
PHYSICAL REVIEW E VOLUME 48, NUMBER 1 JULY 1993

Heat and momentum transport in a gaseous dilute solution

V. Garzo and A. Santos
Departamento de I'z'szca, Unzversidad de E2;tremadura, E-06071' Badajoz, Spazn

(Received 3 February 1993)

A kinetic study of a gaseous dilute solution in a stationary nonequilibrium state is performed in
the tracer limit. The state is characterized by the presence of velocity and temperature gradients
(steady Couette flow) and uniform molar fraction. The results are derived from the Gross-Krook
model [Phys. Rev. 102, 593 (1956)] of the Boltzmann equation for a binary mixture. The ratio
between the temperatures of the solute and the solvent, as well as the main transport coeKcients,
are obtained in terms of the shear rate and the mass and size ratios. Furthermore, the velocity
distribution functions are explicitly derived.

PACS number(s): 51.10.+y, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The statistical-mechanical study of fluid mixtures far
from equilibrium is a very interesting subject from a the-
oretical as well as a practical point of view. The gen-
eral description of these systems is much more compli-
cated than that of a single fluid. Not only is the number
of transport coefBcients much higher but also they are
functions of parameters such as the molar fractions, the
mass ratios, and the size ratios. Due to the complexity
of the general problem, tractable specific situations must
be considered.

Recently, generalized Green-Kubo formulas for self-
diffusion [1] and mutual diffusion [2] tensors of a shear-
ing fluid have been derived. In the case of dilute binary
mixtures, where a Boltzmann description [3] is adequate,
diffusion of tagged particles has also been analyzed in
several nonequilibrium states [4—6]. Similar studies have
been carried out to extend the previous problems to the
case of unequal masses when the solute component is
present in tracer concentration [7—10]. All these stud-
ies refer to situations in which the solvent is in a state
arbitrarily far from equilibrium. On the other hand, the
Fokker-Planck equation for a Brownian particle when the
solvent is described by the first-order Chapman-Enskog
approximation has been derived in Ref. [11].

In this paper, we consider a low-density binary mixture
with a solute molar fraction much smaller than 1 (tracer
limit). As a consequence, it is assumed that the state of
the solvent is not disturbed by the presence of the solute
particles. Further, the effect on the state of the solute
of collisions among the solute particles themselves can
be neglected. On the other hand, our description applies
to arbitrary mass and size ratios. The mixture is in a
steady planar Couette flow with a uniform molar fraction.
Consequently, no mutual diffusion appears in the system.
Because of the mathematical complexity embodied in the
Boltzmann equation, no solution for the steady planar
Couette fIow is known, even in the case of a single gas. In
order to avoid the above diKculties, we use the nonlinear

kinetic model for mixtures proposed by Gross and Krook
(GK) [12], which is constructed in the same spirit as the
well-known Bhatnagar-Gross-Krook (BGK) model for a
single gas [13]. While keeping the main physical features
of the Boltzmann equation, these models allow for the
explicit derivation of the velocity distribution function.
An exact solution of the BGK equation for the steady
planar Couette flow has recently been found [14,15].

Here we are mainly interested in evaluating the coefB-
cients describing the transport of momentum and energy
associated with the solute particles. These coefFicients
are nonlinear functions of the mass and the size ratios
and of the shear rate. In contrast to what happens in the
case of tagged particles, the transport coeKcients of the
solute differ appreciably from those of the solvent. In par-
ticular, one can distinguish between two "temperatures"
measuring the mean kinetic energy of each component.

The plan of the paper is as follows. Section II starts
with a brief survey of the GK model. Then, the physical
problem we are interested in is introduced. The section
ends with a summary of the results derived from the BGK
equation for a single gas in steady Couette flow. The
temperature and the main transport properties of the
solute are obtained as functions of the shear rate and the
mass and size ratios in Sec. III. In addition, the velocity
distribution function of the solute is studied. Finally, the
conclusions are presented in Sec. IV.

II. DESCRIPTION OF THE PROBLEM

8
~ fi + v &fi = Jii[fi, fi] + ~i2[fi f2]

8
f2 + v &f2 =—~z2[f2, fz] + Jar[f2, fi]Ot

(2.1)

Let us consider a dilute binary mixture, with f, (r, v; t)
being the one-particle velocity distribution function of
species i (i = 1, 2). They satisfy the set of two coupled
Boltzmann equations [3]
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The terms appearing on the right-hand side of Eq. (2.1)
represent the self- and cross collisions, respectively. They
conserve the number of particles of each species, the to-
tal momentum, and the total energy. The local number
density and mean velocity of species i are deFined, respec-
tively, by

n dvf, , (2.2)

U
ni

dvvf;.

We also introduce a local temperature T, for each species
as

3,n;k~T—, = dv '(v —u)2f, , (2.4)

vip i— (2.5)

where v,~ is an effective collision frequency satisfying the
general property niv, ~

= n~v~„and the reference distri-
bution function f+ is given by

where k~ is the Boltzmann constant and m, is the mass
of a particle of species i.

Due to the complicated structure of the collision opera-
tors J,~, it is a very hard problem to solve the coupled set
of Boltzmann equations (2.1), especially in far from equi-
librium situations. This fact has motivated the search for
kinetic models in which the Boltzmann operators are re-
placed by simpler terms that preserve the main physical
properties. Here we adopt the GK model [12], in which
the terms J,z[f, , fz] in Eq. (2.1) are replaced by simple
relaxation terms of the form

'Uy = v12
fi a

BiJ
(2.10)

where A = 47r x 0.422. It is worth remarking that the
results derived in this paper could be extended to more
general potentials.

Due to the highly nonlinear character of the reference
function f, in the GK model, it has the following short-
coming. In the special case of mechanically equivalent
particles (mi ——mq, rii = K22 ——Kiq), the total dis-
tribution function f = fi + f2 does not obey a closed
equation. This problem is avoided by a recently proposed
kinetic model [17], which is especially useful for systems
of like particles. In fact, this model has been used to
get the shear-rate-dependent self-diffusion coefBcient in
the steady Couette flow [6]. Nevertheless, in the tracer
limit for arbitrary mass ratio, the above shortcoming of
the GK model does not apply. In that situation, the GK
model is preferable to the model proposed in Ref. [17].

We now describe the physical problem we are inter-
ested in. A gas (the solvent) is enclosed between two
infinite parallel plates (normal to the y axis) in relative
motion (along the x axis) and, in general, at difFerent
temperatures. The stationary state of the gas under the
above conditions will be referred to as steady Couette
flow. At a given time, a small concentration of particles of
a different species (the solute) is introduced. The result-
ing solution is assumed to be so dilute that the state of
the solvent is not disturbed by the presence of the solute,
while the collisions among solute particles themselves can
be neglected versus the solute-solvent collisions. After a
certain transient stage, the solute is expected to reach
a steady state. Our goal here is to analyze this steady
state.

Under these conditions, the GK model reduces to

3/z

i,27rk~T;~ )

In this equation,

exp — '
(v —u,~)2k~T, ~

(2 6)

for the solute component and

'Uy = —V22 2—
O'JJ

(2.11)

u,, = (m, ,u, + m, u, )/(m, + m, ), (2.7)
for the solvent component. From Eqs. (2.10) and (2.11)
one easily gets the following hydrodynamic balance equa-
tions:

T,~ =T+2 ' ' (T, —Ti)+ ' (u, —u)
rn, +m, 2 6 is

(2 8)

mim2
P~ y

———v2 n(u, —ug ),
BiJ ' m + mg

(2.12)

The above expressions are obtained by requiring that the
momentum and energy moments of the collision term
(2.5) be the same as those of the Boltzmann collision
term J,&[f, , f~] for Maxwell molecules [16]. In order to
follow the original Boltzmann equation as much as pos-
sible, we assume that particles of species i and j inter-
act through the Maxwell potential, i.e. Vz(r) = r,,zr 4.
Consequently, we identify the effective collision frequency
v~ by

q, y + Pi,~y &i,x
o'y ag

mim2
"(m;+ m&)'

xn, [3k~(T, —T2) —mz(u, —ug) ] . (2.13)

Here we have introduced the partial pressure tensor P,.
and heat flux q, , defined by

- 1/2+
vi~ = An~ mi™i (2.9) P, = m, dv(v —u, )(v —u, )f, (2.14)
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and

dv '(v —u, )2(v —u;) f, , (2.15)

—F& &(~)+G'(a, ~) T2 i (2.20)
5@2k~ a 0

2m2v22 5p Bg

respectively.
The main advantage of the tracer limit (ni/n2 (( 1) is

that f2 obeys a closed equation (the BGK model). Then,
the explicit knowledge of f2 allows one to solve the kinetic
equation for fi In .the case of the steady Couette flow,
a normal solution to Eq. (2.11) has been found [14,15].
This solution is characterized by the following hydrody-
namic profiles:

OG

F (p) = — dt t exp( —t /2)Ko(2p t ), (2.21)
o

G2
G(a, V) =—-F"'(V) + — 3 ——

l

F'"h')
5 5

(2.22)

Ko being the zeroth-order modified Bessel function, and

p2 = 7l2k~T2 = coilst, (2.16)

1
u2 ~ = a = const,

~22(V) BV
(2.17)

1 B 2m2
p(a) = const.

&22 'JJ BP
(2.i8)

P2ay = — F (7) 42m(o)
&22 By

(2.19)

The reduced shear rate a measures the ratio between the
mean free path and the hydrodynamic length associated
with the spatial variation of the local velocity uq. Equa-
tions (2.17) and (2.18) indicate that, under an adequate
change of spatial variable, the velocity profile is linear and
the temperature proBe is parabolic. The self-consistency
of the solution allows one to relate the dimensionless pa-
rameter p to the shear rate a. Nevertheless, we con-
sider for the moment p as a free parameter. Taking into
account the profiles (2.16)—(2.18), one gets the relevant
fluxes. In particular [14),

G(a, p) = 0. (2.23)

For small shear rates, the solution of Eq. (2.23) is p =
—a + a . In the opposite limit, one has p = —a .

One of the main advantages of using kinetic models
is the possibility of obtaining explicit expressions for the
distribution functions. This is in general not possible in
the case of the Boltzmann equation, even when the cor-
responding moment hierarchy is solvable. In the steady
Couette flow problem, the explicit solution to Eq. (2.11)
is [15]

Here F~"l(p) =— (~~ p)"F~o&(p). The behaviors of F~ l(p)
for small and large p are [14], respectively, F~ l(p) =
1 —18' and F&o&(p) = zp

i in'. Formally, Eqs. (2.19)
and (2.20) can be interpreted as giving the fluxes of f2
in terms of the moments characterizing f22, namely n2»

u22 = u2, and T22 ——T2. The proposed hydrodynamic
fields (2.16)—(2.18) and the resulting fluxes (2.19) and
(2.20) are consistent with the balance equations (2.12)
and (2.13) for i = 2 if and only if the following relation-
ship between p and a is verified:

sq2 2~(1+~)"'
f2(r, v) = n2(m2/2vrk~T2)

~l(pl

dt[2t —(1 —n) t']-'~2

2a 1 —tx exp 1+A E(y

1+a f' 2am 1 —ti
2t-(i- )t2 ''*+i+ )' +"+" (2.24)

1 /2k~T2 'i '~ 1 B
2 7

&22 0 m2 ) T2 Bg
(2.25)

where (to»ti) = (0»1) if(„)0 and (to, ti) = [1,2/(1 —o)]
if (& ( 0. In this equation,

The task now is to solve the kinetic equation for the so-
lute, Eq. (2.10), once the solution of the kinetic equation
for the solvent, Eq. (2.11), is known.

III. TB,ANSPORT PHOPEBTIES
OF THE SOLUTE

(» ):(2 )i]2+ 8pj

(—:(m2/2k~T2)'~ (v —u2) .

(2.26)

(2.27)

On physical grounds, one expects that the steady
state of the solute is characterized by a constant mo-
lar fraction 2:i = ni/n2» the absence of mutual diffu-
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nik~Tiz = const, (3.1)

1
uq2 ——a = const,

viz(y) By
(3.2)

1 B 2771 i
Tiz = —„p= const, (3.3)

where Eqs. (2.7) and (2.8) imply that uiz = ui = uz
and Tiq/Tz ——y + 2M(l —g) with M =—p/(1 + p) .
Consequently,

sion, i.e. , ui ——uz, and a constant temperature ratio
Ti/Tz —=y. The parameter y must depend on the shear
rate a, the mass ratio y, = tnz/mi, and the force ratio
w = (riz/rzz) . The explicit calculation of y(a, p, u) is
one of the main objectives of this paper. Obviously, y = 1
if (i) the mixture is at equilibrium (a = 0) or (ii) the par-
ticles are mechanically indistinguishable (p, = w = 1).
Although we are considering Maxwell molecules, we can
assign an effective diameter 0,&

to the interaction between
particles of species i and j. Dimensional analysis allows
one to interpret w as the size ratio fTiz/ozz.

According to the above assumptions, and by taking
into account Eqs. (2.16)—(2.18), one has

nik~Tiz (c) B'
y

(3 6)

~"&(V)+G(-., V) T. , (37)
277k y Vy2 5+ y

where use has been made of Eqs. (2.19) and (2.20). The
balance equation (2.12) is automatically satisfied. How-
ever, in order to verify the consistency of the energy bal-
ance equation (2.13), the parameter p must be given by
the following implicit equation:

3 M(1 —y)
5p y + 2M(l —y)

' (3 8)

where G is defined in Eq. (2.22). To close Eq. (3.8),
one must use the relations (3.4) and (3.5). The solution
gives y as a function of a, p, , and cu. In general, this
solution must be obtained numerically. However, y can
be explicitly derived in some limiting cases. In the limit
of small shear rates, one gets

formal point of view, the kinetic equation (2.Ill becomes
Eq. (2.10) by making the changes fz fi, fzz, fiz,
and vzz viz. Consequently, the fluxes of fi can be
obtained from comparison with those of fq. In particular,

and

~'[(1+ I )/2]'"

2p, y + 2M(1 —y)
~4

(3.4)

(3.5)

21 —p' 2+~1+— a
3 ~4@

On the other hand, for large shear rates,

1
x

p

(3 9)

(3.10)

Equations (3.1)—(3.3) define the profiles of the fields char-
acterizing the reference distribution function fiz. From a

If we choose w = 1, the behavior of y in the case of similar
masses is

az g( & (~) —2Q( ) (p) —p 2F( & (~) + 3~(z& (~)
31 —-' ( ' F"'(1)—F'"(1) —7 2+"'(&)+3+'"(7) )

(3.11)

The temperature ratio y is plotted in Fig. 1 as a func-
tion of a for two values of the mass ratio. Two choices
of w have been considered: w = 1 (solid lines) and
w = p f s (dashed lines). The latter has been suggested
[18] to model the mass dependence of the cross section
observed in disparate mass binary mixtures. We observe
that y—:Ti/Tz monotonically varies from 1 to rni/mq as
the shear rate increases. This means that very far from
equilibrium the mean-square velocities of each species
tend to be equal, but the mean kinetic energies are difer-
ent, while the converse happens at equilibrium (equipar-
tition theorem). The fact that Ti P Tz for arbitrary
shear rate indicates that the standard one-temperature
Chapman-Enskog theory [3] is not appropriate, especially
for disparate masses. In this case, the so-called two-fluid
theory must be used [19]. The monotonic behavior of
y in the steady Couette flow contrasts with the behav-
ior observed in the uniform shear flow [9]. In the latter

1,4 I I I I I I I I I
i

I ! I I I I I I I
i

I I I
I

I I I I I I I ! I
f

I I I i I I I ~T

1s2

1.0
E

Os8 m, /m, =2

Os6
0.0

I I I I I I I I I I

0.2 0.4
I I I I I I I I I I I

0.6 0.8 1.0

FIG. 1. Plot of the temperature ratio y = Ti/Tq vs the
reduced shear rate for two values of the mass ratio p, = mq/mi
and two choices of the size ratio: u = 1 (solid lines) and
tu = p, (dashed lines).
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case, for each value of p there exists a particular value
of a such that y = 1. For those combinations of p and a
a one-temperature theory can be adequate, even in the
case of disparate masses.

Once the function y is known, Eqs. (3.6) and (3.7)
give the solute contribution to the momentum and heat
transport across the system. It is convenient to define a
dimensionless partial generalized shear viscosity g1 and
a dimensionless partial generalized thermal conductivity
Ai through the relations

1.0

V)
0
O
Ul

0

0.8

0.6

0.4
0
CL

g
P1 xy 'g1 tt2 ~ )

cIV
(3.12)

I I I I I I I I I I I I I I I I I I I I I I I 1 I I I 1 I I I I I I I I I I I I I I I I I I

Q

0.0 0.2 0.4 0.6 0.8 1.0

5nik~Tg 0
Q1y =— Ai Tz.

2mi pig cIQ
(3.13)

FIG. 2. Shear-rate dependence of the dimensionless partial
shear viscosity gz for u = 1 and three values of the mass ratio:
(a) p = 0.5, (b) p, = 1, and (c) p = 2.

2 5p +49@ +5@—5

15 cu4p, (1+p)
(3.14)

3 41+ p lna2
g1 ~ —(d

4 p, a2 (3.15)

Analogously, the behaviors of Ai for small and large shear
rates are, respectively,

4 25@ + 353@ —110@—25
75 cu4p, (1+p, )

(3.16)

9 41+gina
A1 ——~

20 p2 a2 (3.17)

Equations (3.14) and (3.15) indicate that ))i monotoni-
cally decreases as the shear rate increases if p & 0.27.

I

The transport coefficients rii and Ai are normalized with
respect to their Navier-Stokes values. In the case of par-
ticles mechanically identical, the transport coefficients of
the solute coincide with those of the solvent [14]. The
behaviors of qi for small and large shear rates are, re-
spectively,

fj (r, v) = ni(mi/27rk/Tz) 4 ((), (3.18)

where

The same happens for A1 if p, & 0.45. For smaller values
of p, the partial transport coefBcients increase for small
shear rates but go to zero in the limit of large shear rates

In Figs. 2 and 3 we plot the shear-rate dependence
of i)i and Ai for w = 1 and some illustrative values of
p. We observe that, at a given value of the shear rate,
the solute contribution to the transport of momentum
and energy increases with the solute mass relative to the
solvent mass. Similar conclusions can be drawn by using
other choices for ~) such as u = p,

Let us turn our attention now to the velocity distri-
bution function fi By exp.loiting the formal analogy
between Eqs. (2.10) and (2.11), we can easily obtain
fi from Eq. (2.24) by performing the following changes:
&2 &1) ~2 ~1) T2 T12) and +22 +12 ~

viously, these changes must also be performed on e, o., a,
and (. The explicit expression for the solute distribution
function is then given by

[~+ 2M(1
&l(ul

dt[2t —(1 —n)t'] '~'

~ (1+pi'~ 2n 1 —t
x exp

2p, ) 1++ s(„
2

(—:(mi/2k~Tz) ~ (v —uz) . (3.20)

Here the integration limits are the same as in Eq. (2.24),
e and n are given by Eqs. (2.25) and (2.26), respectively,
and now the reduced velocity ( is defined as

I

In order to illustrate the shape of the solute distribution
function, it is convenient to de6ne the function

OO X OQ Z
(3.21)

d( j d(,e-~' '



HEAT AND MOMENTUM TRANSPORT IN A GASEOUS DILUTE. . . 261

1.0

0

C0
O

O
E

0.8

0.6

0

0
CL

0.4

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I0 ~ C-

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Same as in Fig. 2, but for the dimensionless partial
thermal conductivity A&.

This function is plotted in Fig. 4 for u = 1, a = 1,
e = 1, and p, = 0.5, 1, and 2. We observe that, as p de-
creases, the fraction of solute particles with high energies
increases. This is consistent with the fact that Tr/T~ also
increases when p decreases, as seen in Fig. 1.

IV. CONCLUSIONS

In this paper, we have addressed the problem of a
gaseous dilute solution far from equilibrium. The so-
lution is assumed to be so dilute that the state of the
solvent is not affected by the presence of the solute. Pur-
ther, the mixture density is so low that a kinetic descrip-
tion is appropriate. Under these conditions, the solvent
distribution function fz obeys a closed Boltzmann equa-
tion, while the solute distribution function f& obeys a
Boltzmann-Lorentz equation. This situation is usually
referred to as the tracer limit. The specific state that we
have considered corresponds to the steady planar Cou-
ette flow, in which the system is enclosed between two
parallel plates in relative motion. We have also assumed

0 I I I I I I I I I t I I I I I I I I I
t I I I I I I I I I ] I I I I I I I I I

J
I I I I I I I I

25

2 ' 0

1 5

1.0

0.5

0.0
—2

I I I I I I I I I & I I I I I I I I I I I I I I I I I

1 2

FIG. 4. Plot of the reduced distribution function p((„) for
a = 1, e = 1, u = 1, and three values of the mass ratio:
I = o 5 (- - -) I = 1 (—), »d I = 2 (- —-)

that the molar fraction is spatially uniform. This implies
that no mutual diffusion appears in the system, so that
we focus on the transport of momentum and energy.

The results have been derived from the nonlinear GK
kinetic model for binary mixtures. In the tracer limit,
the kinetic equation for the solvent reduces to the BGK
equation, whose solution in the steady Couette flow is
known [14,15]. Consequently, our task here has been to
solve the kinetic equation for the solute. In order to do
that, we have exploited a formal similarity between the
equations for the solvent and the solute. In this prob-
lem, the crucial quantity is the ratio y = Tr/Tq between
the temperatures of the solute and the solvent. We have
obtained an implicit equation, whose solution gives y as
a nonlinear function of the shear rate a, the mass ratio
p, —:mz/mr, and the size ratio w. Of course, y = 1 in the
special case of mechanically equivalent particles [6]. In
general, however, y varies monotonically from 1 (limit of
vanishing shear rate) to 1/p (limit of large shear rates).
The fact that y g 1 shows the failure of the equipartition
theorem in nonequilibrium situations. More specifically,
both the mean-square velocities and the mean kinetic en-
ergies are diferent for each species at finite shear rate.
The mean-square velocities tend to equal as one departs
from equilibrium, while the mean kinetic energies tend
to equal as one approaches equilibrium. Since Tr P Tz at
nonzero shear rate, a two-fluid theory is much more ap-
propriate than the standard one-temperature Chapman-
Enskog theory.

From the knowledge of y, the main transport prop-
erties of the solute have been determined, namely the
(partial) shear viscosity rlr and thermal conductivity Ar,
as functions of the shear rate and the mass and size ra
tios. For values of p smaller than about 0.27, the shear
viscosity does not behave monotonically as a function of
the shear rate. In the region of small shear rates it is an
increasing function, while the opposite happens in the re-
gion of large shear rates. For p + 0.27, gq monotonically
decreases as the shear rate increases (shear thinning).
Similar behavior is exhibited by the thermal conductiv-
ity depending on whether p, is smaller or greater than
about 0.45. On the other hand, both rlr and Ar increase
as p decreases at a given value of a.

In addition, an explicit expression for the velocity dis-
tribution function fr has been derived. This function de-
pends not only on the shear rate and the mass and size
ratios, but also on the local thermal gradient e. Both a
and e are the parameters measuring the departure away
from equilibrium. Although the dependence of fr on e is
highly nonlinear, the momentum flux is independent of e

and the heat flux is linear in e. Concerning the influence
of p, on fr, we have observed a significant distortion with
respect to fz, especially in the high-velocity region.

Prom our point of view, the motivation for this work
is twofold. First, the characterization of gaseous dilute
solutions in stationary states far from equilibrium is an
interesting problem itself. In this context, the solute
and the solvent distribution functions have been recently
compared in a homogeneous and isotropic problem [20].
Second, in order to study a tracer diffusion problem un-
der steady Couette flow, the results derived in this paper
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are needed as a starting point. More speei6cally, the idea
consists of performing a perturbation expansion around
the distribution f& obtained here, by considering the gra-
dient of molar fraction as the perturbation parameter
[5,6,8,9]. In this way, one can get the diffusion tensor as
a function of a, p, and u W. ork along these lines is in
progress.
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