. 9, the agreement is surprisingly
good. However, the consistency conditions (2.3) no
longer hold, since there are boundary contributions to the
density of the order of several percent.

Finally, we consider the special solution of Ref. 3 as a
possible approximation to f. As discussed above this
solution is different in character from the Chapman-
Enskog and particular solutions. The latter are generic
solutions in the sense that their form is the same for a
class of boundary-value problems, not just for the simple
heat-flow case considered here. In contrast, the special
solution applies only for states that show locally a linear
temperature profile, constant pressure, and zero flow ve-
locity. However, when these conditions hold locally, the
special solution might apply over a wider range of Knud-
sen numbers than the particular solution. The reason is
that conditions (2.3) are then automatically satisfied for
the special solution even if f, is not negligible. Figure 2
shows that the exact temperature gradient is approxi-
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FIG. 9. Same as Fig. 8, for A=0.2 and T_ =0.01 at s =0.2.
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FIG. 10. Same as Fig. 8, for A=0.5and T~ =0.01 at s =0.3.

mately constant over small intervals containing the
points chosen for cases 1 and 2. And it is seen that the
pressure is also constant over the entire range for both
cases. Using the calculated temperature gradient in the
special solution it can be compared with the exact distri-
bution. Figures 8 and 9 show that the special solution is
as good an approximation as f, at small Knudsen num-
bers. Figures 10 and 11 show the same comparison at
A=0.5 and 1.0. The corresponding uniformity parame-
ters are €*=0.7 and 1.05. The special solution is now
clearly a better approximation than f,, although these
conditions clearly do not admit a normal-state descrip-
tion.

The relationship of the heat flux to the distribution
function is interesting and somewhat paradoxical. It
turns out that most of the contribution to the heat flux
comes from velocities in the range 1<|£, |<3. The
reason for this is a near cancellation of the contributions
from positive and negative velocities with magnitude
|€,1 <1, plus the slow decay of the distribution function
for larger negative velocities. This is somewhat surpris-
ing since the first Chapman-Enskog solution differs sub-
stantially in this region (for large €*) and yet they predict
the same heat flux. Evidently, these large differences ex-
actly cancel. Conversely, the special solution and the ex-
act solution appear to agree closely in Fig. 10 but their
respective heat fluxes are significantly different. The ex-
planation again lies in the significance of the contribution
from relatively large negative velocities. A calculation of
the ratio of the exact ¢ relative to that for the special
solution shows there are large differences for large nega-
tive velocities that apparently have different contribu-
tions to the heat flux in this case.
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FIG. 11. Same as Fig. 8, for A=1.0 and T_=0.01 at s =0.5.
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V. DISCUSSION

The analysis of a simple gas in steady heat flow from
the BGK equation has been given many years ago. Previ-
ous work has concentrated on the Knudsen number
dependence of fluxes and the description of boundary lay-
ers. Here, we have considered the complementary prob-
lem of describing properties outside the boundary layers.
Specifically, we have calculated properties for fixed, small
Knudsen numbers as a function of the uniformity param-
eter at points far from the boundaries. The objective was
to explore the possibility of a normal state for which the
space dependence of the properties could be described as
generic functionals of the hydrodynamic variables.
Sufficient conditions for a normal state here are the ex-
istence of a normal solution to Eq. (2.1) with the con-
sistency conditions (2.3). The following points summa-
rize and highlight some of the results of the calculations
given here.

(1) The first Chapman-Enskog solution is a good ap-
proximation for the distribution function only at very
small values for the uniformity parameter.

(2) The heat flux is accurately described by Fourier’s
law for small values of the Knudsen number. However,
this domain includes large values for the uniformity pa-
rameter. It appears that Fourier’s law extends outside
the domain of accuracy of the first Chapman-Enskog
solution.

(3) At small Knudsen numbers the particular solution,
Eq. (2.12), behaves as a generic normal solution outside
the boundary layers, even for large values of the unifor-
mity parameter.

(4) The special solution of Ref. 3 is a limiting case of
the particular solution when the system size is taken large
at fixed average temperature gradient. Therefore this is
the limit in which the normal solution becomes exact.

(5) The special solution can also approximate the distri-
bution function for finite boundaries wherever the tem-
perature gradient and pressure are approximately con-
stant. This is true regardless of whether or not there are
boundary effects at the points considered.

The analysis presented here can be extended to other

boundary conditions. In particular, we have studied the

case of combined heat and planar Couette flow. The re-
sults will be described elsewhere.
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APPENDIX A: SOLUTION OF EQS. (2.15)

In this appendix, the numerical analysis used in solving
the coupled singular nonlinear equations (2.15) is de-
scribed. The transcendental functions J,,(x) in these ex-
pressions are defined by

) 2
I ( fo dttme e X",

x)=—1—
Vi
with the properties
_rl+m)21/2V'm, m=0
I (0)= w, m<—1
Jp(x —0)=0,

d _
de,,,(x)—

2, (x)=(m —1)J,, _(x)+xJ,, _4(x),

d?,
dx?

_ngl(x) ’

d3
x;x—;J,,,(x)——(m—l) I (x)+2J,(x)=0.
Although Egs. (2.15) are nonlinear, it is useful to write
them in the quasilinear form

Yo()=dyls)+ fo“’dt K op(s,004(1) , (A3)

where 1,(s) denotes the hydrodynamic variables, ¢,(s)
the boundary contribution associated with f,, and the
kernels K (s,t) are defined in terms of the functions J,,.
These kernels have an x dependence that arises through
the temperature T (x), which is the source of nonlineari-
ty. Also, they are singular in the limit of small |s —z].
To further simplify the notation (A3) is written in the
abstract form

Yv=0¢+Kv .

Three methods of solution were considered. The sim-
plest is that of direct iteration of (A4), leading to the ap-
proximation

N
d/(N)"’ 2 (E("))n¢ ,

n=0

(A4)

(AS)

where K'™ is the kernel K evaluated using the tempera-
ture obtained from the N =rn —1 approximation. As in-
dicated by previous studies, this method is quite effective
for Knudsen numbers greater than 1, but has very poor
convergence at smaller Knudsen numbers. The second
method is a modification of Nystrom’s method. A suit-
able quadrature rule is introduced to write (A3) approxi-
mately as

M
¢a(si):¢a(si)+ 2 ijaB(si’sj)¢B(sj) y (A6)

j=1

where M is the number of quadrature points and w; are
the weight factors according to the quadrature rule.
Equation (A6) is now a nonlinear matrix equation of the
form

A;9,=¢; , (A7)
where the index i now denotes both the hydrodynamic
variable and the quadrature point. The matrix A4 de-
pends on the temperature, so the solution to (A7) is still
obtained by iteration, but now at each iteration (A7) is
solved exactly by matrix inversion. This leads to an ap-
proximation



39 HILBERT-CLASS OR “NORMAL” SOLUTIONS FOR . .. 337

¢§n)~[A(n)]i;1¢j , (A8)
where 4™ is the matrix A evaluated with the tempera-
ture obtained in the n —1 approximation. This method
requires that the number of mesh points M be large
enough to approximate well both the hydrodynamic vari-
ables and the kernel K (s,¢). The former are smooth func-
tions and cause no difficulty, but the singular domain of
the kernels requires that M be very large. Consequently,
the time and errors involved in the matrix inversion with
large M limit this method severely.
In order to treat the singular domain properly, the in-
tegral in (A3) is first divided into M intervals as follows:

M ity
Yals)=dals)+ 3 [ 77 dt K opls;,t glt) .

j=1""1

(A9)

Now, the number of points M is chosen to be large
enough only to represent the smooth functions (7).
The latter are then approximately constant over each in-
terval so (A9) becomes

M t.
Vals)=da(s)+ 3 [ 77 dt K ols;, 0040s))

j=1"1

(A10)

where s;=(¢;+1;,)/2. The remaining integrations can
be performed using the third property of (A2), so the
singularity of K ,4(s,t) is now treated exactly. The result-
ing equations have the form of (A7) and are solved in the
same way. The difference now is that M can be chosen
small; in practice M =40 was used. The relative
difference between input and output after 20 iterations
was always less than 10~ Internal consistency of the
equations themselves was monitored by verifying that
U,(s)~0 and g (s)~const. For all data reported here the
heat flux is constant to less than 1% and
U,(s)/v, <102, However, the method eventually fails
(for constant M) at sufficiently small Knudsen number.
For example, at A=0.01 we were unable to obtain a heat
flux with variation less than about 20%. The reason is
that K 4(s,¢) approaches a 8§ function in s —¢ as A—0,
and almost any trial function is an approximate solution
in this limit. Very small Knudsen numbers would require
an increase in M. This method of solution, Eq. (A10), is
an adaptation of one proposed by Cercignani'® for the
linearized equations.
The precise forms for Eq. (A10) are

(s)=n o | |40y |—e |+ 3 L [ars sl )
n Si =n B — e ——— _ — i)
UL A IWTo A WTG) WTG) !
3p(s;) J [l_sf +J [l_s" +T_ |J g, [
spls;)=n —_— — _ e —
74 + |Yo A 2 I 0 k\/T_ 2 k\/T_
M 1 Ly |S,'_t| |S,-“—t|
e dt |J_| | —— J, | ———— p(s;), (A11)
et M/T(sj)f'j l WTG) | T W TG !
—_— Si —Ss; M 1 pli+1 IS,-—t|
n(s)U(s;))=VT_J, | ——=—|—n J, |— |+ — dt sgn(s;,—t)J, | ——— | |n(s;) .
! M T_ ] ol A j§1 lf'j 0 {k\/T(sj) !

As noted above the integrals in Egs. (A11l) can be per-
formed exactly using the third of Eqs. (A2). To start the
iteration, trial temperature and density profiles are put
into the last of Egs. (A11) to determine the unknown pa-
rameter n .. Then the density and the pressure are calcu-
lated from the first and second of Eqs. (A11). These steps
are repeated until the relative difference between each
step is less than 10~ 2 for all variables.

The heat flux is calculated from these hydrodynamic
variables, using a discretized form of Eq. (2.17).

APPENDIX B: SPECIAL SOLUTION

The special exact solution to the BGK equation ob-
tained in Ref. 3 can be obtained as the limit of diffuse
boundary conditions applied to an unbounded system. In
this appendix that solution is rederived for a finite sys-
tem, but with different boundary conditions, for compar-
ison with the results of Sec. II.

The general solution to the boundary-value problem
has the form of Eq. (2.11),

f(s,v)=fb(s,v)+fp(s,v)_, (B1)

[

where f,(s,v) and f,(s,v) are given by Eqgs. (2.12) and
(2.13). If the positive and negative velocity distributions
are distinguished by a superscript + or —, respectively,
then the boundary and particular distributions are explic-
itly

fu(s,v)=fT(s=0, v)exp(—s/Av,)

+f (s=1,v)exp[(1—s)/Av, ], (B2)

fos V)= )| [Cdx £ (x,v)exp[(x —s)/Av, ]
p 0 x
—fldx S (x,v)exp[(x —s)/Av, ]| .

(B3)

To isolate the solution of Ref. 3, the limits of the integra-
tion in the expression for f, are extended to the range
—a =s =b with a and b positive, and b = 1. The compen-
sation for this additional contribution is grouped with the

boundary term to rewrite Eq. (B1) as
fls,v)=fls,v)+ f(s,v), (B4)

where f, and f, are given by
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fils,v)= [ [f*(s =0, v)—(hv,) "' [* dx ff(x,v)exp(x/xux)]

+ {f—(s=1,v)expu/)wX)+(Aux)—‘f1”dxf;(x,v)exp(x/kux)

fi(s,v)=(Av, )"} [f_s dx fi (x,v)exp[(x —s)/)wx]—fbdx fr (x,v)exp[(x —s)/Av, ]

Comparison of (B6) and (B3) shows that f (s,v) is the
particular solution for the extended domain, as illustrated
in Fig. 1. Also indicated in the figure is a hypothetical
linear temperature profile that vanishes at s = —a,

Ty(s)=T(so)s +a)/(sy+a), (B7)

where s, is an arbitrary reference point.

The special solution of Ref. 3 refers to an infinite sys-
tem, so b= oo is chosen in the above expressions. Next,
to justify Ty(s) as the true temperature profile, i.e., that
given by (2.3), the contribution from f, must vanish.
This requires imposing the boundary conditions

fs=0, v)=(7»vx)_‘fi) dx f (x,v)exp(x /Av,) ,

o (BS)
ST =Lv==w) 7 [ Tdx £ (x,v)

Xexp[(x —1)/Av,] .

exp(—s/Av,) , (BS)

. (B6)

f
These are not physical boundary conditions, but they
have a simple interpretation. The distribution of veloci-
ties off the wall at s =0 is that produced by the particular
solution for the domain —a <s <0. Similarly, the distri-
bution off the wall at s =1 is that produced by the partic-
ular solution for the domain 1 =<s. These two particular
solutions act as perfect reservoirs to produce an exactly
linear temperature gradient in the physical domain
0<s=1.

The form (3.6) for the special solution is obtained by
expressing the parameters @ and A in terms of €*, using
Egs. (B8) and (3.2), and introducing the scaled velocity
E=v/V'T(s). Although this result is the solution to a
different boundary-value problem than that given in the
text, it is clear from Fig. 1 that the point s, in Eq. (B7)
can be chosen to make the temperature and its gradient
agree for the two solutions. If a normal solution is ap-
propriate at this point, the specific boundary conditions
should not matter and the two solutions are expected to
agree.
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