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The Boltzmann entropy of a dilute gas under uniform shear flow is analyzed. The entropy variation
associated with viscous heating is evaluated and compared with the local equilibrium expression. For in-
teraction potentials other than the Maxwell potential, significant discrepancies are found that can be re-
lated to the difference between thermodynamic quantities, defined from the entropy, and kinetic quanti-
ties, defined by means of local equilibrium. The discrepancies change, but remain relevant, when
artificial external forces are introduced in order to create an ideal stationary state.
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I. INTRODUCTION

The extension of thermodynamic ideas to far-from-
equilibrium systems appears as a fundamental and neces-
sary step toward the development of a general body of
theory for those systems. From a formal point of view, it
may be expected that this would open the possibility of
looking for general relations similar to the ones existing
at and near equilibrium. These relations would apply to a
wide range of states, for instance stationary states. But,
beyond the above possibility, there is a basic problem that
must be solved for any theory in order to connect with
what is actually observed and measured in the real world:
the temperature of far-from-equilibrium states must be
defined in some way. It must be noticed that, conceptual-
ly, one could avoid the use of the temperature, both in
theory and experiments, by employing the energy density
instead. Nevertheless, experimentalists have found it
fruitful to characterize and classify their results by means
of the temperature, whatever its meaning may be.

In most of the existing theories, the temperature is in-
troduced by assuming some kind of local equilibrium, but
this assumption is quite dubious in far-from-equilibrium
situations. In fact, it is known that in strict local equilib-
rium there is no transport. A more-consistent definition
of nonequilibrium temperature could be given if the
definition of some thermodynamic potential, for instance
the entropy, had been previously extended. The above
comments can also be applied to the pressure.

In spite of the great deal of work devoted to it, no gen-
eral microscopic formulation of the entropy, having the
minimal requirements to deserve such a name, has been
found for nonequilibrium states. An exception refers to
dilute gases obeying the Boltzmann equation (BE). In
this case, a nonequilibrium entropy S (#) can be defined in
terms of the one-particle distribution function, f(r,v,?),
as

S(t)=—kgH (t)+const , (1.1)

where kjp is the Boltzmann constant, H (¢) is the quantity
Hn= [ [drdvf(r,v,0lnf(r,v,1), (1.2)

and the constant is simply proportional to the number of
particles in the system. By using the symmetry proper-
ties of his equation, Boltzmann himself was able to prove
the H theorem, stating that any initial distribution ap-
proaches equilibrium. Besides, the entropy S(z) grows
monotonically in time, reaching its maximum value in
the equilibrium situation [1]. The theorem holds for
constant-external-potential fields, including the wall in-
teractions, which are velocity independent [2]. A very in-
teresting stronger version of the theorem has been given
by Dorfman and van Beijeren [9]. For boundary condi-
tions satisfying a thermostat condition, they proved a
generalization of Clausius’s formula relating the change
of entropy and the heat interchange of the system
through the walls.

From knowledge of S(¢) it is possible to study near-
equilibrium states [4], but to the best of our knowledge no
useful connection has been established between
Boltzmann’s entropy and the quantities characterizing
far-from-equilibrium states. Here it will be seen that this
is not a trivial task, even for very simple situations.

The evaluation of S(¢) from Egs. (1.1) and (1.2) for a
given state requires the knowledge of the distribution
function for the state; i.e., one has to solve the nonlinear
BE. The only exact solutions we are aware of correspond
to homogeneous systems [5] or to dilational flows not
directly related to transport problems [6]. There are oth-
er cases where the distribution function is not known, but
partial information has been obtained by computing a
finite number of its moments. They are restricted to
Maxwell’s interaction and correspond to uniform shear
flow [7], steady heat flow [8], and color conductivity [9].

In the last years, a number of exact solutions of the
Bhatnagar-Gross-Kook (BGK) model kinetic equation
[1] describing a variety of interesting physical situations
have been derived [10,11]. The BGK equation can be
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considered as a model of the BE with the collision term
replaced by a single-time relaxation towards local equilib-
rium. It keeps some of the main physical properties of
the BE, namely the conservation laws and the H theorem.

A definition of entropy for nonequilibrium steady
states has recently been proposed by Evans [12]. In the
low-density limit it reduces to Boltzmann’s entropy. Us-
ing molecular-dynamics simulation, Evans computed the
entropy of a low-density gas of soft disks under uniform
shear flow. In principle, this state is not steady due to
viscous heating [13], but a thermostat force is introduced
in Ref. [12] in order to keep the energy constant. From
the entropy data, Evans evaluated thermodynamic tem-
peratures and pressures, finding significant discrepancies
with the values of the corresponding kinetic quantities,
the latter being defined from the equipartition of energy
and the pressure tensor, respectively.

In this paper, we will analyze some properties of the
Boltzmann entropy for a system under uniform shear
flow, using both the BE and the BGK equation. Because
the solution of the BE for this state is only known for
Maxwell molecules, our results will be much more limited
in the case of the BE. Nevertheless, it has been shown by
computer simulation that the BGK equation is a quite
good approximation of the BE for the uniform shear
flow, even at a quantitative level [14]. The distribution
function of the idealized steady state of uniform shear
flow has been derived in the BGK approximation [15].
Here we obtain the first few terms of the expansion of the
entropy in powers of the (reduced) shear rate and com-
pare, at a qualitative level, with the results reported by
Evans. As is often the case, Maxwell molecules lead to a
peculiar behavior. In particular, the thermodynamic and
kinetic temperatures are the same for that interaction.
This property is also true when the exact BE is used. To
avoid misunderstandings, it is worth mentioning that the
role played by the thermostat forces is not neutral, in the
sense that the relationship between results obtained from
the BE with and without the thermostat is not simple for
molecules other than Maxwell molecules.

The plan of the paper is as follows. In the next section,
the existence of an entropy function for the uniform
shear flow is postulated and thermodynamic temperature
and pressure are defined. For a dilute gas, they can be
easily written in terms of the distribution function if the
Boltzmann definition of entropy is adopted. The case of
the BE for Maxwell molecules is explicitly considered.
Using a powers-series expansion in the shear rate, the
BGK equation is solved in Sec. III, and the thermo-
dynamic quantities are related to the kinetic ones. Also,
it is shown that the local equilibrium assumption for the
entropy variation is not verified in general. The thermo-
stated flow is discussed in Sec. IV, while the final section
is devoted to some comments.

II. NONEQUILIBRIUM ENTROPY
IN THE UNIFORM SHEAR FLOW

Macroscopically, the uniform shear flow (USF) is
characterized by a constant density n, and by the unifor-
mity of all the hydrodynamic fields except one of the
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components of the local velocity u that has a linear
profile along a direction perpendicular to it. We will take

u=a;r, a =const , 2.1

it a;=ad;,8;

LXYLY?

where a is the shear rate. In the absence of an external
thermostat force, work is done on the system so that the
state is time dependent.

Let us assume that there exists for this state a none-
quilibrium entropy that is an extensive function of the
number of particles, the volume, and the internal energy,
and parametrically depends on the shear rate. The inter-
nal energy is independent of u, and, therefore, the entro-
py density will be uniform in the system. We can write

s =s(n,e,a), (2.2)

where s and e are the entropy and internal energy per
particle, respectively. Now, a nonequilibrium thermo-
dynamic temperature T, and a nonequilibrium thermo-
dynamic pressure p,;, are defined as
3 ]
b
on |,

i.e., using the same relations as in equilibrium. Of course,
one can also introduce a specific nonequilibrium quantity
conjugated to the shear rate

_ ds
Tth1 = E » Pth ™ _nthh (2.3)

n,a

3

3 . (2.4)

n,e

' =Ty

In this way, we arrive at the generalized Gibbs relation
[12,16]

de =Tyds+n *pydn +ryda . (2.5)

The validity of the above scheme lies on the existence of
an entropy function satisfying some minimal require-
ments. In particular, it must reduce to the equilibrium
value for @ =0. Besides, if we want the definitions given
in Egs. (2.3) to be useful, their relation with more stan-
dard definitions and with real and computer experiments
has to be established.

Now we adopt a kinetic-theory standpoint and consid-
er a system described by the BE. The existence of the
USF state is consistent with the BE [6,7,13,14] and also
with the BGK equation [10,15]. The distribution func-
tion of a gas under USF is a function of the form f(V,z),
where

V=v—u, (2.6)

i.e., all the position dependence occurs through the pecu-
liar velocity with respect to the local flow velocity [7,13].
The internal energy density is given by

ne= [dVimV?f @.7)
and coincides with the kinetic energy density in the La-
grangian frame. Furthermore, the kinetic temperature
T, is defined as proportional to e by means of the local
equilibrium relation

3kpT,=e . (2.8)
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Let us introduce the dimensionless velocity

-1/2
2kgT,
ve= [k (2.9)
m
and the corresponding distribution
3/2
2kgT
fr=t |22k (2.10)
n m

In terms of these, the Boltzmann entropy, Eq. (1.1), for
the USF reads

(kg T, /m)*/?

n

S
s=F=kB n h* |+C, (2.11)

where N is the number of particles, C is a constant, and
h*= [dV*f*Inf* . (2.12)

As long as there is a normal solution of the BE for the
USF, Eq. (2.11) provides an expression for the entropy
that has the dependence assumed in the thermodynamic
description. Notice that the use of T}, is a matter of con-
venience, since it can always be eliminated in favor of e
by using Eq. (2.8). From Egs. (2.3) and (2.11) we have
-1

oh*
Ty,=T, |[1-%T, aT, , (2.13)
oh* 1+noh*/dn
=nkgTy, |[1+n—— |= ,
P B th an P 1—2T,3h* /3T,

(2.14)

where in the last equality of Eq. (2.14) the kinetic pres-
sure is defined as one-third the trace of the pressure ten-
sor, i.e., p =nkgT;. It follows that the thermodynamic
temperature is equal to the kinetic temperature if and
only if 0h*/9T,=0. If in addition it is dh*/dn =0,
there is also agreement between the thermodynamic pres-
sure and the kinetic pressure. From a mathematical
point of view, py =py, even if T, F#T,, if h* is a func-
tion of the scaled variable n /T}"2.

For Maxwell molecules, a solution of the BE corre-
sponding to the USF state has been found using the mo-
ment method [7,13]. Although the explicit form of f*
has not been determined, it is known that it does not de-
pend on time explicitly. In fact, f* obeys the equation
(13]

d d

— (V*f*)—aV} *=nJ[f*f*]1, (2.15)
Y oy f Y v L]
where J is the Boltzmann collision operator and
y=2An sinh*{1cosh™'[1+9(a/An)*]} , (2.16)

A being a constant. Since e (or T}) is the only time-
dependent parameter in the USF, h* cannot depend on
T,. Therefore, for Maxwell molecules T, =T,. The
dependence of h* on the density is not known in detail,
but Eq. (2.15) shows that it is coupled to the dependence
on a through the scaled variable a /n. It follows that p,
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is different from the kinetic pressure p,. More
specifically,
P _y_ma, . 2.17)
Pk Py

The above discussion can be put in a different but
closely related form. The time derivative of the
Boltzmann entropy for the USF is from Eq. (2.11)

ﬂ:ik dnTy)  dn*
d 7P a4 B dt
=%kB;—;ﬂ2tﬁ , (2.18)
which for Maxwell molecules reduces to
Ly B% . 2.19)

This is the expression assumed by the local equilibrium
hypothesis. Therefore, although the Boltzmann entropy
does not have the functional form assumed by local equi-
librium, the latter correctly reproduces its time variation
in the USF.

For interaction potentials other than Maxwell poten-
tial, no solution of the BE has been found for the USF.
Furthermore, the transformation properties of the
Boltzmann collision operator show that 2 * is expected to
depend explicitly on time [13]. However, realistic esti-
mates can be carried out using the BGK model kinetic
equation. This is done in the next section.

III. UNIFORM SHEAR FLOW
FROM THE BGK MODEL

The BGK equation for the USF is [15]

af* 1dnTy) 3
ot 2 dt v

" '(V*f*)—aVy* ng‘

=—=C(f*=f3),

where f§ is the dimensionless Maxwellian distribution

(3.1

f=m"exp(—V*?) (3.2)

and ¢ is an effective collision frequency that is linear in
the density. The only other dependence of { is on the
temperature. Here we will take £« Tg with 0<a =<1,
which corresponds to purely repulsive power-law poten-
tials, including Maxwell molecules (@=0) and hard
spheres (a=1) as limit cases. Taking into account that
T, increases monotonically due to viscous heating, the
time dependence of f* can be accounted for through the
reduced shear rate

AN

and Eq. (3.1) becomes
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d(InT}) *
-1 kD lqardf 1 2
§ dt da* 2 3v*

(V*f*)

*
e e Ay U e
v}

In order to close this equation we need an expression for
the evolution of T,. This can be easily achieved by tak-
ing moments in the equation itself. Since the details have
been already given elsewhere [15], we merely quote the
results. One finds

d(InT})
é_dt—kzéatlnt(at) , 3.5)
with
P
n*(a*)=——2— (3.6)
nkpTia*

where P, denotes the component of the pressure tensor.
The function 1*(a*) is a generalized shear viscosity that
verifies a closed nonlinear second-order differential equa-
tion (see Eq. (4.1) in Ref. [15]). The solution of this equa-
tion corresponding to the hydrodynamic regime, i.e., in
the long-time limit, can be constructed numerically for all
values of a* [15]. Here we will restrict ourselves to the
first few terms of the expansion in powers of a *:

7*(a*)=1-12—a)a**+ (71— 13a+4a’)a**+ - - .
(3.7)

This series has been shown to be only asymptotic for any
value of a other than zero [15]. In the case of Maxwell
molecules (@ =0), Eq. (3.4) reduces to

_l_a“‘(v‘f*)‘"a‘V‘_a—“ftz_f‘+fa ,

(3.8)
A ) %

where
y/E=y*=1a*7n*(a*)=2sinh?[icosh~!(1+9a*?)] .

Notice the similarity between Egs. (2.15) and (3.8). Al-
though the solution of Eq. (3.8) is known [15], it will not
be needed here.

In the following, our aim will be to find an expansion
for the Boltzmann entropy in powers of the reduced
shear rate. Therefore, in the spirit of the Chapman-
Enskog procedure we write

FHV5,a")=F2(V*)+a*f1 (V) +a*f3(V*)

+a* V- (3.9)

Here we have already taken into account that for a*=0
the solution of Eq. (3.4) is given by Eq. (3.2). Substitu-
tion of Egs. (3.7) and (3.9) into Eq. (3.4) yields

FHVH)==2VV} fE(V*), (3.10)

fIVH=[1=2V*2=2V} X (1-2VD)]f§(V*),  (3.11)

fIVO)=4VV VA3 —2V])+ 2p*?
—3(5+a)1f§(V*). (3.12)
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We notice that the value of a only appears after the
second-order correction in a* to the local equilibrium
distribution. Once the expansion of f* is known it is a
matter of simple algebra to derive the corresponding ex-
pansion for 4 * defined in Eq. (2.12). The result is

*=h"‘+a“'2h'+a"‘4h‘+ cee (3.13)

0 2 4

with
hi=—3—3nm, (3.14)
h3=1, (3.15)
h:=—%+%a (3.16)

Upon deriving the above expressions use has been made
of the properties

favef=o0
and

Jav*fimss=0 (3.17)

for k = 1, which follow directly from the normalization of

f* and the expression for f§. The fact that only even

powers of a* are present is a consequence of the symme-

try of the problem that implies

PRV VS ) = (= V2V, Ve —a®)
=f'(V;,—Vy*,Vz‘;—a') . (3.18)

Taking into account that
oh* _ da* dh* =_a£ oh*
3T, dT, da* T, 3a*’

(3.19)

the expression of the thermodynamic temperature, Eq.
(2.13), can be rewritten as

*

Twla*)=Tg

1+2aa* P | (320

at

and substitution of Egs. (3.13)-(3.16) gives

Ty(a*)=TF(a*), (3.21)
where
Fa*)=1—2aa**+2(1-2a)aa**+ --- . (3.22)

For a=0 (Maxwell molecules) it is F =1, and one re-
covers the result found in the previous section for the BE.
Although the expansion in Eq. (3.22) is only asymptotic,
it clearly shows that for arbitrary interaction potentials
there are discrepancies between the kinetic and thermo-
dynamic definitions of temperature. The pressures are
studied in a similar way. We have

oh* _  a* 3h*
an . n aar’ (3.23)
and therefore Eq. (2.14) reads
— ¥ * *
pula*)=p,— -2 0h" /% (3.24)

1+2aa*dh* /3a*
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The first remark is that, even for Maxwell molecules, p
is different from the kinetic pressure p, =nkgT). Using
the expansion given by Eq. (3.13) we get

pm(a®)=pM(a*), (3.25)
with
M(a*)=1—(1+2a)a**+(1—-2a)(1+2a)a**+ - - .
(3.26)

Applying Eq. (2.18) we find for the rate of change of the
Boltzmann entropy density

d(InTy)
=2y ——tGla), (3.27)
G(a*)=[F(a*)]"!
=1+2aa**—(2—Yg)aa**+ - .  (3.28)

Therefore, the local equilibrium assumption for the en-
tropy change is not verified for power-law interaction po-
tentials other than the Maxwell potential. As pointed out
before, this is a direct consequence of the difference be-
tween Ty, and T,. Finally, the parameter r,, defined in
Eq. (2.4), becomes

_ kT an* _ kpTy 2t

R(a*), 3.29
Fth E  da* 3 (a ( )
where
R(an)=1Ela )_*12”(“ ) —1—(1-2a)a*2+ - -
a
(3.30)

The series expansions obtained in this section show
qualitatively the influence of both the potential parameter
a and the shear rate a* on Ty, py,, and ry,. Of course, a
more careful analysis would be needed in order to evalu-
ate F(a*) and M(a*) beyond the limit of small shear
rates.

IV. STATIONARY FLOW

The USF is not a stationary state due to the increase in
energy associated with viscous heating. In order to get
an isoenergetic shear flow, external drag forces must be
added to extract energy uniformly from the gas [17].
More precisely, a homogeneous force F proportional to

the peculiar velocity V of each particle is introduced:
F=—myV. 4.1)

The BGK equation for the USF including this noncon-
servative force is

af* 1dUnTy) 3 oL . 3 .
or 2 a ave VTGS
3
- (VN =—Cf*—f2). (4.2)
Yav*( f Sf*=fo

The parameter y is determined from the condition that
the internal energy of the system remains constant. This
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leads to

abk,,
Y 3k, T, (4.3)
It can be shown [18] that for any arbitrary initial distri-
bution f*(V*,0), the solution of Eq. (4.2) approaches a
stationary form f*(V*) that obeys Eq. (3.8). Thus, the
reduced distribution function with thermostat force for
arbitrary interaction law is the same as that for Maxwell
molecules without a thermostat when both are written in
terms of the reduced quantities V* and a*. This is a
peculiar property of the BGK equation, and it is not held
by the BE [13].
By making a=0 in Egs. (3.13)-(3.16) we now have

*_— __3__3 1, %2 __ 1, %4
h, 3—3In7+3a Ta*"+ .

(4.4)

Applying the same procedure as in the previous section,
Egs. (3.20) and (3.24), one gets

Tyw=TF,(a*), (4.5)
with

Fa*)=1—laa**+2(1+Ya)aa**+ - - (4.6)
and

P =pcM(a®), 4.7)
with
M (a*)=1—(1+2a)a*?+(1+2a)a**+ - . 4.8)
Also, Eq. (3.29) now becomes

r,h=k—2]}-a*Rs(a*) , (4.9)
with

R a*)=1—(1+2a)a**+ --- . (4.10)

The stationary distribution function given by Eq. (4.4)
is analytic at a* =0 [15] and, consequently, all the above
series are convergent. Nevertheless, their radius of con-
vergence is not known, although it is presumably the
same as that for n*(a*), namely |a*|=v"2/3.

For a=0 (Maxwell molecules) it is F,=F=1,
M (a*)=M(a*), and R;(a*)=R (a*), i.e,, the relation-
ship between the thermodynamic and the kinetic quanti-
ties is not affected by the drag force. For any other in-
teraction potential, the relations are different with and
without thermostat forces. This is a manifestation of the
non-neutral role they play [13].

Although the solution f*(V*) of the BGK equation is
known for arbitrary shear rates [15], an explicit expres-
sion of the corresponding function A*(a*) does not seem
feasible. Nevertheless, we can gain insight into its main
qualitative features by using information theory (or the
maximum-entropy method [19]) to get a lower estimate.
More specifically, we seek the distribution function f it
that minimizes the functional 4*, subject to the constrain
of reproducing the actual pressure tensor. A simple cal-
culation yields
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LIS B

FIG. 1. Reduced entropy function of a gas under stationary
uniform shear flow according to information theory by using
the results obtained from the BGK equation for the pressure
tensor.

farr(V*)=m"3/2(detP})" 1/
Xexp[ _(P*—l)ij VivEl,

hir(a*)=—3—3In7—;In(detP]),

(4.11)
(4.12)

where Pj=P;/p, is the reduced-pressure tensor. Its
determinant is

1+3y*
detpy =T,
(1+29*)

with y* given below Eq. (3.8). The function Ajr(a*) is
exact up to order a*?, but the coefficient of a** in the
power-series expansion is — 3 rather than the exact value
—4. Figure 1 shows h)p(a*) in the range 0<a*=1.
The curve representing the actual function A*(a*) would
lie above the one plotted in the figure. From hjip(a*)
one can get decent estimates for F*, M*, and R*. These
functions are plotted in Fig. 2 for hard spheres (a=1).
We observe that p,, decreases as the shear rate increases
more rapidly than T, does. Due to the a* factor in Eq.

(4.13)

~ 4

r L \\\ 1

0.8 + . - 4

" . T = 1
x - —
s ) ]
05 ]
" [ ]
E 1

0.3 | 2

r‘ +

D.O VAR S A SN U S U SN A AU A B S A R A S A A S AT Ll b i
0.0 0.2 0.4 0.6 0.8 1.0

-2

a

FIG. 2. Information theory estimates of F,(a*) (solid line),
M, (a*) (dashed line), and R (a *) (dotted line) for a gas of hard
spheres.
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(3.29), the fact that R* monotonically decreases does not
mean that so does r,. In fact, information theory shows
that r,; reaches a maximum at a*=0.79, decreasing
monotonically thereafter.

V. COMMENTS AND DISCUSSION

The Boltzmann definition of entropy seems to be one of
the most sensible choices for a dilute gas out of equilibri-
um. Thermodynamic temperature and pressure can then
be defined in terms of the Boltzmann entropy by extend-
ing the equilibrium relations. On the other hand, a kinet-
ic temperature is defined as proportional to the internal
energy, and a kinetic pressure, describing the internal
forces in the fluid, is defined from the trace of the pres-
sure tensor. The results in this paper show that the rela-
tionship between thermodynamic quantities, defined in
terms of the Boltzmann entropy, and local equilibrium or
kinetic quantities is not simple in far-from-equilibrium
situations. The complexity is associated with the intri-
cate dependence of the distribution function on the re-
duced shear rate. Besides, the situation does not improve
when artificial forces are introduced to create an ideal
stationary state. On the contrary, one has to cope with
the added problem of the relationship between quantities
measured in systems with and without a thermostat.

Evans [12] performed a molecular-dynamics simulation
of a system of soft disks subject to an isoenergetic shear
flow. The density of the system was small and he com-
puted the Boltzmann entropy at several shear rates, den-
sities, and energies. Using these data, he obtained values
for the thermodynamic temperature and pressure, which
he compared with the corresponding kinetic values. The
qualitative behavior found in Ref. [12] is quite similar to
the one obtained here. In particular, T,, and p, were
smaller than T and p,, respectively, the discrepancy be-
ing bigger in the case of the pressure. Also, the entropy
was found to decrease with the shear rate.

However, some qualitative differences must be men-
tioned. Within the accuracy of his data, Evans got a
quasilinear dependence of the entropy density as a func-
tion of the shear rate, which apparently extended to the
limit of the shear rate going to zero, while the analysis
carried out here shows a quadratic dependence in that
limit. As pointed out by Evans himself, his simulation
values of the shear rate are probably beyond the region
where the quadratic behavior is dominant. This fact ex-
plains also Evans’s observation that r, decreases with
the shear rate. Evans also conjectured that the thermo-
dynamic pressure is equal to the minimum eigenvalue of
the pressure tensor. On the other hand, our analysis,
based in the BGK equation, shows that, in the thermo-
statted case, the minimum eigenvalue is
p3=pi(1—|a*|+1a*?+ - - ), which is clearly different
from Egs. (4.7) and (4.8).

It must be stressed that the points addressed in this pa-
per are not merely formal. The meaning of many of the
calorimetric measures carried out far from equilibrium is
not clear, since they are based on equilibrium relations.
It is also important to realize that a certain degree of am-
biguity could exist in the definition of nonequilibrium
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thermodynamic quantities. This ambiguity is related to
several possible choices for the nonequilibrium parame-
ters (such as gradients, external fields, etc.). In the con-
text of the uniform shear flow, if we had chosen to define
Ty, and p,, by Eq. (2.3), except that a* is kept constant
instead of a, then we would have obtained T, =T,
Pt~ Pk

There are some properties that one would like the en-
tropy to have. For instance, one could expect that none-
quilibrium stationary states correspond to a maximum of
the entropy when the appropriate boundary conditions
are imposed. Also, it should be interesting if the entropy
would increase uniformly until reaching stationarity.
This would be a proof of the stability of the stationary
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state. We have not been able to prove any of the above
properties for the Boltzmann entropy of a dilute gas un-
der uniform shear flow, even in the BGK approximation.

Given the peculiarities of the nonequilibrium states
considered here, especially the ideal stationary one, we
plan to present in the near future a similar analysis for
the steady heat flow.
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