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Radial distribution function for hard spheres
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The radial distribution function g (r) provided by the solution of the Percus-Yevick (PY) equation
for hard spheres is rederived in terms of the simplest Pade approximant of a function defined in the
Laplace space that is consistent with the following physical requirements: g(r) is continuous for
r & 1, the isothermal compressibility is finite, and the zeroth- and first-order coeKcients in the densi-
ty expansion of g (r) must be exact. An explicit expression for the solution of the generalized mean-
spherical approximation (GMSA) is obtained as a simple extension involving two new parameters,
which are determined by imposing two conditions: (i) the virial and the compressibility routes to
the equation of state agree consistently, and (ii) this equation of state coincides with that of Car-
nahan and Starling [J. Chem. Phys. 51, 635 (1969)]. The second- and third-order coe%cients in the
density expansion of g(r) given by the GMSA are compared with the exact ones and with those
given by the PY equation.

I. INTRODUCTION II. BASIC PHYSICAL REQUIREMENTS

Hard-sphere Auids are of interest as a model to test ap-
proximate theories and also as a usefu1 reference system
in perturbation schemes. ' The well-known exact solu-
tion of the Percus-Yevick (PY) integral equation pro-
vides a radial distribution function (RDF) g(r) that has
an overall good agreement with simulation data, al-
though some discrepancies can be observed, especially at
high densities. ' To account for this, a number of parame-
trizations of simulation data have been proposed. From
a more fundamental point of view, Waisman has solved
the so-called generalized mean-spherical approximation
(GMSA), where the direct correlation function c (r) out-
side the core (r ) 1), which vanishes in the PY theory, is
assumed to be given by a Yukawa form. Recent attempts
are based on a functional ansatz for the tail function d ( r)
that, by definition, is zero in the PY theory.

The aim of this work is to get approximate expressions
for the Laplace transform

G(t)= f dr e "'rg(r) (1.1)
0

by using simple heuristic arguments. In the simplest
case, the Wertheim-Thiele solution of the PY equation is
recovered. The next step gives an explicit expression for
the function G(t) of the GMSA. The method can be ex-
tended in a straightforward way to get more refined dis-
tribution functions.

The plan of the paper is as follows. The basic physical
requirements for G(t) are presented in Sec. II. Section
III deals with the Pade approximant method to get an ap-
proximate expression for G(t). The particular cases cor-
responding to the PY equation and the GMSA are con-
sidered explicitly. The first few terms of the series expan-
sion of g (r) in powers of density are obtained in Sec. IV.
Finally, some concluding remarks are overed in Sec. V.

The radial distribution function of a Iluid, g(r), gives
us information about the structure and the correlations
present in the Auid. It also provides the equation of state
relating the pressure p, the temperature T, and the num-
ber density p

Bp

Bp
=1+pfdrh(r), (2.1)

= I+4r)g(1+) .
pk~ T (2.2)

g(r)= g g„(r)rj" .
n=0

(2.3)

The exact coefficients up to first order are

g, (r) =e(r —1),

g, (r)=B(r —1)e(2—r)(8 —6r+ ,'r ), —(2.5)

where e is the Heaviside step function.
The statistical-mechanical problem of determining g(r)

has not been solved. Thus one must resort to approxi-
mate theories. Any physically meaningful approximate
RDF for hard spheres must accomplish the following two
obvious conditions: (i) g(r) is a continuous function for
r ) 1 and vanishes for r (1, and (ii) g(r)~1 when r —+ ~

Equation (2.1) defines the compressibility route to the
equation of state. In it, k~ is the Boltzmann constant and
h (r) =—g(r) —1. The virial route, Eq. (2.2), has been par-
ticularized to hard spheres of unit diameter. In Eq. (2.2),
r)=(~/6)p is the fraction of volume occupied by the
spheres. At small densities, a useful representation of
g ( r) is given in terms of a power-series expansion:
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rapidly enough to guarantee that the integral of the right
side of Eq. (2.1) converges at any fiuid density. We shall
also require that (iii) the zeroth- and first-order
coefficients in the density expansion are given by Eqs.
(2.4) and (2.5), respectively.

Let us translate the above conditions into Laplace
space. Condition (iii) is equivalent to

G(t) = t [Fo(t)+F,(t)q]e ' 12'—t [Fo(t) ]2e 2'+O(q'),

y (6)—/(5)+
12' 144 36'

a")
144'

(2.16)

In terms of the function F(t), condition (ii) is given by
Eq. (2.14).

Finally, we are going to consider condition (i). Laplace
inversion of Eq. (2.9a) gives

where

(2.6)
rg(r)= g ( —12')" 'f„ i(r —n)e(r —n),

n=1
(2.17)

F,(t)=t '+t (2.7)

F (t)= —'t ' —2t ' —6t 4+12t '+12t (2.8)

The extrapolation of the structure of Eq. (2.6) to any
order in g suggests the introduction of the auxiliary func-
tion F(t) through

where f„(r) is such that its Laplace transform is
t[F(t)]"+'. Notice that, as an exception to our notation
convention, the functions f„(r) are not directly related to
the density expansion (2.3). In fact, f„(r) still depends on
the density. According to condition (i), fo(0)=g(1+)WO
and f„(0)=0 for n ~1. This implies that, for large t,
tF(t) is of order t ', i.e.,

G(t)= g (
—12')" 't[F(t)]"e

n=1

F(t)e
1+12rIF(t)e

or equivalently,

(2.9a)

(2.9b)

F(t) —t when t~~ . (2.18)

The amplitude of this asymptotic behavior is precisely
g(1+ ):

(2.19)

F(t)=e' G(t)
t —12qG(t)

(2.10)

G(t)=t ~+H(t) .

Condition (ii) then implies that

a(t) =a"'+a'"t+0(t),

(2. 1 1)

(2.12)

Thus our condition (iii) means that the zeroth- and first-
order terms in the density expansion of F(t) are given by
Eqs. (2.7) and (2.8), respectively.

Let us consider now condition (ii). Let H(t) be the La-
place transform of rh (r), defined similarly to Eq. (1.1).
Both transforms are related by

In summary, we define the function F(t) through Eq.
(2.10), and require that any physically meaningful ap-
proximate RDF be consistent with (i) Eq. (2.18), (ii) Eq.
(2.14), and (iii) Eqs. (2.7) and (2.8).

III. PADE APPROXIMANT METHOD

The requirements (2.14) and (2.18) can be fulfilled if
one proposes a Pade approximant of the form
F(t)=P(v;t)/P(p;t) with v+p, ~4 and @=v+2, where
P(v;t) denotes a polynomial of degree v. The simplest
choice is v= 1, p =3:

F(t) =Fpv(t)

where, according to Eq. (2.1),

~(1)— 1 k T P
24' Bp

(2.13)

1+I.P'Yt

12' 1+ST'Yt+S'PYt +SPYt
(3.1)

By expanding Fpv(t) in powers of t and requiring agree-
ment with Eq. (2.14), we get

F(t)=— 1

12' 1+t+—,'t + —+1 1

6 12'
t3

+ + t +O(t ) . (2.14)
1 1

24 12'

In the following, we shall generally use subscripts for the
expansions in powers of density and superscripts for the
expansions in powers of the Laplace variable t. Insertion
of Eqs. (2.11) and (2.12) into Eq. (2.10) yields

LPY=(1)—

SPY
(3)—

1+—,
' g

1+28 '

S(1) 9
2 1+2'

S(2) — 9
2 1+2'

(1 —q)
12')( 1+2g )

(3.2)

(3.3)

(3.4)

(3.5)

F(5) 1 1 1+12' 120 24' (2.15)

The next two terms not explicitly given in Eq. (2.14) are
This is precisely the form that adopts F(t) in the case of
the Wertheim-Thiele solution of the PY equation. ' Our
analysis shows that Fpv(t) allows the interpretation as
the simplest Pade approximant for F(t) that is consistent
with the basic physical requirements described in Sec. II.
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In fact, we have not explicitly imposed Eqs. (2.7) and (2.8)
so far. From Eqs. (3. 1)—(3.5) it is easy to check that
those conditions are indeed satisfied. In this respect, we
can say that the requirement (iii) about the low density
behavior has already played a role by suggesting the in-
troduction of F(t), so that now Eqs. (2.7) and (2.8) are
redundant. We shall come back to this point in Sec. IV.

For the sake of completeness, let us obtain the PY
equations of state. The virial equation of state is given by
Eq. (2.2) with gpv(1+ ) given by Eq. (2.19):

1 LPY(&)

gpv(1+ )=-
12' SPY

1+—,
' g

(1—rl )2

According to Eq. (2.16), the difference between Fp(v)(t)
and Fp(v) ( t ) gives

2
H"'=Hp'v —621 [L' '+12rjgpv(I+)S( )]

( I+2q)

X L' '+12gg (1+)S' '—
PY 67l

(3.14)

p 1+g+g —g
Pk~ T (1 —21)

(3.15)

It is worth noticing that if one prescribes
g(1+)=gpv(1+), then one has H(')=Hp('v, and S' ', or
L ' ', is still undetermined. This would give a one-
parameter family of RDF's, all of them consistent with
the PY equations of state. Here, however, we impose
that g(1+) and H"' coincide with the values correspond-
ing to the excellent Carnahan-Starling (CS) equation of
state

(&) 8 2&+4& '77

24(1+2q)
(3.7)

Using Eq. (3.15) in Eqs. (2.2) and (2.13), we get

l~
gcs(1+)=

(1—ri )' (3.16)

Insertion of Eq. (3.7) into Eq. (2.13) provides the
compressibility equation of state.

The next obvious extension to the Pade approximant
(3.1) consists of taking v=2, @=4:

~( )— 4 —g
122)(1+42)+4' 4' +r—j )

(3.17)

F(t) FGMSA(t)

1 1+L"'t+L' 't

»g 1+S'"t+S'"t'+S"'t'+S"'t'

Condition (2.14) implies that

L())—L()) + l ()L(2) S(4))

(3.8)

(3.9)

This assures the consistency between the virial and the
compressibility routes to the equation of state. Substitu-
tion of Eqs. (3.16) and (3.17) into Eqs. (3.13) and (3.14)
gives a quadratic equation for S' ' whose physical solu-
tion is

4

72'(2) —3g —1)

S(2)—S(2) + 12

1+2'
1 —4~ L(2)+S(~)
129

S'"=S'"+ )
( —'L' ' —S' ))

1+28 ' (3.10)

(3.11)

X 3+( 1+22))

1/2
3(g —52)+ 7)

g —4g +4g +4g+1
(3.18)

s"'=s,",'—
1+2g

L"'+-'S"'
129

(3.12)

I (2)
g(1+ )=-

»g s'" (3.13)

Expansion of Eq. (3.8) in powers of t and use of Eqs.
(3.9)—(3. 12) allow one to obtain F' ' and F ' in terms of
L' ' and S' '. According to Eq. (2.16), subtraction of F' '

from F' ' leads (after tedious algebra) to

In order to determine the parameters L' ' and S' ' we
need two extra conditions. According to the philosophy
of the Pade approximant method, those conditions would
be given by Eqs. (2.15) and (2.16) with prescribed values
for H' ' and H(". Nevertheless, we are going to depart
from that philosophy, since H' ' is not directly related to
a thermodynamic quantity. Thus we choose to adjust the
parameters L' ' and S' ' by requiring prescribed values
for g(1+ ) and H"'. From Eq. (2.19), one has

The other solution is positive and must be discarded.
Otherwise, as shown by Eq. (3.13), L' '(0 and there
would exist a positive real value of t at which
F(t)=G(t)=0, which is not compatible with a positive-
definite RDF.

In 1973, Waisman solved the Orstein-Zernike equa-
tion for a Quid of hard spheres under the ansatz that the
direct correlation function c(r) outside the core has a
Yukawa form. The parameters of the Yukawa function
are adjusted to give the Carnahan-Starling equation of
state in a consistent way. This is known as the general-
ized mean-spherical approximation. Further analysis '

showed that in the GMSA the Laplace transform G(t)
has the form given by Eqs. (2.9b) and (3.8). However, ex-
plicit expressions for the parameters appearing in Eq.
(3.8) were not found and the RDF was obtained numeri-
cally. '

The method described here is a shortcut that allows
one to get quite straightforwardly the function G(t). In
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A similar calculation in the case of the GMSA gives rise to
—(r —1)/(12a )

e 0

gGMSA, 2(r) gPY, 2( (4.1 1)

gGMsA, 3 " =gPY, 3(")+6("
4&o+

—
( r—1 ) /( 12aO)

( r —1 ) + —,
' +72ao( 1 —288ao)

24ao
—(r —2)/(12a )

2 e 0

+6(r —2)1728(12ao—1)ao +6(r —1)6(2—r)72ao[r —2(12ao+1)+24ao(12ao+1)r 'j.

(4.12)

The most remarkable point in Eqs. (4.11) and (4.12) is
the existence of Yukawa tails. This contradicts the exact
property, retained by the PY approximation, that g„(r)
vanishes for r n+1. The violation of this property is
the price to be paid by the GMSA. On the other hand,
the GMSA gives self-consistently the Carnahan-Starling
equation of state. In any case, the fact that
gGMsA „(n+1)%0 is not very important in practice, since
the range of the Yukawa tails is quite short:
12+0=0.264.

The exact functions g,„„,2(r) and g,„„,3(r) were eval-
uated numerically by Ree et al." The deviations
~~PY, 2(r ) gPY, 2( ) g extac2(r, ) and ~gGMSA, 2(

=gGMsA 2(r) —ge„a«2(r) are plotted in Fig. 2. Similarly,
Fig. 3 shows the deviations AgPY 3(r) and AgGMsA 3(r).
From Fig. 2, we can observe that the GMSA predicts a
much better function g2(r) than the PY equation only for
short distances (1~r(1.3). For r) 1.5, gPY2(r) coin-
cides practically with the exact function. Similar con-
clusions can be drawn from Fig. 3. Here, the improve-
ment of GMSA over PY extends up to r =1.8 and

gPY 3(r) is practically correct for r )2.2. The good
agreement between gGMsA(r) and gPY(r) for r) 1.6 ob-
served in Fig. 1 for a dense Quid indicates an efT'ective

cancellation of the discrepancies in the coe%cients of the
density expansion. This is consistent with the fact that,
for intermediate and large distances, gGMsA 2(r))gPY 2(r), while gGMSA, 3( ) +gPY, 3(

V. CONCLUDING REMARKS

The main objective of this paper has been to show that
reliable approximate RDF's for a Quid of hard spheres
can be obtained by imposing very weak requirements. In
particular, we consider here (i) continuity of g (r) for r ) 1

and (ii) rapid decay of g (r) to its asymptotic value, so
that the thermal compressibility is finite. It is evident
that a RDF that does not fulfill one of the above condi-
tions cannot qualify as a decent approximation. The
problem arises of how to implement these conditions.
Since they are of a global character, the use of the La-
place space seems appropriate. As a guide to choosing an
auxiliary function on which to apply the approximations,
we have additionally required that (iii) the density expan-
sion of the approximate RDF must be exact up to first or-
der. This condition prompts the introduction of F(t)
through Eq. (2.10). Then, conditions (i) and (ii) impose
the behavior of F (t) for large r, Eq. (2.18), and for small t,
Eq. (2.14), respectively. It is evident that a simple way of
reconciling both asymptotic behaviors is by means of
Pade approximants.

The Pade approximant involving the least number of
parameters turns out to be related to the solution of the
PY equation. Similarly, the next step is related to the
GMSA. Both theories predict quite good RDF's, the
GMSA being significantly better for short distances at
high densities. The solutions have been rederived here
following very general principles and with great
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FIG. 2. Difference hg&(r) between the approximate second-
order coe%cient g2(r) and the exact one (Ref. 11). The crosses
correspond to the PY equation and the dots to the GMSA.

FIG. 3. The same as in Fig. 2, but for hg3(r). The anomaly
at r =2 is probably due to a small numerical error in the value
tabulated in Ref. 11.
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mathematical economy. In fact, the Laplace transform
of rg (r) in the GMSA had not been explicitly expressed
previously, to the best of our knowledge. Furthermore,
the second- and third-order coe5cients in the density ex-
pansion of g(r) corresponding to the GMSA have been
obtained. They have contributions of Yukawa form, so
that g2(r )%0 and g3(r)%0 for r ) 3 and r ) 4, respective-
ly, in contrast to the exact property retained by the PY
equation. This shortcoming of the GMSA might be relat-
ed to the fact that it is constructed by assuming a Yu-
kawa form for the direct correlation function outside the
core, rather than by resumming a subset of diagrams in
the exact density expansion (as is the case with the PY
equation).

The method described in this paper can be extended
along different lines. In the case of the hard spheres, one
could go a step further and consider the next Pade ap-

proximant. This would imply imposition of two new con-
ditions. The static structure of a lattice gas of hard parti-
cles can also be analyzed with the aid of the Z transform,
the analog of the Laplace transform for functions of
discrete, integer-valued argument. Finally, the method
can also be adapted to a potential with an attractive part,
such as the square-well interaction. In this latter case, no
exact solution of the PY equation is known. Work is now
in progress along these lines.
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