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Self-diffusion in a dilute gas under heat and momentum transport
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Diffusion of tagged particles in a dilute gas in a stationary state with temperature and velocity gra-
dients (planar Couette flow) is analyzed. The results are obtained from a kinetic model for a multicom-

ponent gas constructed in the same spirit as in the Bhatnagar-Gross-Krook equation for a single gas.
The kinetic equation for the velocity distribution function of the tagged particles is solved by using a
Chapman-Enskog-like expansion around the steady-Couette-flow state. Up to first order in the concen-
tration gradient of tagged particles, explicit expressions for the self-diffusion coefficient and the partial
pressure have been derived. Both quantities are nonlinear functions of the shear rate. In addition, the
distribution function of tagged particles is explicitly obtained. It exhibits a highly nonlinear dependence
on both the shear rate and the thermal gradient. In the absence of shear rate, self-diffusion in pure heat
flow is also considered with more detail.

PACS number(s); 51.10.+y, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The analysis of diffusion in dilute binary gas mixtures
has been a subject of interest for many years. For states
near equilibrium, the Chapman-Enskog [1] method pro-
vides an adequate way to solve the Boltzmann equations
[1,2] for a general interaction law. The constitutive equa-
tion for the mass flux is known (Fick's law) and the linear
hydrodynamic equation can be solved for several bound-
ary conditions. Nevertheless, the systematic expansion
given by the Chapman-Enskog theory is very complicat-
ed and not very useful beyond the linear order. Conse-
quently, much less is known about the description of the
mass transport in systems far from equilibrium.

In order to gain some insight into this general problem,
specific physical situations must be considered. In partic-
ular, the planar shear flow at uniform temperature and
density [3] (usually referred to as "uniform shear flow")
has provided an adequate framework to describe such
nonlinear diffusion problems. One reason is that the
Boltzmann equation admits a solution in the uniform-
shear-flow state for Maxwell molecules. Thus, in the case
of mechanically identical Maxwell molecules, Marchetti
and Dufty [4] and Garzo, Santos, and Brey [5] have ex-
plicitly obtained an expression for the nonlinear shear-
rate-dependent self-diffusion tensor. More recently, Gar-
zo and Lopez de Haro [6] have extended these results to
the case of binary mixtures with arbitrary mass ratio in

the tracer limit. Their expressions reduce to previous re-
sults obtained from a generalized Green-Kubo formula

[7] in the Fokker-Planck limit [8]. More detailed infor-
mation has been given for both situations (self-diffusion
and tracer limit) using kinetic models [9] for the non-
linear Boltzmann equations. In the context of dense
fluids, generalized Green-Kubo relations for diffusion

[10] and thermal conductivity [11]under shear flow have
recently been analyzed. In addition, Cummings et al.
[12] have carried out molecular-dynamics simulations on
a Lennard-Jones fluid in the non-Newtonian regime in or-

der to analyze self-diffusion in the presence of shear flow.
All these results refer to a system (dilute or dense) subject
to mass and mornenturn transport.

The aim of this paper is to describe self-diffusion of a
dilute gas in a steady state in the presence of heat and
momentum transport (steady Couette flow). The physical
situation of the system as a whole is that of a steady state
of a gas enclosed between two parallel plates in relative
motion and kept at different temperatures. In this prob-
lem there are two parameters measuring the departure
from equilibrium: the shear rate and the thermal gra-
dient. Due to the mathematical difficulties embodied in
the steady-Couette-flow problem, no solution has been
found to the Boltzmann equation. However, an exact
description has been given when one uses the Bhatnagar-
Gross-Krook (BGK) [13] kinetic model. From this equa-
tion, an exact normal solution has been obtained for arbi-
trary values of the velocity and temperature gradients
[14,15]. Therefore, assuming that the system is in steady
Couette flow, our goal is to describe a self-diffusion prob-
lem under these conditions. Self-diffusion involves only
like-particle motion and is somewhat simpler to treat
from a theoretical view as well as from nonequilibriurn
computer simulations [12]. In this paper the analysis will

be achieved by using a kinetic model suitable to study
transport properties for mixtures of similar masses [16].
This model is consistent with the BGK equation for the
total distribution function when the particular case of
mechanically identical components (self-diffusion case) is
considered. This property is not verified by several kinet-
ic models previously proposed [17].

The kinetic equation for the distribution function of
the tagged particles is solved by a Chapman-Enkog-type
of expansion around the Couette flow state. In this way,
the different approximations will be highly nonlinear
functions of the shear rate and the thermal gradient. In
this paper we will restrict the calculations to first order in
the gradient of the concentration of the tagged particles.
We get a shear-rate-dependent self-diffusion coefficient
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II. KINETIC MODEL FOR MULTICOMPONENT
GASES

Let us consider an ¹omponent dilute mixture. Let
f&(r, v;t) be the one-particle velocity distribution func-
tion of species i. The corresponding local number density
and mean velocity are defined, respectively, by

n, =fdvf, , . (2.1)

ui dvv i
1

(2.2)

A local temperature T; for species i can also be intro-
duced through the relation

', n;kttT;=—f dv ,'m;(v u, ) f—, , — (2.3)

and a generalized partial pressure. In addition, the use of
a kinetic model allows us to explicitly obtain the velocity
distribution function of the tagged particles. In absence
of shear rate (pure heat flow), the self-diffusion coefficient
reduces to the one given by the linear theory and all ve-
locity moments are polynomials in the thermal gradient.

The plan of the paper is as follows. In Sec. II we
present the kinetic model to be used in the paper. It is
shown that it is consistent with the BGK equation for a
single gas in the self-diffusion case and the parameters
that define the collision term are explicitly written for a
binary mixture of identical particles. Section III con-
cerns with the description of the steady Couette Aow at
the level of the BGK equation. Section IV deals with the
general problem of self-diffusion in Couette How, while
the particular case of pure heat How is addressed in Sec.
V. Finally, some concluding remarks are made in Sec.
VI.

mi
pA

&ij I 2 k T

' 3/2
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X exp — V
2kB T

(2.7)

where V= v —u is the peculiar velocity, and the parame-
ters A, , B;j, and C, are given by

3kB T
A "=— C",lJ 7J (2.8)

m;

B

mi
C,

T;1 T m;

T 3k' T

(2.9)

(2.10)

In Eqs. (2.9) and (2.10) we have introduced the quantities

uj =(m;u;+m~uj )/(m;+m ),
TJ=T;+2[m;m l(m;+m ) ]

X [(T —T; )+(m l6ks)(u, —uj ) ] .

(2.11)

(2.12)

The kinetic model described by Eqs. (2.6)—(2.12) has the
following features: (i) preserves conservation of number
of particles for each species, as well as of total momen-
tum and total energy for the mixture, (ii) reproduces the
collisional transfer of momentum and energy given by the
Boltzmann equation for Maxwell molecules, and (iii) is
compatible with the BGK kinetic model for a single gas
when the case of mechanically indistinguishable particles
is considered. Let us show the latter point with detail. If
all the particles are mechanically equivalent, m; =m and

g;J = conj In, g being the collision frequency of the system.
Consequently,

where kB is the Boltzmann constant and m, is the mass
of a particle of species i. The local velocity u and the lo-
cal temperature T of the mixture as a whole are given by

u,~
=(u;+u )/2, (2.13)

pu= g p;u;, (2.4)
T,J.

=
—,
'

( T; + Tj )+ (u; —u )
B

(2.14)

—,'nk&T= g f d —,'m;(v —u) f;

= g [ 3n, ktt T, +—,
' m—, n, (u; —u ) ], (2.5)

and it is easy to prove that

ggn;g; A; =ggn;g, B; =g. g. n;(JCJ=0.

(2.15)

where p; =m;n;, n =g;n, , and p=g;p;.
In the low-density limit, the functions f;,

i =1,2, . . . , N, satisfy a coupled set of N nonlinear
Boltzmann equations [1]. A kinetic model retaining the
main physical properties of the Boltzmann description
has been recently proposed [16],

(2.6)

Therefore, by adding the kinetic equations (2.6) for all
species i one gets

(2.16)

where f =g;f, is the distribution function of the whole
mixture and f is the local equilibrium distribution
function

fLE=n(m l2mks T) ~2exp( —m V2I2ks T) . (2.17)
where g," is an effective collision frequency of a particle
of species i with particles of species j. Consequently,
n; g;~ =n~ g~; . Th. e reference distribution function f,"
reads

Equation (2.16) is the usual BGK model kinetic equation
[13] of the Boltzmann equation for a single gas. Thus,
our model (2.6) can be seen as a consistent extension of



3278 A. SANTOS AND V. GARZO 46

Pf i
—+—i» (2.18)

the BGK equation to a multicomponent system. In fact,
the physical idea behind Eq. (2.6) is that the main global
effect of the collisions on particles of species i is to pro-
duce a tendency towards the local equilibrium state
characterized by the hydrodynamic fields of the whole
mixture. The details of the collisions with particles of
species j give rise to a correction through the parameters
3, , 8,-, and C, . According to this spirit, although the
model is not a priori restricted to any range of mass ratio,
one expects it to be more suitable in the case of species
with similar masses.

In this work, we deal with a binary mixture of identical
particles. The only distinction between species 1 and 2 is
a tag or "label" with no inhuence on the mechanical be-
havior of the particles. This is the appropriate frame-
work to study self-diffusion. In this case, the total distri-
bution function f =f, +f~ obeys the BGK equation
(2.16), while f, verifies Eq. (2.6)

fi+v—~f i
= —0»(f i

—f ii )
—biz(f i f iz )

B

III. STEADY CQUKTTK FLQVV

B

By
p=0,

1 B
u, =a =const,

B T——
g(p) &p

2m y(a)=const .
k~

(3.1)

(3.2)

(3.3)

We consider a dilute gas enclosed between two infinite
parallel walls in relative motion and, in general, at
different temperatures. Let the x axis be parallel to the
direction of motion and the y axis be orthogonal to the
walls. A nonequilibrium steady normal state exists if one
increases the velocity difference and/or the temperature
difference at the walls as the system size increases. In
this way, the Knudsen number vanishes near the walls
and the boundary layers are made asymptotically small.

If the velocity distribution function f is assumed to
obey the BGK model, Eq. (2.16), its normal solution is
consistent with the following profiles for the hydro-
dynamic fields [14]:

where

@i=x if i i+x 2f 12
R R

=xf 1+ VJ,
2x ip

1 mV 3

2 2k~ T 2
p]
x)p

In Eq. (2.19), x; = n; In is the molar fraction,

J, =n, (u; —u)

(2.19)

The reduced shear rate a appearing in Eq. (3.2) is one of
the uniformity parameters of the system. It measures the
departure from equilibrium as the mean free path relative
to the spatial variation of the Aow velocity u„.There ex-
ists another independent uniformity parameter related to
the spatial variation of the temperature:

2k~ T 1 B)T

T By
(3.4)

In contrast to a, e depends on the space variable y. The
dimensionless parameter y(a) appearing in Eq. (3.3) is a
nonlinear function of the shear rate a given implicitly by
the equation

= f dvVf;

is the Aux of particles, and

(2.20)

where

2Fp(y )+3Fi (y )

F (y)
(3.5)

p, =n, k~T, + —,'mn;(u; —u)

=
—,'mfdvV f; (2.21) F,(y)=

d y Fo(y)
d

dy

is the partial pressure of species i, while

p =p&+pz=nk~T is the pressure of the mixture. It is
worth remarking that Eq. (2.18) holds for any relative
number of tagged particles. On the other hand, Eq. (2.18)
is not a closed equation since it depends on f through its
moments n, u, and T. Once Eq. (2.16) is solved, Eq.
(2.18) becomes a linear equation for f, .

and

Fo(y)= —f dt t exp( —t /2)Ko(2y '~4t'~~),00

0
(3.6)

Ko being the zeroth-order modified Bessel function [18].
The explicit expression for the distribution function is

[15]

2 (1+ )'"f (r, v) =n(m /2~k' T) ~

eg

tl
2 5 exp

tp 1+a Egy

1+Q
2t —(1 —a}t'

2

(3.7)
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where (to, t, }=(0,1) if g &0 and (to, t, )=(1,2/(1 —a))
if) &0. In Eq. (3.7),

Ea(a, e) =
(62+ 8y ))/2

g = (m /2kt) T) ' V .

From Eq. (3.7), fluxes such as the pressure tensor

P,, = J dv mV, V~f

and the heat Aux

(3.8)

(3.9)

(3.10)

q= J dv V—Vf
2

can be obtained. The results are (see Appendix A)

P„„=p[1+4y(F, +F2 }],
P =p[1—2y(F(+2F2)],
P„=[1 2yF, ]—,
P, =P, =O,

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

P„=—+F0(y )

pka a'q=— F()(y)VT .
2m( y

(3.16)

(3.17)

It is worth mentioning that Eq. (3.7) includes as a partic-
ular case the pure heat flow (Fourier flow), where both
walls are at rest and no flow velocity exists [19]. This
case is obtained by taking the limit a ~0 (which implies

y ~0 and a —+ I ) with e & 0 fixed:

perturbation scheme in the same spirit as in the
Chapman-Enskog method. Assuming that the molar
fraction x, (r, t ) of tagged particles is only slightly nonun-
iform, we perform an expansion taking the gradient Vx,
as the perturbation parameter. The main difference from
the usual Chapman-Enskog expansion [1] is that the
reference zeroth-order state is not that of local equilibri-
um, but the one corresponding to the steady Couette
Aow. In this way, the successive approximations will be
highly nonlinear functions of the uniformity parameters a
and e. Here, we restrict ourselves to first order in Vx, .
This kind of expansion has been previously used in other
problems [5,9].

Following the usual techniques described by the
Chapman-Enskog method, the operator 8/Bt must be
consistently computed at each order according to the hy-
drodynamic balance equations. In our case, the balance
equation for the concentration of the tagged particles
reads

1—x = ——VJ —uVxa~' n
(4.1)

(4 2)

where we have taken into account that in the Couette
flow V.u=O and u Vn=O Sinc. e we are interested in a
steady state, now we particularize to a concentration gra-
dient parallel to the temperature and Bow velocity gra-
dients, i.e., Vx, =(Bx) /By)y. Thus, the last term in the
right-hand side of Eq. (4.1) vanishes. Further, up to the
first order in the concentration gradient, Bx) /Bt=O since
J, =0 at the zeroth order (generalized Euler order). Con-
sequently, Eq. (2.18) becomes

f (r, v)=n(m/2nk2) T) ~3r2

1 —t
dt t

—5/2e
0 6 y

(3.18)

where f ) denotes the function f, up to the first-order
(I)

approximation, i.e., f, =f, +0(V x1). In Eq. (4.2),

=x f"

1 T=const (3.19)

and Eq. (3.17) coincides with the Fourier law [19].

where (to, t, }=(0,1) if g &0 and (t(), t) )=(l, ao ) if
(0. Also, Eq. (3.3) reduces to

where

Pl J(I) + 1 PlV 32

2p 2 2k~ T 2

XfLE

(I)pl

(4.3)

IV. SELF-DIFFUSION IN STEADY COUETTE
FLOW

I.et us consider a dilute gas that is arbitrarily far from
equilibrium in the state described in the previous section.
Although all the particles are mechanically equivalent,
we assume that some of them are distinguished by a cer-
tain tag or label and belong to the same species 1. The
physical problem we are interested in is the diffusion of
the tagged particles when the system as a whole is in
steady Couette flow.

We shall suppose that the temporal evolution of the ve-
locity distribution function f, of the tagged particles is
governed by Eq. (2.18), according to the model described
in Sec. II. In order to solve Eq. (2.18), we shall follow a

g(1) — dvv f(1)
1

p', "=—' dvmV f"'
3

The formal solution of Eq. (4.2) is
—1

(g)( I )f (1)— a
Bs

(4.4)

(4.5)

(4.6)

where ds=g(y)dy. It is worth remarking that when the
operator (1+v (}/Bs) ' acts on the function 4()", one
must take into account that only terms up to first order in
the concentration gradient need to be retained. The solu-
tion (4.6) is still formal, not only because of the presence
of the operator (1+v ()/Bs) ', but also because 4I" de-
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J(l) PD(2 axi
m as

(4.7)

pends on f'," through its moments J'i" and p~i". The cal-
culation of J'& ' and p &" is rather involved and is made in
Appendix B. The result is

1 .00

0.75
1

y

L

I I I I ( I I I I I I I I I ( I I I I I I I I I

Bx )p'i" =p xi+100(a)e(k&T/2m)'
ds

(4.8)

0.25

where the functions D(a) and A(a) are given by Eqs.
(B32) and (B35), respectively. Equations (4.7) and (4.8)
have been derived keeping all the hydrodynamic orders in
a and e. Expression (4.7) is a generalization of the usual
Fick's law (valid in the absence of shear rate and thermal
gradient). It gives the mass transport of tagged particles
when the concentration gradient is weak but the system is
otherwise subject to arbitrarily large velocity and temper-
ature gradients. The generalized self-diffusion coeScient
D (a) is a highly nonlinear function of the shear rate, al-
though it does not depend on the thermal gradient e.
This feature may be due to the particular Maxwell in-
teraction, since in the linear theory a crossed contribu-
tion to the mass Aux due to the presence of the thermal
gradient (Soret effect) does not appear either [1,16]. For
a=O, D=1, i.e., one recovers the usual self-diffusion
coefficient given by the linear theory [16]. The behavior
of D (a) is shown in Fig. l. As happens in the case of uni-
form shear fiow [5,9], the coefficient D(a) decreases as
the shear rate increases. On the other hand, Eq. (4.8)
shows that the deviation of the partial pressure from its
equilibrium value is at least of Burnett order, since it is

Q QQ I I I I I I I I I ( I I I I I I I r I I I I I

0.0 0.2 0.4
( I I I t I & I I I ( I I I I I I I I

0.6 0.8 1.0

FIG. 1. Shear rate dependence of the self-diffusion coefficient
(solid line) D(a). The same for Q(a) (dashed line).

proportional to @ax, /Bs. The coefficient Q(a) is again a
highly nonlinear function of the shear rate. For a=O,
0=1, and Eq. (4.8) defines the corresponding Burnett
transport coefficient. The function Q(a) is also plotted in

Fig. 1. It is also a monotonically decreasing function of
the shear rate. This means that for a given value of the
concentration gradient, the partial pressure approaches
its equilibrium value as the shear rate increases.

It still remains to obtain the distribution function of
the tagged particles. From the knowledge of the first mo-
ments, we are in conditions to explicitly write f'i' . It is
proved in Appendix C that

f',"=x,f— (2k~ T/m)'» (g 2)g +D(a)g»
a

+M(a)[4e(g 2) +3)+[iaaf 2) +y(g 2) +3)]g»X)g»

+a(2 yg„+Iac)2), (»2) ( +—,'a yXl, ( 2) g»] )f, (4.9}

where f is given by Eq. (3.7) and 2), and 2) are operators defined as

—i a = a

ag,
'

=
ag,

(4.10)

Equation (4.9) represents the major result of this paper. It may be considered as a generalization of the Navier-Stokes
distribution function in the self-diffusion problem. It gives the velocity distribution function of tagged particles up to
first order in the concentration gradient when the system is globally drawn out from equilibrium by the presence of ar-
bitrary shear rate a and thermal gradient e The function .f',"is expressed in terms of a complicated operator acting on
the distribution function f of the system seen as a whole. The nonlinear dependence of f',"on a and e appears both in
the operator (which turns out to be linear in e) and in f itself.

V. SELF-DIFFUSION IN PURE HEAT FLOW

As said in Sec. III, the case of pure heat fiow is obtained in the limit a ~0 (y ~0}with e & 0 fixed. In that particular
case, the coefficients D and II are given by their near-equilibrium values. Nevertheless, the distribution function f i" is

still a highly nonlinear function of e,
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Bx)
f',"=x,f (—2kaT/m)'» [g 2)g +( + ,'—e(gXl, +3)]f

=x;f (2k—~ T/m)'» n
Bs 2k T

' 3/2

g(g, e), (5.1)

where f is given by Eq. (3.18) and

y(g', e) = dt t +g»+ —,'e 3 —2 exp (5 2)

Here, the limits of integration are the same as those of
Eq. (3.18). The first two terms in the expansion of (p in

powers of e are

y(g, e)=2) e ~ +e[ ,'( ,' —g——)+3( ( ', g—
—)]e

Although y(g, e) is a complicated function of e, its ve-
locity moments are just polynomials in the thermal gra-
dient. We define the moments Nk I as

N ( )
3n fd g

—
gzkg( (g e) (5.5)

+O(e~), (5.3) Equation (5.1) implies that

as can be easily obtained from the corresponding expan-
sion of f. Since the latter expansion is only asymptotic,
so is the expansion (5.3). Thus, for moderate and large
values of e one has to use Eq. (5.2). In Fig. 2, we plot the
function

Nk )
—'4'eMk, I 2kMk ) /+3

—IMk (+)

+ ~eQk+(, i Qk, (+3 ~

where

(5.6}

f

deaf

f dg„f dpe
(p(g», e)= (5.4}

('

M d "'-'
2kT

—3/2

—3/2

(5.7)

for @=1. The shape of y clearly differs from the one
given by the Navier-Stokes limit (y= 2(» ). However, it is

noticeable that both functions lead to the same self-
diffusion coefficient.

Qk, (=fdt's'"k»&. (5.8)

The moments Mk &
have been calculated elsewhere [19]

and here we only quote the result

2(k —1)+I

( 1 )l2
—(2k + I)

r=0
( I + r)even

(2k+i+ r +1)!
r

E'

2
k —1+ ! k+ (l +r +1)

2 2

(5.9)

The moments Qk ( are worked out in Appendix D and they are given by

(2k+i +r+1)!!k+ —2 !
22k+1+4

Q ( i)(+12

((+ ) „„2"++" (l +r +1) k + 2 !

(5.10)

VI. CONCLUSIONS

In this paper we have addressed the problem of
diffusion of tagged particles in a dilute gas subject to arbi-
trarily large velocity and temperature gradients (steady
Couette flow). The analysis is made from a kinetic model
proposed for a multicomponent gas which reduces to the
BC&K equation for a single gas. The knowledge of the ve-
locity distribution function of the system as a whole en-

ables us to solve the kinetic equation for the distribution
of the tagged particles. A perturbation expansion in the
same spirit as in the Chapman-Enskog method is carried
out to first order in the gradient of the tagged particles,
the steady Couette Aow being the reference state. There-
fore, the successive approximations are nonlinear func-
tions of both the shear rate and the thermal gradient.
The main transport coefficients have been computed. In
particular, we have derived an explicit expression for the
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! ! ! ! ! ! ! ! !
I ! ! ! ! ! ! ! ! ! I ! ! ! ! ! ! ! ! ! Rather than from direct integration of Eq. (3.7), ex-

pressions for the moments of f are much more easily
found by considering the formal solution of the BGK
equation (2.16) for steady Couette flow,

—
1 k

af= 1+v—
~ Bs

QO

fLE—y ( v }k fLE
k=O

(A 1)

—1.0 0.0 0.5
! ! ! ! ! I ! ! ! ! ! ! ! ! ! I ! ! ! ! ! ! ! ! ! I ! ! ! ! !

1.0

where ds=((y)dy. Let us start with the calculation of
~.v

k
oo

P =m g ——f dvv
"+

k=0

FIG. 2. Plot of the distribution function!p(g» ) for e= 1.

'2k
00

=m g — (2k +1)!!n(k& T/m)"+'
k=0

self-diffusion coeScient, which is independent of the
thermal gradient and nonlinearly depends on the shear
rate. This coeScient decreases with increasing shear
rate. A similar behavior has been found for the uniform-
shear-flow problein [5,9]. Further, a generalized partial
pressure of the tagged particles has been obtained which
is linear in the thermal gradient and highly nonlinear in
the shear rate. In addition, we have been able to explicit-
ly write the velocity distribution function of the tagged
particles. It is given in terms of a complicated operator
acting on the distribution of the whole system. In ab-
sence of shear rate (pure heat flow), the self-diffusion
coefficient reduces to the one given in the linear regime
and the partial pressure is of Burnett order. All the ve-
locity moments are polynomials in the thermal gradient e
and the distribution function is a nonlinear function of e.

Although the results presented in this paper have been
obtained from a kinetic model, it seems reasonable to
conjecture that the qualitative features given here are also
present in the Boltzmann description. On the other
hand, the problem can be also extended to the case of ar-
bitrary mass ratio in the tracer limit in the same way as
in the uniform shear flow problem [9]. Work is now in

progress along these lines.
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APPENDIX A

This appendix contains the calculation of the pressure
tensor and heat flux in the steady Couette flow. Equa-
tions (3.16) and (3.17) have already been obtained else-
where [14]. Equation (3.15) is an obvious consequence of
the fact that the distribution function given by Eq. (3.7) is
an even function of g, . Equation (3.12) is obtained from

Eqs. (3.13) and (3.14) by taking into account the identity
P +P +P„=3p. Thus, only Eqs. (3.13} and (3.14)
need to be proved here.

=p g (2k)!(2k+1)!!(—y)",
k=0

(A2)

where in the last step use has been made of Eqs. (3.1}and
(3.3). Similarly,

k
00

p y f d ZvkfLE

k=0

=p+m g
k=1

'2k

(2k —1)!!n(kz T/m)"+'

=p 1+ g (2k)!(2k —1)!!(—y)"
k=1

(A3)

The asymptotic expansion in powers of y of the func-
tion Fp(y ) defined in Eq. (3.6) is [14]

Fp(y)= g (2k+1)!(2k+1)!!(—y)
k=0

Therefore, the expansion of

F„(y)=— „yFp(y)
d

dy

(A4)

1s

F„(y)=g (k+1)"(2k+1)!(2k+1)!!(—y)" .
k=0

(A5)

Notice that F„(y), r 3 is a linear combination of Fp, Fi,
and F2. For instance,

(A6)

(A7)

Comparison between Eqs. (A3) and (A5) gives Eq. (3.14).
Similarly, Eq. (A2) becomes Eq. (3.13).

APPENDIX 8
The expressions for J',"and p', "will be derived in this

appendix. First, notice that integration of Eq. (4.2) over
velocity shows that BJ',"/Os=0. Furthermore, we as-

sume, to be verified later, that r) (p', "/p —x, )/t)s =0.
Following similar steps as in Appendix A, one has

F = (1 F) F —'F— ——1

8 0 2 4 1

F~= (yF3)= (2Fp F, —1)+—,'F, + ,'—F2 . —=a =1



SELF-DIFFUSION IN A DILUTE GAS UNDER HEAT AND. . . 3283

k

J(1)— fd k+1@(1)
00

1

Ic =0

2k+1
00

(2k + 1)!!
Ic =0 Bs

2k

x(n(k&T/m)"+'+ JI" g (2k+1)!! — n(k&T/m)
k=o

00 a
(k + 1)(2k + 1 )I!

k=0 Bs

2k+1
P1

p
—x, n( k&T /m) +' . (Bl)

Now, taking into account Eqs. (3.1) and (3.3), one gets

J',"= — ~ Q (2k+1)!(2k+1)!!(—y)"+—,'J'," g (2k)!(2k+1)!!(—y)"
Bs m k o Ic =0

1 8
X1

4 Bs p
(2k +2)!(2k +1)!!(—y)k .

mk 0
(B2)

All the three summations have already appeared in Appendix A. Thus, Eq. (B2) can be conveniently rewritten as

(1)

J',"= — ~F0+ —,
' J',"[1—2y(F, +2F2)]— F,— —x,

BX, p Q p1
Qs m ' ' ' 2m ' Bs p

(B3)

Let us consider now p', "

pI = 'm g f—dv V2

k=0

k

k (1)
Vy 41

=
—,'m g

Ic =0

k

f dv V v~"4I"——', ma g k
Bs

I Bs

'k —1

fdv V„v,ke(,"

00 a+—ma g k(k —1)
Ic =2 Bs

k —2

dv v 4"'V Vy (B4)

where in the last step we have taken into account that

p'2 —V2 8
Bs

~BV 8
BS BS

k —2
k ( k —1 ) ()V ()

2 Qs Bs

k

p2 a
its

k —1

a—2ak
Bs

V„—a k(k —1)2 a
Bs

'k —2

(B5)

since V is a quadratic function of the variable s. %'e must evaluate each separate term in the right-hand side of Eq.
(B4). The first one is
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a
Bs

dV V2Vke")
y 1

2k 2k+1

2k+1 Bs 2p k 0 2k+3 Bs
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(1) 00
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a
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(86)

where in the last equality we have used the result
' 2k+1

a
Bs

(87}

Since 4I" is an even function of V„,the second term in the right-hand side of Eq. (84) vanishes. The third term is

k
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a f k +2q)(1)
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00 a
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m BS k 0 2m p k=0

p a
(1)
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Substitution of Eqs. (86) and (88) into Eq. (84) yields

(1)
P1

where

(1)
P1

p

kB BT'0 pl—x, [A,(y)+a B3(y)]+
m Bs Bs p

[A4(y}+a B4(y)],

A, (y}=—' g (2k+5)(2k+2)(2k+2)!(2k+1)!!(—y)
l( =0



SELF-DIFFUSION IN A DILUTE GAS UNDER HEAT AND. . . 3285

A~(y)= —,', g (2k+5)(2k+2)!(2k+1)!!(—y)",
1& =0

A~(y)= —,
' g „(2k)!(2k+3)!!(—y)",
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A4(y)= —,', g (2k+5)(2k+4)(k+1)(2k+2)!(2k+1)!!(—y)",
/c =0

8, (y)= —,
' g (k+1)(2k+4)!(2k+3)!!(—y)",

k=0
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Bq(y)= —,
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(811)

(812)

(813)

(814)

(815)

(816)

(817)

1
A) = F)+2F~—= (1 Fo) F)+ Fp— —

3 6r
(818)

All these functions can be expressed in terms of F0, F1,
and F2,

1C4= [8yFz(3F, +2F~ }+Fo(F)+F
12rF1

—F) —Fz] (829)

A2 =
—,'F1 +—,'F2,

A 3 y ( Fg + Fp +Fo—)—
=

—,', + ,', F y(F —,'F—
, +F) )—, —

A4 =F2+ —,'F3+ —,'F4

(819)

(820)
BX1 m—x = —2rc +2r C —J

1 1 2 1

Derivation of Eq. (89) with respect to s gives

p(1)

Bs p

(821)

(822)

(823)

(824)

(3—F 2F ) ——'F 'F— ——1

24 0 1 4 1 6 2

(F) —Fz»= 2

B~= (Fo F, ), —=1

B =—F1
3 3 2

+C3 X1

—2r C4
a

X1 (830)

where use has been made of Eq. (3.3) and terms of order
8 x, /Bs have been neglected. Equation (830) confirms
that B(p I" /p —x, ) /Bs =const. From Eqs. (83) and

(830), the flux of tagged particles JI" is given by

1B4= (F~ F))—3r
=—( —'F + 'F )+ (F ——1) .z

r 121 32 242 0r
(825)

In Eq. (89) it is the combination C„=3„+a8„that
really matters. By making use of Eq. (3.5), one has

J(l) PD( )
2 X1

m c}s

Fo( 2y C4+ 1 —C~ ) yF, C, —
2yF, C~ —(2yF, +4yF~+ 1)(C~—2yC4 —1)

(831)

(832)

(826)C) = [2y(5Ff 4Fq ) F)—(Fo —1)], —1

6rE,

The first terms in the power expansion of D (a) are

D(a)=1 —34y+. . . =1——"a + .
5

(833)

C~= (3F, +2F~),
1

BX1
p')"=p [x) + 100(a)e(kz T/2m)'~ (834)

Once J'&" is known, Eqs. (89) and (830) enable one to get
(827) p', ". The result is

Cq =
,', (Fo+5)— —[6FoF)—(F) +4F~ )], (828)

1 where
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(2yF) +4y F2+ 1)C) +2F()C2
Q(a) =

—,', D (a),(B35
k

(k + +1)! k () LE
Uyk! ' (3s

and its first power expansion terms are

Q(a)=1 ——"a +
5 (B36)

~1 y (k +r)
V

k=0
k+1

k

fLE

Bs

APPENDIX C

=rXl"v "f+Xlv 2)"v "f, (C5)

Here we derive the explicit solution of Eq. (4.2). First,
it is convenient to prove by induction the identity

2)'+'u g(v)=r2)"g(v)+Su 2)"g(v),

where g (v) is an arbitrary function and Xl is the operator

Uy

BUV U BU
(C2)

Equation (Cl) is obviously true for r=O Pro. vided that
Eq. (Cl) holds for a given integer value of r, let us see
that it also holds for the next integer value,

a
1+U

y Bs
fLE

k
oo

X Uk
LE'='. a

'k
BX1

(k+1) "+' ——f"

where we have used Eq. (C4) and the identity
()f /(3u =(v /u, )()f" /()u, . Insertion of Eq. (Cl) into
Eq. (C5) proves Eq. (C4) for r ~r+ l.

Let us consider in Eq. (4.6) the first piece of 4')",
—

1

X)"+ u~g =2)"+'(g + v~2)g )

=(r +1)X)"+'g+2)u 2)" 'g, (C3)

BX1=x,f— v~3u~ f,
Bs

(C6)

(C4)

For r=O, Eq. (C4) becomes Eq. (Al). For r ~r+ I, the
left-hand side of Eq. (C4) becomes

where in the first step we have taken into account that
2)u~g =g+u J)g, and in the last step we have used Eq.
(Cl) for g ~5r)g.

Now we can prove the relation
k

(k +r) k (3 fLE rDr pf

a1+U—
y Bs

J(1)fLE —~
u J(1)f

BX1
D(a)v f-

a

Finally, the last contribution is

(C7)

where in the first step terms of order 8 x1/Bs have been
neglected.

The next contribution in Eq. (4.6) is
r —
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fLE
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with X)—:u '()/Bu . Taking into account Eqs. (B5), (B34), and (C4), the last expression can be written in the form
Z Z z
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—50(a) je(kit T/2m)' —,'( V 2), +3)+[a@(knT/2m )' V,S,+y( V 2), +3))v~2)vs
a

+[2ayV 2), +—,'a e(kt)T/2m)' 2), ]v~2) vs+ ,'a y—l),v 2) v )f . (C9)

Putting together Eqs. (C6), (C7), and (C9), one gets Eq. (4.9).

APPENDIX D

8 m

Bs kB T
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1 m
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Since T is a linear function of s, one finally gets

In this appendix the moments defined in Eq. (4.17) are evaluated. By making use of Eq. (Al), we have
' k —]+I/2 ' r

' k + [(I + r)/2]
00 2 B T
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